SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE

FRANÇOISE TRUC

Problèmes variationnels non convexes en dualité (Équation des coques ; systèmes gyroscopiques)

Séminaire de Théorie spectrale et géométrie, tome 6 (1987-1988), p. 91-107 http://www.numdam.org/item?id=TSG_1987-1988_6_91_0

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1987-1988, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PROBLÈMES VARIATIONNELS NON CONVEXES EN DUALITÉ

(Équation des coques; systèmes gyroscopiques)

par Françoise TRUC

I - INTRODUCTION

En analyse convexe, il est classique de transformer un problème d'optimisation en un problème dual pour le rendre plus facile à résoudre.

Cette méthode a été étendue à des cas non convexes, en particulier aux équations de Hamilton :

$$(\mathcal{H}) \begin{cases} \dot{u}(t) \in J\partial H(t, u(t)) \\ u(t) = Mu(0) \end{cases}$$

sous les hypothèses suivantes :

H est une fonction de $\mathbb{R} \times \mathbb{R}^{2n}$ dans \mathbb{R} convexe par rapport à u, pour tout t;

J est la transformation de \mathbb{R}^{2n} : $(x,p) \to (p,-x)$ (en notant u=(x,p));

M est une matrice symplectique de \mathbb{R}^{2n}

$$(M^*JM = J)$$
 (en particulier $M = Id$ ou $M = -Id$).

La notation ∂H désigne le sous-différentiel de H; cette notion sera détaillée dans la partie II; il est à noter pour le moment que dans le cas où H est C^1 , (\mathcal{H}) devient

$$\begin{cases} \dot{x} = \frac{\partial H}{\partial p}(t, x, p) \\ \dot{p} = -\frac{\partial H}{\partial p}(t, x, p) \end{cases}.$$

Le principe de moindre action permet de chercher les solutions de (\mathcal{H}) comme points critiques de la fonctionnelle

$$I(u) = \int_0^T \frac{1}{2} J\dot{u} \cdot u + H(t, u) dt$$

où u parcourt l'espace $V=\{u\in H^1(0,T\;;\;\mathbf{R}^{2n}\}\;;\;u(T)=Mu(0)\}$, la notation $J\dot{u}\cdot u$ désignant le produit scalaire de $J\dot{u}$ par u dans \mathbf{R}^n .

On décompose I de façon naturelle en une forme quadratique $Q(u)=\frac{1}{2}\int_0^T J\dot{u}\cdot udt$ et en un terme convexe $F(u)=\int_0^T H\bigl(t,u(t)\bigr)dt$. Cependant, du point de vue du calcul des variations, cette fonctionnelle est mal conditionnée; elle n'est pas bornée et elle est linéaire uniquement en fonction des dérivées. On est donc amené à considérer une autre fonctionnelle.

II - THÉORÈMES DE DUALITÉ

A) Premier théorème de dualité.

On se donne un espace de Banach réflexif V, une forme quadratique Q continue sur V (on peut donc écrire $Q(x) = \langle Ax, x \rangle$ où $A: V \to V^*$ est un opérateur autoadjoint borné) et une fonction $F: V \to \mathbb{R} \cup \{+\infty\}$ convexe, semi-continue inférieurement et propre; ces conditions assurent que F est en tout point borne supérieure de fonctions affines continues et à ce titre on peut définir sa conjuguée de Fenchel:

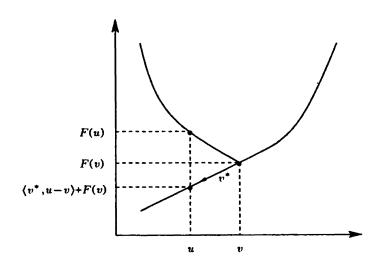
Définition 1. —

$$\begin{split} F^*: V^* &\to \mathbf{R} \cup \{+\infty\} \\ F^*(v^*) &= \sup_{v \in V} \{\langle v, v^* \rangle - F(v)\} \ . \end{split}$$

Sous ces conditions F^* est aussi convexe et semi-continue inférieurement.

Remarque. —

- * Si F est C^1 cette définition coı̈ncide avec la formule de la transformée de Legendre : $F^*(v^*) = \{\langle v, v^* \rangle F(v)/F'(v) = v^* \}$.
 - * Sinon, on introduit la notion de sous-différentiel en un point v:



 $v^* \in \delta F(v) \iff \langle u-v,v^* \rangle + F(v) \leqslant F(u)$, $\forall u \in V$. La définition 1 s'écrit dans ce cas :

$$F^*(v^*) = \{\langle v, v^* \rangle - F(v)/v^* \in \delta F(v)\}.$$

Par la suite, on utilisera les formules de réciprocité de Fenchel :

$$F^*(v^*) + F(v) = \langle v, v^* \rangle$$
 pour $v^* \in \delta F(v)$

$$v^* \in \partial F(v) \iff v \in \partial F^*(v^*).$$

On définit les points critiques de la fonctionnelle I = Q + F sur l'espace V de la manière suivante :

DÉFINITION 2. — Soit $\overline{u} \in V$, \overline{u} est un point critique de $I(u) = \frac{1}{2}\langle Au, u \rangle + F(u)$ si $-A\overline{u} \in \delta F(\overline{u})$.

Cette définition généralise le cas où F est différentiable. Dans les autres cas, on peut montrer que si la restriction de I à toute droite passant par \overline{u} admet un extremum local alors \overline{u} est point critique.

Remarque. — Q n'est pas supposée convexe (ce qui explique que l'on déborde du cadre de l'analyse convexe).

THÉORÈME 1. — Considérons les deux fonctionnelles I et J définies sur V de la manière suivante :

$$I(u) = \frac{1}{2} \langle Au, u \rangle + F(u)$$

$$J(v) = \frac{1}{2} \langle Av, v \rangle + F^*(-Av)$$

Sous les hypothèses précédentes un point critique de I est aussi point critique de J.

De plus si $0 \in \text{Int}(\text{Dom } F^* + \text{Im } A)$, à tout point critique \overline{x} de J on peut associer \overline{y} dans ker A de sorte que $\overline{x} + \overline{y}$ soit point critique de I.

Exemple. — En posant $J(v) = \int_0^T [\frac{1}{2}(J\dot{v},v) + H^*(t,-J\dot{v})]dt$ on obtient le problème dual de (\mathcal{H}) ; si \overline{v} est un point critique de J il existe un vecteur $\xi \in \ker(M-I)$ tel que $\overline{u}(t) = \xi + \overline{v}(t)$ soit solution de (\mathcal{H}) .

La démonstration utilise la formule de réciprocité de Fenchel, et pour la réciproque la condition d'Aubin : $0 \in \text{Int}(\text{Dom } F^* + \text{Im } B) \Rightarrow \partial(F^* \circ B)(\overline{v}) \subset B^*\partial F^*(B\overline{v})$ (l'inclusion inverse est toujours vraie), B étant un opérateur borné de V sur V^* .

Remarque 1. — Dans le cas où V est un espace de Sobolev, et V^* l'espace des distributions correspondant, cette condition est difficile à satisfaire. En vue de traiter d'autres problèmes que (\mathcal{H}) (il en sera donné 3 exemples dans la partie IV) une variante a été élaborée, qui se réfère aux espaces L^p .

Remarque 2. — La transformation duale change le type des points critiques. La fonctionnelle duale est souvent mieux conditionnée que I; en particulier quand F est sous quadratique, elle admet un minimum global.

B) Deuxième théorème de dualité et application à l'équation des coques.

Pour illustrer la variante, nous nous intéressons au problème du 4° ordre suivant : $(E): \left(\rho(t)x''(t)\right)'' \in \partial V(x(t))$ relatif à des coques.

On supposera que le potentiel V est une fonction convexe et semi-continue inférieurement de $x \in \mathbb{R}^n$, et que ρ est un élément de $L^2([0,T],\mathbb{R})$, ainsi que son inverse $1/\rho$.

Notons I la fonctionnelle définie sur Wpar :

$$I(x) = \int_0^T V[x(t)]dt - \frac{1}{2} \int_0^T \rho(t) x''^2(t)dt$$

où W est l'espace $\{x \in X ; x' \text{ et } x'' \in X ; \int_0^T x'(t)dt = \int_0^T x''(t)dt = 0\}$ et $X = L^2([0,T]); \mathbb{R}^n$.

Il est possible de relier les solutions de (E) aux points critiques de I par la

PROPOSITION 1. — Les points critiques de I sur W sont solutions de (E) et vérifient en outre :

$$(\rho x'')' \in X \; ; \; (\rho x'')'' \in X \; ; \; \int_0^T (\rho x'')' dt = \int_0^T (\rho x'')''(t) dt = 0.$$

Preuve. — On identifie d'abord W à un sous-espace de X^3 par l'injection : $x \in W \to (x,x',x'') \in X^3$ ce qui permet de considérer sur W la norme $\|x\| = \left(\int_0^T [x(t)^2 + x'^2(t) + x''^2(t)]dt\right)^{\frac{1}{2}}$.

Notons G l'application : $x \in X \to G(x) = \int_0^T V[x(t)]dt$. Le premier terme de l'expression de I peut se mettre sous la forme $G \circ \mathcal{K}(x)$ où \mathcal{K} est l'injection canonique de W dans X.

Quant au second terme, si l'on note N l'orthogonal de W dans X^3 il est mis sous la forme $\frac{1}{2}\langle Ax,x\rangle$ avec, pour tout x dans $W:Ax=(0,0,-\rho x'')$ modulo N. On définit ainsi un opérateur auto-adjoint de W dans W^* .

La démonstration utilise alors la caractérisation de N et la définition 2; on montre en effet que N est l'espace :

$$N = \left\{ (\psi_1, \psi_2, \psi_3) \in X^3 \; ; \; \psi_3' \in X \; ; \int_0^T \psi_3'(t)dt = 0 \; ; \; (\psi_2 - \psi_3')' = \psi_1 \; ; \cdots \right.$$

$$\left. \int_0^T (\psi_2 - \psi_3')(t)dt = 0 \right\} \; .$$

Soit alors \overline{x} un point critique; on a : $0 \in A\overline{x} + \mathcal{K}^*\partial G(\mathcal{K}\overline{x})$ ce qui signifie : $\exists w \in L^2$ tel que $w(t) \in \partial V[\overline{x}(t)]$ p.p. et $(0,0,-\rho\overline{x}'') + (w(t),0,0) \in N$. La troisième condition d'appartenance à N redonne l'équation (E).

Nous pouvons à présent énoncer la variante du théorème 1 :

THÉORÈME 2. — Soient V et X deux espaces de Banach réflexifs, G une application de X dans $\mathbb{R} \cup \{+\infty\}$ convexe, s.c.i., de domaine non vide, et, $K: V \to X$ une application linéaire continue.

On pose $M=(\mathcal{K}^*)^{-1}$ Im $A=\{x^*\in X^*\;;\;\exists v\in V\;:\;\mathcal{K}^*x^*=Av\}$. On suppose qu'il existe une application $S\in\mathcal{L}(M,V)$ telle que $\mathcal{K}^*x^*+ASx^*=0$ pour tout x^* dans M et que l'on a:

$$0 \in \operatorname{Int}(\operatorname{Dom} G^* - M) \subset X^*$$
.

On considère alors les fonctionnelles $I:V\to \mathbb{R}\cup\{+\infty\}$ et $J:M\to \mathbb{R}\cup\{+\infty\}$ définies par :

$$\begin{split} I(u) &= \frac{1}{2} \langle Au, u \rangle + G \circ \mathcal{K}(u) \\ J(x^*) &= -\frac{1}{2} \langle \mathcal{K}Sx^*, x^* \rangle + G^*(x^*) \ . \end{split}$$

Si J admet un point critique \overline{x}^* sur M, il existe \overline{y} dans M^{\perp} tel que $-AS\overline{x}^* \in \mathcal{K}^*\partial G(\mathcal{K}S\overline{x}^*+\overline{y})$.

Remarque 3. — Le point $\overline{x} = \mathcal{K}S\overline{x}^* + \overline{y}$ ci-dessus est appelé point pseudo-critique de I. Pour comprendre ce théorème, il faut remarquer que M^\perp contient $\overline{K(\operatorname{Ker} A)}$ et que dans le cas où M^\perp coïncide avec $K(\operatorname{Ker} A)$, le point $\mathcal{K}^{-1}\overline{x}$ est un point critique de I. En effet, on écrit $\overline{y} = \mathcal{K}\overline{z}$ avec $A\overline{z} = 0$ ce qui conduit à : $AS\overline{x}^* = AS\overline{x}^* + A\overline{z} = A(S\overline{x}^* + \overline{z})$ d'où : $-A(S\overline{x}^* + \overline{z}) \in \mathcal{K}^*\partial G[\mathcal{K}(S\overline{x}^* + \overline{z})]$ et l'on reconnaît la caractérisation du point critique $S\overline{x}^* + \overline{z}$.

Preuve. — La démonstration utilise la condition d'Aubin $0 \in \text{Int}(\text{Dom } G^* - M)$ pour calculer le sous différentiel $\partial (G^* \circ i)(\overline{x}^*)$ où i est l'injection de M dans X^* . Voir [1] pour le détail des calculs.

Dans l'exemple traité, la condition d'Aubin est aisément satisfaite et on peut même montrer que :

PROPOSITION 2. — Si \overline{x} est un point pseudo-critique de I alors $K^{-1}\overline{x}$ est un point critique de I sur W.

Preuve. — Il suffit pour cela d'expliciter l'espace M:

$$M = \{ \psi \in X ; \exists x \in W : \mathcal{K}^* \psi = Ax \};$$

il faut chercher à quelles conditions sur ψ il existe x dans W vérifiant : $(\psi, 0, -\rho x'') \in N$ et donc entre autres : $(\rho x'')''(t) = \psi(t)$. Un calcul permet alors d'obtenir x à partir de

 ψ par intégrations successives, à l'unique condition que $\int_0^T \psi(t)dt = 0$. Cela permet de construire un opérateur S de M dans W où $M = \{\psi \in X \; ; \; \int_0^T \psi(t)dt = 0\}$. L'espace M^\perp est donc l'espace \mathbf{R}^n des fonctions constantes, qui coïncide bien avec le noyau de l'opérateur A qui est un opérateur de dérivation. On est bien dans le cadre de la remarque 3.

L'étape suivante consiste à chercher de bonnes hypothèses sur la fonctionnelle J de façon à en déduire l'existence de points critiques.

III - THÉORÈMES D'EXISTENCE

A) Hypothèses de type sous quadratique.

THÉORÈME 3. — Sous les hypothèses du théorème 2 et sous les hypothèses supplémentaires : $K:V\to X$ est compact et :

$$\exists k > \|\mathcal{K} \circ S\| \ , \ \exists c \in \mathbf{R} \ : \ \forall x \in X \ , G(x) \leq \frac{1}{2k} \|x\|^2 + c \ ,$$

I admet un point pseudo-critique $\overline{x} \in X$.

La démonstration repose sur l'existence d'un minimum global de J sur M due à la compacité de l'opérateur $K \circ S$ et à une minoration de G^* ; montrons cette dernière : posons $F(x) = \frac{1}{2L} ||x||^2 + c$; alors

$$F^*(x^*) = \sup_{t \geqslant 0} \sup_{\|x\| = t} \{ \langle x, x^* \rangle - \frac{t^2}{2k} - c \}$$
$$= \sup_{t \geqslant 0} \{ t \|x^*\| - \frac{t^2}{2k} - c \}$$

or la fonction $\varphi(t)$ entre accolades atteint son maximum pour $t=k\|x^*\|$; on obtient donc $F^*(x^*)=\frac{k}{2}\|x^*\|^2-c$; d'où $J(x^*)\geqslant \frac{1}{2}(k-\|\mathcal{K}\circ S\|)\|x^*\|^2-c$. On montre alors qu'une suite minimisante de J admet une limite \overline{x}^* , qui est bien un minimum de J sur M. (voir [1])

B) Application à l'équation des coques.

Dans l'exemple traité, on obtient un théorème d'existence dans le cas où ρ est constant :

PROPOSITION 3. — S'il existe $\gamma > 0$ et $c \in \mathbb{R}$ tels que $V(y) \leq \gamma y^2 + c$ alors l'équation (E) admet une solution périodique de période T pour tout T dans l'intervalle $[0, 2\pi \sqrt[4]{\rho/2\gamma}]$.

Preuve. — Il s'agit d'évaluer la norme de l'opérateur $K \circ S$ défini précédemmment. Or en écrivant les développements de Fourier de la fonction $x = S\psi$ et de ses

dérivées jusqu'au 4^e ordre on trouve : $\|x\|_{L^2} \leqslant \frac{T^4}{16\pi^4} \|x^{IV}\|_{L^2}$. La relation entre x et ψ , qui découle de la définition de M et de N est : $(\rho x'')'' = \psi$ (voir page précédente). Sous l'hypothèse que ρ est constant on obtient :

$$||x||_{L^2} \leqslant \frac{T^4}{16\pi^4\rho} ||\psi||_{L^2}$$
.

De plus l'égalité est obtenue pour la fonction $\psi(t)=\sin\frac{2\pi t}{T}$, ce qui entraı̂ne : $\|\mathcal{K}\circ S\|=\frac{T^4}{16\pi^4\rho}$ et la proposition est démontrée, puisque $G(x)=\int_0^T V[x(t)]dt\leqslant \gamma\|x\|_{L^2}^2+c$.

C) Existence d'une solution non triviale.

Lorsque G est minimum à l'origine, il y a une solution triviale; c'est pourquoi il peut être intéressant de rajouter une hypothèse au théorème 3, assurant la non trivialité de la solution trouvée. (la valeur de G en 0 est supposée nulle car l'addition d'une constante à G ne change pas les points critiques de I).

THÉORÈME 4. – Sous les hypothèses du théorème 3 et sous l'hypothèse supplémentaire que G est minimum en 0, y prend la valeur 0 et que G* vérifie :

$$\exists y^* \in M : G^*(y^*) < \frac{1}{2} \langle \mathcal{K}Sy^*, y^* \rangle ,$$

la fonctionnelle I admet un point pseudo-critique non trivial.

Preuve. — Soit \overline{x} un point pseudo-critique de I (dont l'existence est prouvée dans le théorème 4); \overline{x} s'écrit $KS\overline{x}^* + \overline{y}$ où \overline{y} est un élément de M^{\perp} et \overline{x}^* minimise J sur M. Supposons que \overline{x} soit nul; alors $KS\overline{x}^* \in M^{\perp}$, donc:

$$J(\overline{x}^*) = -\frac{1}{2} \langle \mathcal{K} S \overline{x}^*, \overline{x}^* \rangle + G^*(\overline{x}^*) = G^*(\overline{x}^*) .$$

Or G^* atteint son minimum en 0, comme G; d'où :

$$J(\overline{x}^*) = G^*(\overline{x}^*) \ge G^*(0) = J(0) = 0$$
.

La valeur minimale $J(\overline{x}^*)$ est donc nulle et l'on a pour tout élément x^* de $M:J(x^*)\geqslant 0$ ou encore $G^*(x^*)\geqslant \frac{1}{2}\langle \mathcal{K}Sx^*,x^*\rangle$ ce qui contredit l'hypothèse.

D) Application à l'équation des coques.

PROPOSITION 4. — Supposons que ρ est constant et que le potentiel V vérifie :

- 1) V convexe, V atteint son minimum strict en 0, V(0) = 0;
- 2) $V(y) \ge \alpha ||y||^2$ au voisinage de 0;
- 3) $V(y) \le \gamma ||y||^2 + c$ pour tout y, les constantes α et γ vérifiant $\alpha > \gamma > 0$.

Alors l'équation (E) admet une solution T périodique non triviale pour toute valeur de T dans l'intervalle $]2\pi\sqrt[4]{\rho/2\alpha}, 2\pi\sqrt[4]{\rho/2\gamma}[$.

Preuve. — La condition 2) permet de trouver une fonction ψ_0 vérifiant :

4) $G^*(\psi_0) < \frac{1}{2} \langle \mathcal{K} S \psi_0, \psi_0 \rangle$. En effet, au voisinage de l'origine on peut écrire $V^*(y^*) \leqslant \frac{\|y^*\|^2}{4\alpha}$; ainsi, pour λ assez petit, la fonction $\psi_0(t) = \lambda \sin \frac{2\pi}{T}$ sera telle que :

$$G^*(\psi_0) \leqslant \int_0^T \frac{\|\psi_0\|^2}{4\alpha} dt \Rightarrow G^*(\psi_0) \leqslant \frac{\|\psi_0\|_{L^2}^2}{4\alpha}.$$

D'autre part (voir ci-dessus) la fonction ψ_0 vérifie :

$$\langle \mathcal{K}S\psi_0, \psi_0 \rangle = \|\mathcal{K} \circ S\| \|\psi_0\|_{L^2}^2$$

= $\frac{T^4}{16\pi^4 a} \|\psi_0\|_{L^2}^2$.

Par conséquent la condition 4) est remplie pour T vérifiant $\frac{1}{4\alpha} < \frac{T^4}{16\pi^4\rho}$.

E) Hypothèses de type surquadratique.

Les hypothèses étudiées précédemment permettent de trouver un minimum global à la fonctionnelle duale. Dans le cas où cette dernière n'est pas bornée il est cependant possible de trouver une valeur critique si les conditions du théorème d'Ambrosetti-Rabinowitz sont satisfaites (voir [2]). Ces conditions exigent de G un comportement "surquadratique" à l'origine :

THÉORÈME 5. — Supposons vérifiées les hypothèses du théorème 2 ainsi que les hypothèses suivantes :

- 1) K est compact et il existe x_0^* dans M tel que $\langle KSx_0^*, x_0^* \rangle > 0$;
- 2) G est strictement convexe, atteint son minimum en 0, G(0) = 0;
- 3) $\alpha^{-1} \sup \{G(x)/\|x\| \leq \alpha\} \to 0$ quand $\alpha \to 0$;
- 4) $\exists k > 2 \text{ tel que } \langle x, x^* \rangle \geqslant kG(x), \ \forall x^* \in \partial G(x);$

Alors I admet un point pseudo-critique non trivial.

Nous renvoyons le lecteur à [1] pour la démonstration précise de ce résultat. Remarquons simplement que les conditions sur G induisent les conditions sur G^* suivantes :

- 3') inf $\{G^*(x^*)/||x^*|| = \beta\} > 0$ pour tout $\beta > 0$;
- 4') $\langle x,x^*\rangle\leqslant k'G^*(x^*)$, $\forall x\in\partial G^*(x^*)$ où k' est défini par $\frac{1}{k}+\frac{1}{k'}=1$ de sorte que 1< k'<2 .

On en déduit l'existence de deux nombres $\beta > 0$ et $\gamma > 0$ tels que

$$\inf \{ J(x^*) / ||x^*|| = \beta \} > 0 = J(0)$$
$$J(\gamma x^*) \le 0 = J(0) .$$

Il s'agit alors de vérifier que J vérifie les conditions faibles de Palais Smale, qu'elle est Gâteaux différentiable et que J' est continue de X muni de la topologie forte dans

 X^* muni de la topologie faible pour satisfaire à toutes les conditions du théorème d'Ambrosetti-Rabinowitz.

Nous allons voir une illustration de ce théorème lors de l'étude des systèmes gyroscopiques dans la partie suivante.

IV - AUTRES APPLICATIONS

Les systèmes mécaniques régis par des forces gyroscopiques ont un mouvement décrit par l'équation du second ordre :

$$(\mathcal{E}) x''(t) + 2Kx'(t) \in -\partial V(t, x(t))$$

où $V: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ est convexe par rapport à x et K est un opérateur antisymétrique de \mathbb{R}^n .

Nous allons définir une formulation variationnelle de (\mathcal{E}) et appliquer les résultats des sections II et III à la fonctionnelle adéquate.

A) Cadre d'étude – Fonctionnelles I et J.

On se propose d'étudier l'existence de solutions T périodiques de (\mathcal{E}) dans l'espace $W:\{x\in X\;,\;x'\in X\;;\int_0^Tx'(t)dt=0\}$ où X désigne l'espace $L^2([0,T]\;;\mathbf{R}^n)$ comme précédemment. W est identifié à un sous-espace de X^2 par l'injection $x\to(x',x)$ ce qui permet de le munir de la norme $\|x\|=\left(\int_0^T[x^2(t)+x'^2(t)]dt\right)^{1/2}$. On considère la fonctionnelle I de W sur $\mathbf{R}\cup\{+\infty\}$ définie par : $I(u)=\int_0^T(Kx'\cdot x-\frac{x'^2}{2})dt+\int_0^TV(t,x)dt$ pour tout u=(x',x) dans W.

Comme précédemment I se décompose en deux parties :

$$I(u) = \frac{1}{2} \langle Au, u \rangle + G \circ \mathcal{K}(u) .$$

L'opérateur A de W dans W^* est défini par : A(u) = (-x' - Kx, Kx') modulo N; il est autoadjoint, et N, orthogonal de W dans X^2 est cette fois caractérisé par :

$$N=\{(\phi,\psi)\in X^2\;;\phi'=\psi\;;\;\phi(0)=\phi(T)\}$$

G est l'application : $v \in X \to \int_0^T V(t,v(t))dt$ et \mathcal{K} est l'injection canonique de W dans X.

En explicitant la définition d'un point critique on obtient la

PROPOSITION 5. — Les points critiques de I sont les solutions de (\mathcal{E}) qui appartiennent à W et qui vérifient $x'' \in X$; $\int_0^T x''(t)dt = 0$.

En effet, si u=(x',x) est un point critique on peut écrire : $0\in Au+\mathcal{K}^*\partial G(\mathcal{K}u)$. Cela signifie l'existence d'un élément w de $\partial G(\mathcal{K}u)$ tel que : $(-x'-Kx,Kx')+(0,w)\in N$, d'où :

i)
$$(-x' - Kx)(0) = (-x' - Kx)(T) \Rightarrow x'(0) = x'(T)$$

ii)
$$-x'' - Kx' = w + Kx' \Rightarrow x'' + 2Kx' \in -\partial V(t, x)p.p.$$

Pour comprendre la notion de point pseudo-critique de I, il importe à présent d'étudier l'ensemble $M=\{\psi\in X\;;\;\exists u\in W\;:\;\mathcal{K}^*\psi+Au=0\}$.

PROPOSITION 6. — Supposons que K n'ait pas de valeurs propres de la forme $\frac{i\pi k}{T}$, $k \in \mathbb{Z}^*$; alors M^{\perp} est l'ensemble des fonctions constantes.

Preuve. — Pour tout élément u=(x',x) de W, la relation $\mathcal{K}^*\psi+Au=0$ dans W^* correspond au système :

(S)
$$\begin{cases} \frac{i\pi n}{T}\widehat{x}(n) + K[\widehat{x}(n)] = \frac{iT}{4\pi n}\widehat{\psi}(n) , \forall n \in \mathbf{Z}^* \\ \widehat{\psi}(0) = 0 . \end{cases}$$

En effet (S) n'est rien d'autre que la traduction de l'équation $-x'' - Kx' = \psi + Kx'$ en termes de coefficients de Fourier.

Notons K_n l'opérateur $K+\frac{i\pi n}{T}Id$; Si K_n est inversible pour tout entier n non nul, il est clair que pour toute fonction ψ de X vérifiant $\int_0^T \psi(t)dt = \widehat{\psi}(0) = 0$, (S) définit une fonction x de la manière suivante :

$$x = \sum_{n \in \mathbb{Z}^*} \frac{iT}{4\pi n} K_n^{-1} [\widehat{\psi}(n)] e^{2i\pi nt/T} ;$$

on vérifie que x, x' et x'' sont bien dans X, ce qui permet de conclure que x est dans l'espace W. Pour cela on établit la majoration suivante :

$$||K_n^{-1}|| \le \frac{T}{|n|\pi} \sum_{0}^{n} \left(\frac{T}{|n|} \frac{||K||}{\pi} \right)^p \le \frac{T}{|n|\pi}.$$

D'où:

$$\|\widehat{x}(n)\| \leqslant \frac{T^2}{4n^2\pi^2} \|\widehat{\psi}(n)\|$$
.

Puisque $\widehat{\psi} \in l^2(Z^n)$ cette dernière inégalité implique qu'il en est de même pour $\widehat{x}(n)$, $n\widehat{x}(n)$, $n^2\widehat{x}(n)$; nous avons ainsi défini l'opérateur S de M dans W répondant aux critères du théorème 2. L'application de ce théorème conduit à la

PROPOSITION 6bis. — Si $spK \cap \{\frac{i\pi k}{T}, k \in \mathbb{Z}^*\} = \emptyset$ et si la fonction $t \to V^*(t,v)$ est intégrable sur [0,T] pour tout v au voisinage de l'origine, alors à un point critique $\overline{\psi}$ de la fonctionnelle duale $J(\psi) = -\frac{1}{2}\langle \mathcal{K}S\psi, \psi \rangle + G^*(\psi)$ on peut associer une constante c de \mathbb{R}^n de sorte que la fonction $\overline{x} = \overline{\psi} + c$ soit un point critique de I.

Remarque. — La condition sur V^* assure que l'hypothèse $0 \in Int(Dom G^* - M)$ est bien satisfaite.

B) Existence de solutions dans le cas sousquadratique.

Il s'agit à présent d'évaluer la norme de l'opérateur $\mathcal{K} \circ S$: or la formule de Parseval permet d'obtenir l'estimation suivante : $\|x\|_{L^2}^2 = \int_0^T x^2 dt = T \sum_{-\infty}^{+\infty} |\widehat{x}(n)|^2 \leqslant \frac{T^2}{16\pi^2} (\operatorname{Max} \frac{\|K_n^{-1}\|^2}{n^2}) \|\psi\|_{L^2}^2$ d'où $\|\mathcal{K} \circ S\| \leqslant \frac{T}{4\pi} \operatorname{Max} \frac{\|K_n^{-1}\|}{|n|}$.

Il est alors immédiat d'énoncer la

PROPOSITION 7. — Soit $V: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ convexe par rapport à $v \in \mathbb{R}^n$ et vérifiant :

- i) $t \to V^*(t, v)$ intégrable sur [0, T] pour tout v dans un voisinage de 0;
- ii) il existe une fonction $h \in L^1([0,T],\mathbb{R})$ et un nombre $\gamma > 0$ tels que :

 $V(t,x) \leqslant \gamma x^2 + h(t)$ pour tout $(t,x) \in \mathbb{R} \times \mathbb{R}^n$.

Alors pour toute période T vérifiant $T\max_{n\neq 0}\frac{\|K_n^{-1}\|}{|n|}<\frac{2\pi}{\gamma}$ il existe une solution T périodique de (\mathcal{E}) qui vérifie en outre : $x''\in X$; $\int_0^T x''(t)dt=0$.

Il suffit en effet d'appliquer le théorème 3 et de remarquer que la condition $\frac{1}{2\gamma} > \|\mathcal{K} \circ S\|$ est vérifiée.

Pour préciser la condition $T\max_{n\neq 0}\frac{\|K_n^{-1}\|}{|n|}<\frac{2\pi}{\gamma}$, considérons le cas où n est pair et où K est l'opérateur $\begin{bmatrix} 0 & \alpha I \\ -\alpha I & 0 \end{bmatrix}$; l'équation (\mathcal{E}) devient alors le système S_{α} :

$$\begin{cases} r'' + 2\alpha s' + \frac{\partial V}{\partial r}(t, r, s) = 0 \\ s'' - 2\alpha r' + \frac{\partial V}{\partial s}(t, r, s) = 0 \end{cases}$$

en notant x = (r, s).

La condition ci-dessus s'écrit alors :

$$\max_{n\neq 0} \frac{1}{|n|\sqrt{|\alpha^2 - \frac{n^2\pi^2}{T^2}|}} \leqslant \frac{2\pi}{T\gamma} .$$

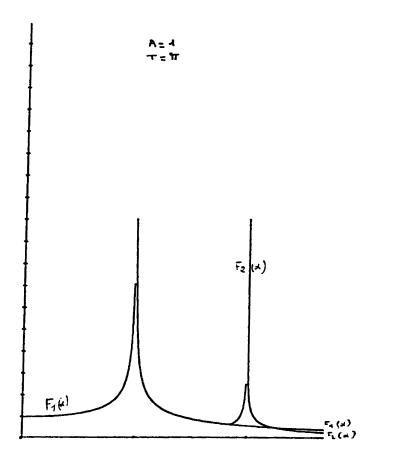
Il est alors possible de déterminer le terme de gauche, noté M, en fonction de α ; plus précisément, posant $n_0=E[\frac{\alpha T}{\pi}]$ et

$$\theta = \frac{(n_0 + 1)^4 + n_0^4}{(n_0 + 1)^2 + n_0^2}$$

on obtient:

$$\begin{split} & \sin n_0 \frac{\pi}{T} < \alpha < \frac{\theta \pi}{T} \ M = \max \Big\{ \frac{1}{\sqrt{\alpha^2 - \frac{\pi^2}{T^2}}}, \frac{1}{n_0 \sqrt{\alpha^2 - \frac{n_0^2 \pi^2}{T^2}}} \Big\} \\ & \sin \frac{\theta \pi}{T} \leqslant \alpha < \frac{(n_0 + 1)\pi}{T} \ M = \max \Big\{ \frac{1}{\sqrt{|\alpha^2 - \frac{\pi^2}{T^2}|}}, \frac{1}{(n_0 + 1)\sqrt{\frac{(n_0 + 1)^2 \pi^2}{T^2} - \alpha^2}} \Big\} \end{split}$$

on peut encore écrire $M=\max\left\{F_1(\alpha),F_2(\alpha)\right\}$ et les graphes ci-dessous (fig. 1 et 2) donnent le tracé de ces deux fonctions pour deux valeurs différentes de la période (A est le rapport $\frac{\pi}{T}$). La figure 3 met en évidence les intervalles pour lesquels l'inégalité est vérifiée dans le cas où la période est 2π , et pour 2 valeurs de γ ; on s'aperçoit que plus γ est voisin de zéro, plus les intervalles sont rapprochés.



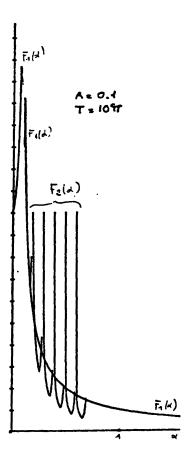


fig. 1

fig. 2

$$A = 0.5$$
 A. $\frac{\pi}{T}$

Détermination des plages en a pour deux valeurs de Y.

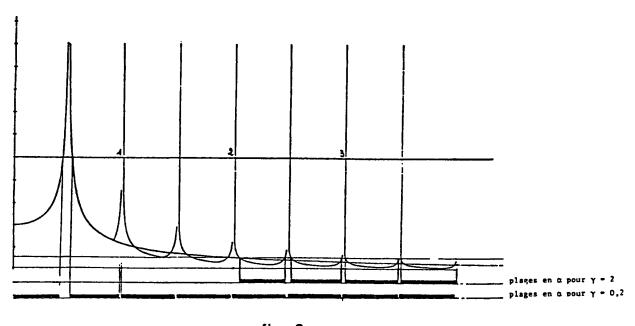


fig. 3

Les valeurs qui séparent les intervalles en α sont les demi entiers (en effet $\alpha=\frac{\pi}{T}=0,5$); on est alors conduit à étudier le cas de la résonance, c'est-à-dire le cas où α est du type $\frac{n_0\pi}{T}$, $n_0\in {\bf Z}$ ou encore de façon plus large, le cas où le spectre de K contient une valeur du type $\frac{i\pi n_0}{T}$.

C) Etude de la résonance.

On suppose dans cette section l'existence d'un entier n_0 non nul tel que $\frac{i\pi n_0}{T}$ soit une valeur propre de K. L'espace M devient alors : $M=\{\psi\in X\;;\;\int_0^T\psi(t)dt=0\;;\;\widehat{\psi}(n_0)\in \operatorname{Im}K_{n_0}\;;\;\widehat{\psi}(-n_0)\in \operatorname{Im}K_{-n_0}\}$. On procède de même que dans le cas non résonant, la seule différence consistant à restreindre l'opérateur K_{n_0} à son image de façon à inverser l'équation $\widehat{\psi}(n_0)=\frac{4\pi n_0}{iT}K_{n_0}[\widehat{x}(n_0)]$. La caractérisation de M^\perp et le théorème 2 conduisent à la

PROPOSITION 8. — Supposons $V^*(t,v)$ intégrable sur [0,T] pour v voisin de $O_{\mathbb{R}^n}$. Alors pour tout point critique $\overline{\psi}$ de J il existe une constante c de \mathbb{R}^n et un

élément u de l'espace propre $E_{\frac{-i\pi n_0}{T}}$ tels que : $x(t) = S\overline{\psi}(t) + c + ue^{\frac{2i\pi n_0}{T}t} + \overline{u}^{\frac{-2i\pi n_0}{T}t}$ soit un point critique de I.

Nous pouvons à présent énoncer un théorème d'existence pour le système S_{α_0} (où $\alpha_0=\frac{n_0\pi}{T}$).

PROPOSITION 9. — Supposons que les hypothèses sur V de la prop. 7 soient satisfaites. Alors le système S_{α_0} admet une solution T périodique sur W pour toute période T vérifiant :

 $T^2 \leqslant \frac{\pi^2}{\gamma} \sqrt{n_0^2 - 1}$ $si \ n_0 \neq 1$ $T^2 \leqslant \frac{4\pi^2}{\gamma}$ $si \ n_0 = 1$

Preuve. — On calcule que $\|\widetilde{K}_{n_0}^{-1}\| = \frac{T}{2\pi n_0}$ où K_{n_0} est l'opérateur de \mathbb{R}^n dans Im K_{n_0} qui coincide avec K_{n_0} et on obtient pour $\|\mathcal{K} \circ S\|$ la majoration suivante :

$$\|\mathcal{K} \circ S\| \leqslant \frac{T^2}{4\pi^2} \max \left\{ \frac{1}{2n_0^2}, \max_{n>0} \frac{1}{n\sqrt{|n_0^2 - n^2|}} \right\}.$$

Un calcul supplémentaire conduit à :

$$\|\mathcal{K} \circ S\| \le \frac{T^2}{4\pi^2} \frac{1}{\sqrt{n_0^2 - 1}} \quad \text{si } n_0 \neq 1$$

 $\|\mathcal{K} \circ S\| \le \frac{T^2}{8\pi^2} \quad \text{si } n_0 = 1$.

Un retour sur le tracé de la page 103, fig. 3 permet alors de constater que l'existence d'une solution 2π périodique est assurée à partir du premier demi entier encadré par deux intervalles (en effet pour $\gamma=0,2$ la condition est vraie partout et pour $\gamma=2$ la condition est vérifiée pour $n_0=5$, c'est-à-dire $\alpha_0=5/2$ qui est bien le plus petit demi entier encadré par 2 plages en α).

Un dernier paragraphe nous permet à présent d'énoncer un théorème d'existence de solutions de (\mathcal{E}) avec des hypothèses surquadratiques pour V (le potentiel V ne dépendant pas de t).

D) Existence de solutions dans le cas surquadratique.

Un nouveau cadre d'étude est indispensable dans cette situation car les hypothèses exigées pour la fonction G sont plus compliquées. Nous considèrerons l'espace $\widetilde{W}=\{x:[0,T]\to \mathbb{R}^n:x\in L^q:x'\in L^{q'}:x(0)=x(T)\}$ où q et q' vérifient : $q>2:\frac{1}{q}+\frac{1}{q'}=1$. \widetilde{W} est muni de la norme $\|x\|=\|x\|_{L^q}+\|x\|_{L^{q'}}$ et est identifié à un sous espace de $L^{q'}\times L^q$ par l'injection $i:x\to (x',x)$; l'orthogonal $N=i(\widetilde{W})^\perp$ s'écrit $\{(\phi,\psi)\in L^q\times L^{q'}:\forall x\in\widetilde{W}:\int_0^T(x'\phi+x\psi)dt\}$ et est en fait caractérisé par :

$$N=\{(\phi,\psi)\in L^q\times L^{q'}\;;\;\phi'=\psi\;;\;\phi(0)=\phi(T)\}\;.$$

La fonctionnelle G est définie sur L^q au lieu de L^2 et $\mathcal K$ est l'insertion de $\widetilde W$ dans L^q . On définit comme précédemment l'opérateur A de $\widetilde W$ dans $\widetilde W^*$ par :

Ax = (-x' - Kx, Kx') + N où K est l'opérateur $\begin{bmatrix} 0 & \alpha I \\ -\alpha I & 0 \end{bmatrix}$ (la dimension n est supposée paire). Nous nous proposons de minimiser sur \widetilde{W} la fonctionnelle : $I(x) = \frac{1}{2}\langle Ax, x \rangle + G_0 \hat{\mathcal{K}}(x)$.

Pour caractériser l'espace M il suffit d'écrire trois conditions :

- i) x'' existe et $x'' \in L^{q'}$
- ii) $x'' + 2Kx' + \psi = 0$
- iii) x'(0) = x'(T);

écrivons x=(r,s) et $\psi=(\psi_1,\psi_2)$; la condition ii) devient le système

(S)
$$\begin{cases} r'' + 2\alpha s' + \psi_1 = 0 \\ s'' - 2\alpha r' + \psi_2 = 0 \end{cases}$$

(S) peut encore se mettre sous la forme matricielle $\dot{X} = \Theta X + Y$ avec les précisions suivantes :

$$\Theta = \begin{bmatrix} 0 & I_n \\ 0 & -2\alpha J \end{bmatrix} ; \Theta \in \mathcal{L}(\mathbb{R}^{2n}) ; X = \begin{bmatrix} r \\ s \\ r' \\ s' \end{bmatrix} \quad Y = \begin{bmatrix} 0 \\ 0 \\ -\psi_1 \\ -\psi_2 \end{bmatrix}$$

La solution X est donnée par la formule :

$$X(t) = e^{t\Theta} X_0 + \int_0^T e^{(t-\tau)\Theta} Y(\tau) d\tau$$

 X_0 , matrice des conditions initiales, est déterminée par l'équation : $X_0(I_{2n}-e^{T\Theta})=\int_0^T e^{(T-\tau)\Theta}Y(\tau)d\tau$ qui traduit la périodicité de X.

Or cette condition est satisfaite lorsque $\int_0^T \psi_i(\tau) d\tau = 0$, (i=1,2); on obtient alors deux équations en r_0' et s_0' , résolubles si et seulement si $1-\cos 2aT \neq 0$ (condition pour laquelle elles forment un système de Cramer). Choisissant $r_0 = s_0 = 0$ on définit ainsi l'opérateur S de M dans \widetilde{W} , d'où la

PROPOSITION 10. — Le sous espace M est formé des fonctions de $L^{q'}$ de moyenne nulle si α n'est pas un multiple de $\frac{\pi}{T}$. Il existe alors un opérateur continu S de M dans \widetilde{W} vérifiant pour tout ψ de M: $\mathcal{K}^*\psi + AS\psi = 0_{\widetilde{W}^*}$.

Remarque. — La continuité de S résulte de majorations de x et x' obtenues à partir de la formule explicite de $e^{t\Theta}$ et de l'expression de X voir [5].

Nous sommes en mesure d'appliquer le théorème 5, moyennant le lemme technique suivant :

LEMME. — Soit $k>\frac{\alpha T}{\pi}$ et posons $\omega=\frac{2\pi k}{T}$. L'opérateur $\mathcal{K}\circ S$ admet une valeur propre strictement positive $\lambda=\frac{1}{\omega(\omega-2\alpha)}$, associée au vecteur $(\cos\omega t,\sin\omega t)$.

Preuve. — On vérifie que le système S appliqué à $r=\cos\omega t$ et $s=\sin\omega t$ se ramène à l'équation $\omega^2-2d\omega-\frac{1}{\lambda}=0$.

PROPOSITION 11. — Supposons que $V: \mathbb{R}^n \to \mathbb{R}$ est strictement convexe, que V^* soit à valeurs finies dans un voisinage de 0 et que les 3 conditions suivantes soient vérifiées :

- a) il existe $h: 2 < h \leq q$ tel que $V(\lambda x) \geqslant \lambda^h V(x)$ pour tout x de \mathbb{R}^n et pour tout $\lambda \geqslant 1$;
 - b) il existe $\gamma > 0$ tel que $V(x) \leq \gamma ||x||^q$ pour tout $x \in \mathbb{R}^n$;
 - c) V atteint son minimum à l'origine et V(0) = 0.

Alors pour toute valeur de $T \notin \frac{\pi}{a}\mathbb{Z}$, le système S_{α} admet une solution x non triviale dans \widetilde{W} vérifiant de plus : $x'' \in L^{q'}$ et x'(0) = x'(T).

Les conditions énoncées dans le théorème 5 sont effet toutes satisfaites :

- 1) l'injection \mathcal{K} de \widetilde{W} dans L^q est compact
- 2) l'élément $\psi = (\cos \omega t, \sin \omega t)$ vérifie $(KS\psi, \psi) > 0$ (cf. Lemme)
- 3) la fonction $G: x \to \int_0^T V[x(t)]dt$ est strictement convexe, atteint son minimum à l'origine et G(0)=0.
- 4) $\alpha^{-1}\sup\{G(x),\|x\|<\alpha\}\to 0$ quand $\alpha\to 0$. En effet, c'est ici que le choix de L^q , q>2 se trouve justifié : $G(x)\leqslant \int_0^T\gamma\|x\|^qdt$ donc : $G(x)\leqslant \gamma\alpha^q$ pour tout x dans $B(0,\alpha)$ ce qui entraı̂ne $0\leqslant G(x)/\alpha\leqslant \gamma\alpha^{q-1}$.
- 5) l'hypothèse a) peut encore s'écrire : $V(x) \leq \frac{1}{h}\langle x, x^* \rangle$ pour $x \in \mathbb{R}^n$ et $x^* \in \partial V(x)$, (voir [2]). Sous ces hypothèses, on obtient donc l'existence d'un point critique non trivial de J qui correspond à un point critique non trivial de I.

E) Autres applications : oscillations non linéaires amorties; équation des ondes.

Mentionnons encore deux autres problèmes qui peuvent être traités dans ce cadre de dualité : les oscillations non linéaires amorties régies par l'équation $(\mathcal{H}_a): u'(t) \in J\partial H(t,u(t))-(0,ap)$ aux conditions initiales x(0)=x(T); p(0)=p(T) (on pose u=(x,p)) et une variante non linéaire de l'équation des ondes :

$$(e) \begin{cases} u_{tt} - u_{xx} + g(u, x, t) = 0 \\ u(0, t) = 0 = u(1, t) \\ u(x, t) = u(x, t + T) \end{cases} \text{ pour } t \in \mathbb{R}/T\mathbb{Z}$$

Dans ces 2 cas, on obtient un théorème d'existence avec des hypothèses de type sous quadratique. Remarquons que l'étude des points pseudo critiques pour l'équation (\mathcal{H}_a) amène à modifier les conditions initiales en x(0) = x(T); $p(0) = e^{aT}p(T)$; le problème de départ étant "mal posé" (il conduit à un nombre d'équations supérieur au nombre d'inconnues). Voir [4] pour ces deux exemples.

Bibliographie

- [1] EKELAND I., LASRY J.M. Duality in non convex variational problems, Cahier M.D. 8102, Université de Paris Dauphine, .
- [2] EKELAND I. Periodic solutions of Hamiltonian Equations and a theorem of P. Rabinowitz, Journal of Differential Equations, Vol. 34, .
- [3] EKELAND I., TEMAM. Convex Analysis and Variational problems, North Holland, .
- [4] EKELAND I., LASRY J.M. Equations différentielles, problèmes variationnels non convexes en dualité, C. R. Acad. Sci. Sér. I Math., 291 (), .
- [5] TRUC F. Nouvelles applications de la théorie de la dualité en analyse non convexe, Thèse de 3ème cycle, Université de Paris Dauphine, .

Françoise TRUC
INSTITUT FOURIER
Laboratoire de Mathématiques
BP 74
38402 St MARTIN D'HÈRES Cedex (France)