SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE

MOHAMED ALI TAGMOUTI

La finitude du nombre des lacunes de l'opérateur de Schrödinger bidimensionnel

Séminaire de Théorie spectrale et géométrie, tome 5 (1986-1987), p. 67-75 http://www.numdam.org/item?id=TSG_1986-1987 5 67_0>

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1986-1987, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

LA FINITUDE DU NOMBRE DES LACUNES DE L'OPÉRATEUR DE SCHRÖDINGER BIDIMENSIONNEL

par Mohamed Ali TAGMOUTI

Introduction

L'une des principales conséquences de la périodicité du potentiel est que le spectre de l'opérateur de Schrödinger dans \mathbb{R}^n est formé par une union d'intervalles de la droite réelle appelés bandes spectrales.

Ces bandes se recouvrent, ou bien sont séparées par d'autres intervalles appelés lacunes.

La conjecture de Bethe-Sommerfeld, dit que le nombre de ces lacunes est fini si $n \geqslant 2$.

On va donner une démonstration complète dans le cas bidimensionnel. Pour le cas de dimension 3, voir [5] et [6].

L'idée est de montrer par des résultats arithmétiques des réseaux de ${\bf R^2}$ que, pour λ assez grand, $(\lambda, \to [$ est contenu dans le spectre.

Dans la 1^{re} partie, on rappelle quelques résultats sur l'intégrale hilbertienne à fibres constantes; dans la 2^e partie on étudie le spectre de $H=-\Delta+V$ où V est un potentiel périodique appartenant à $L^2_{\rm Loc}({\bf R}^n)$; la 3^e partie est consacrée à la démonstration de la conjecture pour n=2.

I. Intégrale hilbertienne à fibres constantes

DÉFINITIONS ET NOTATIONS.

H' un espace d'Hilbert séparable.

 $(M,d\mu)$ un espace mesuré de mesure σ -fini μ .

 $\mathcal{L}(H')$ l'espace des applications linéaires de H' dans H'.

- *) Une application de M dans H' est dite mesurable si $(m \to \langle f(m), \psi \rangle_{H'})$ est mesurable pour tout ψ dans H'.
- *) $A(\cdot): m \in M \to A(m) \in \mathcal{L}(H')$ est dite mesurable si $m \to \langle \psi, A(m)\phi \rangle_{H'}$ est mesurable pour ψ, ϕ dans H'.
- *) $L^{\infty}(M, d\mu, \mathcal{L}(H')) = \{A(\cdot) \text{ mesurable } / \forall m \in M, \text{sup ess } ||A(m)||_{H'} < \infty \}.$
- *) $L^{\infty}(M, \mathbf{C}) = \{A(\cdot) \in L^{\infty}(M, d\mu, \mathcal{L}(H'))/A(m) = \mathrm{id}_{H'} \cdot f(m) \text{ où } f : M \to \mathbf{C} \text{ essentiellement bornée } \}$.
- *) $\{f \text{ mesurable de } M \text{ dans } H'/\int_M \|f(M)\|_{H'}^2 d\mu < \infty \}$ est un espace vectoriel muni de la norme $\|f\|^2 = \int_M \|f(m)\|_{H'}^2 d\mu$. C'est un Hilbert.

On l'appelle intégrale hilbertienne de H' et se note $\int_M^{\oplus} H' d\mu$

DÉFINITION. — Soit A un opérateur borné sur $\int_M^{\oplus} H' d\mu$ On dit qu'il est décomposable s'il existe $A(\cdot)$ élément de $L^{\infty}(M, d\mu, \mathcal{L}(H'))$ tel que pour $\psi \in H'$

$$(A\psi)(m) = A(m)\psi(m) ;$$

on note $A = \int_M^{\oplus} A(m) d\mu$.

*) On désigne par $\mathcal B$ l'ensemble des opérateurs décomposables sur $\int_M^\oplus H' d\mu$ associés aux éléments de $L^\infty(M,\mathbf C)$.

Théorème I.1. — A un opérateur borné sur $\int_M^{\oplus} H' d\mu$. A est décomposable si et seulement si A commute avec tous les éléments de $\mathcal B$.

Démonstration. — Voir [1,3].

DÉFINITION. — A un opérateur non borné auto-adjoint sur $\int_M^{\oplus} H' d\mu$. A est décomposable si $(A+i)^{-1}$ l'est aussi.

Théorème 1.2. — Un opérateur non borné auto-adjoint sur $\int_M^{\oplus} H' d\mu$ est décomposable si et seulement si il commute avec tous les éléments de $\mathcal B$.

E est une conséquence immédiate du théorème I-1.

THÉORÈME I.3. — A un opérateur auto-adjoint sur $\int_M^{\oplus} H' d\mu$ non borné est décomposable.

1) $(\lambda \in \sigma(A))$ (spectre de A) si et seulement si :

$$\mu\big(\{m\in/\sigma(A(m))\bigcap(\lambda-\varepsilon,\lambda+\varepsilon)\neq\phi\}\big)>0\ ,\ \forall\varepsilon>0\ .$$

2) λ est une valeur de A si et seulement si

$$\mu(\lbrace m/\lambda \text{ est v.p. de } A(m)\rbrace) > 0$$
.

3) Si A(m) a un spectre absolument continu pour tout m, alors A l'est aussi.

Démonstration. — Voir [1].

Remarque. — Il se peut que A(m) pour tout $m \in M$, ait un spectre discret et que A ait un spectre absolument continu; comme exemple, on a

$$M = [0,1]$$
, μ la mesure de Lebesgue.

H' un espace d'Hilbert séparable et A un opérateur auto-adjoint décomposables sur $\int_M^\oplus H' d\mu$, on suppose que

- *) Les A(m) sont à résolvantes compactes de suite de valeurs propres $\{E_n(m)\}_n$ et de fonctions propres $\{\psi_n(m)\}_n$.
- *) $E_n(\cdot)$ est analytique sur [0,1].
- *) $E_n(\cdot)$ est non constante.

On démontre (voir [1]) que le spectre de A est absolument continu.

II. Application: l'étude du spectre de l'opérateur de Schrödinger avec un potentiel périodique

On considère l'opérateur de Schrödinger $H=-\Delta+V$ où V un potentiel dans $L^2_{\rm Loc}({\bf R}^n)$ périodique de réseau T sur ${\bf R}^n$.

 E_T un domaine fondamental de T,

$$T^* = \{ \tau^* \in \mathbf{R}^n / \forall \tau \in T , \langle \tau^*, \tau \rangle \in 2\pi \mathbf{Z} \} ,$$

 F_{T^*} un domaine fondamental de T^* ,

 μ_T volume de F_T ,

 $L^2(F_T)$ l'espace des fonctions de carré sommable sur F_T munit de la norme suivante

$$\phi \in L^2(F_T) \|\phi\|_T^2 = (1/\mu_T) \int_{F_T} |\phi(x)|^2 dx$$
.

Théorème II.1. —

1) Soit
$$\Phi: \mathcal{S}(\mathbf{R}^2) \longrightarrow \int_{F_{T^*}}^{\oplus} L^2(F_T) dk$$
 défini par
$$(\Phi f)_k(x) = \mu_T \sum_{\tau \in T} f(x+\tau) e^{-i\langle x+\tau,k\rangle}$$

 Φ est prolongeable à un opératuer unitaire sur $L^2(\mathbf{R}^n)$.

2) Il existe une famille d'opérateurs $(H(k))_{k \in F_{T^*}}$ sur $L^2(F_T)$ à résolvante compacte telle que

$$\phi H \phi^{-1} = \int_{F_{T^*}}^{\oplus} H(k) dk \ .$$

Démonstration. —

- 1) évident.
- 2) Du fait que H commute avec les opérateurs de translations de vecteurs dans T, $\phi H \phi^{-1}$ commute avec tout élément de $\mathcal B$ donc (théorème I.2) décomposable sur $\int_{F_{T^*}}^{\oplus} L^2(F_T) dk$ d'où l'existence des H(k).

Les H(k) sont à résolvante compacte car l'injection de $H^2(F_T)$ dans $L^2(F_T)$ l'est aussi.

Calcul de H(k)

$$H(k) = e^{i\langle k, x \rangle} H e^{-i\langle k, x \rangle}$$

$$= -\Delta + 2i\langle k, \nabla \rangle + |k|^2 + V$$

$$= H_0(k) + V$$

 $(\lambda_j(k))_k$ la suite des valeurs propres de H(k).

$$\lambda_j^- = \inf_{k \in F_{T^*}} \lambda_j(k)$$
 $\lambda_j^+ = \sup_{k \in F_{T^*}} \lambda_j(k)$.

Les opérateurs H(k) ont même domaine D, qui est un sous-espace de $H^2(F_T)$ avec des conditions de périodicité au bord. On déduit alors (voir [2]) que les fonctions λ_j sont continues.

THÉORÈME II.2. — Le spectre de H est purement absolument continu :

$$Sp(H) = \bigcup_{h \geqslant 1} [\lambda_j^-, \lambda_j^+] .$$

Démonstration. — $\operatorname{Sp}(H) = \bigcup_{h\geqslant 1} [\lambda_j^-, \lambda_j^+]$ découle de (théorème I.3, 1)). Il existe une base $\{a_1, \ldots, a_n\}$ de \mathbf{R}^n tel que $E_{T^*} = \{\sum_{i=1}^n t_i a_i/t_i \in [0,1], \forall i\}$, on note

$$S = \left\{ \sum_{i=2}^{n} t_i a_i / t_i \in [0,1], \forall i \right\}$$
 $\phi H \phi^{-1} = \int_{S}^{\oplus} \int_{[0,1]}^{\oplus} A(t) dt$, où $A(t) = H(ta_1 + b)$

 $\phi H \phi^{-1}$ a un spectre absolument continu si $\int_{[0,1]}^{\oplus} A(t)dt$ l'est aussi (théorème I.3, 3)).

Pour $t \in [0,1]$, A(t) est à résolvante compacte et c'est une perturbation de type A (voir [2]), donc 1) et 2) de la remarque énoncée dans la partie I sont vérifiés, il reste à montrer que les fonctions $A_j(t)$ sont non constantes.

Pour $t \in \mathbf{C}$ A(t) est à résolvante compacte, on choisit t sous la forme $t = \lambda + iy$ λ fixé dans \mathbf{R} .

 $A_0(t)=\langle i\nabla+(ta_1+b)\;,\;i\nabla+(ta_1+b)
angle\;$, considéré comme opérateur sur $L^2(F_T)$; il a une suite de valeurs propres $\{|\gamma-(ta_1+b)|^2\}_{\gamma\in T^*}\;$.

 $-1 \notin \operatorname{Sp}(A_0(t))$ donc $(A_0(t)+1)^{-1}$ existe et continue sur $L^2(F_T)$ de spectre $(|\gamma-(ta_1+b)|^2+1)^{-1}$

$$\|(A_0(t)+1)^{-1}\| = \sup_{\gamma} \frac{1}{(1+|\gamma-(ta_1+b)|^2)} \le \frac{1}{y^2\langle b,b\rangle+1+\inf_{\gamma}\langle \theta,\theta\rangle}$$

 θ ne dépend que de γ .

$$\lim_{y \to \infty} \| (A_0(t) + 1)^{-1} \| = 0 \tag{*}$$

$$A(t) + 1 = (A_0(t) + 1)[I + V(A_0(t) + 1)^{-1}]$$

de (*) et du fait que $V \in L^2_{Loc}(\mathbf{R}^2)$

$$\lim_{y \to \infty} ||V(A_0(t) + 1)^{-1}|| = 0$$

donc pour $|y| > y_0 \quad (A(t) + 1)^{-1}$ existe et

$$\lim_{y \to \infty} \| (A(t) + 1)^{-1} \| = 0 \tag{**}$$

Supposons qu'il existe $j \in \mathbb{N}$ tel que $t \to E_j(t) = C$, c'est une valeur propre de A(t) et $\|(A(t)+1)^{-1}\| \geqslant \frac{1}{1+C}$, ce qui est en contradiction avec (**).

III. Conjecture de Bethe-Sommerfeld

On considère sur \mathbb{R}^n une fonction V périodique de réseau T, et bornée.

L'opérateur de Schrödinger $H=-\Delta+V$ est auto-adjoint, semi-borné inférieurement et à spectre purement absolument continu.

DÉFINITION. — On appelle lacune une composante connexe du complémentaire du spectre de H dans $\mathbf R$.

CONJECTURE. — Pour $n \ge 2$ le nombre des lacunes du spectre de l'opérateur de Schrödinger H est fini.

Dans ce qui suit, on donnera une démonstration de cette conjecture pour le cas n=2.

Soit $\{a_1, a_2\}$ une base quelconque de \mathbf{R}^2 , $T = a_1 \mathbf{Z} \oplus a_2 \mathbf{Z}$ un réseau de \mathbf{R}^2 .

On rappelle que l'opérateur de Schrödinger H est unitairement équivalent à un opérateur décomposable $\int_{F_{T^*}}^{\oplus} H(k)dk$ sur $\int_{F_T}^{\oplus} L^2(F_T)dk$.

$$H(k) = -\Delta + 2i\langle k, \nabla \rangle + |k|^2 + V$$

= $H_0(k) + V$

L'opérateur $H_0(k)$ est positif, auto-adjoint et à résolvante compacte, ses valeurs propres sont de la forme $\lambda_\gamma(k)=|\gamma-k|^2$, $\gamma\in T^*$. On note σ l'aire d'un domaine fondamental de F_{T^*} .

Théorème III.1. — Le spectre de H contient $(\lambda, \rightarrow [$ pour λ assez grand.

Ce théorème est une conséquence immédiate du théorème suivant :

THÉORÈME III.2. — Il existe deux constantes c(V) et C(V) telles que pour $j \geqslant j_0(V)$

$$I_{j} \subseteq [\lambda_{j}^{-}, \lambda_{j}^{+}] \subseteq J_{j}$$

$$I_{j} = [(\sigma/\pi)j - c \ j^{1/4}; (\sigma/\pi)j + c \ j^{1/4}]$$

$$J_{j} = [(\sigma/\pi)j - C \ j^{1/3}; (\sigma/\pi)j + C \ j^{1/3}].$$

Remarques. —

- *) Les intervalles I_j se recouvrent à partir d'un certain rang, de même les intervalles $[\lambda_i^-, \lambda_i^+]$ d'où le théorème III.1.
- *) Il existe j_1 tel que pour $j, j' < j_1$ $J_j \cap J_{j'} = \phi$, de même pour l'intervalle $[\lambda_j^-, \lambda_j^+]$, on ne peut donc avoir qu'un nombre fini de lacunes.

Démonstration du théorème III.2. — Pour cette démonstration, on a besoin de quelques propriétés arithmétiques des réseaux de ${\bf R}^2$.

On note $N_B(r,k)$ le nombre des éléments du réseau dans la boule ouverte B de centre k et de rayon r .

LEMME 1. — Il existe une constante c>0 indépendante de k telle que $|N_B(r,k)-(\pi/\sigma)r^2|\leqslant cr^{2/3}$.

Démonstration. — Voir [4].

LEMME 2. — Pour $\delta>0$ il existe une constante $c(\delta)>0$ telle que $\sup_k N_B(r,k)\geqslant (\pi/\sigma)r^2+cr^{1/2}$ $\inf_k N_B(r,k)\leqslant (\pi/\sigma)r^2-cr^{1/2}$

pour $r \geqslant \delta$.

Démonstration. — Soient $E_B(r,k)=N_B(r,k)-(\pi/\sigma)r^2$. h_r la fonction indicatrice du disque de centre 0 et de rayon r.

La fonction de Bessel $J_1(x)$ donnée sous sa forme intégrale par

$$J_1(x) = \int_{-\pi}^{\pi} (1/2\pi) e^{ix \sin \theta} d\theta.$$

Si $a \in T \setminus \{0\}$, on a:

$$\begin{split} \int_{F_{T^*}} E_B(r,k) e^{-i\langle k \cdot a \rangle} dk &= \int_{F_{T^*}} \Big(-(\pi r^2/\sigma) + \sum_{b \in B} h_r(k-b) \Big) e^{-i\langle k,a \rangle} dk \\ &= \int_{\mathbb{R}^2} h_r e^{-i\langle k,a \rangle} dk \\ &= \frac{2\pi r}{|a|} J_1(r|a|) \; . \end{split}$$

Par la même méthode, on a :

$$\int_{F_{T^*}} E_B(r,k)dk = 0 .$$

De plus

$$\begin{split} \int_{F_{T^*}} |E_B(r,k)| dk &\geqslant \max\left(|\int_{F_{T^*}} E_B(r,k) e^{-i\langle k,a\rangle} dk|, |\int_{F_{T^*}} E_B(r,k) e^{-2i\langle k,a\rangle} dk| \right) \\ &\geqslant 2\pi r \max\left(\frac{J_1(r|a|)}{|a|} , \frac{J_1(2r|a|)}{2|a|} \right) \\ &\geqslant (8\pi r)^{1/2} \max\left(\frac{|\sin(r|a|) - \frac{\pi}{4})|}{|a|^{3/2}}, \frac{|\sin(2r|a| - \frac{\pi}{4})|}{|2a|^{3/2}} \right) - Cr^{-1/2} |a|^{-5/2} \\ &\geqslant \frac{(8\pi r)^{1/2}}{|a|^{3/2}} c - Cr^{-1/2} |a|^{-5/2} . \end{split}$$

On utilise l'approximation suivante:

$$J_1(x) = ((2/\pi x))^{1/2} \sin(x - (\pi/4)) + 0(x^{-3/2})$$

et l'inégalité

$$\inf_{t\in\mathbb{R}}\left[\max\left(|\sin(t-(\pi/4))|,\frac{|\sin(2t-(\pi/4))|}{\sqrt{8}}\right)\right]>0.$$

On considère la fonction $f(r)=c\frac{(8\pi r)^{1/2}}{|a|^{3/2}}-Cr^{1/2}|a|^{-5/2}$ de l'étude de variation de f on déduit que, pour a fixé il existe $r^*>0$ et $\mu>0$ tels que

$$\forall r \geqslant r^* \quad f(r) \geqslant \mu r^{1/2}$$

$$\mu \in \left] 0, \frac{(8\pi)^{1/2} c}{|a|^{3/2}} \right[\text{ et } r^* = \frac{C|a|^{-5/2}}{C \frac{(8\pi)^{1/2}}{|a|^{3/2}} - \mu} ,$$

pour $\delta > 0$ et a assez grand il existe $C(\delta) > 0$ tel que

$$\delta = \frac{C|a|^{-5/2}}{\frac{(8\pi)^{1/2}c}{|a|^{3/2}} - C(\delta)}$$

et pour $r \geqslant \delta$ $f(r) \geqslant c(\delta)r^{1/2}$.

On note $E_B^+ = \max(E_B, 0)$, $E_B^- = -\min(E_B, 0)$, on a $\int_{F_{T^*}} E_B^+ dk = \int_{F_{T^*}} E_B^- dk \geqslant c r^{1/2} ,$

et

$$\sigma \sup_{k} N_B(r,k) \geqslant \int_{F_{T^*}} E_B^+ dk + \pi r^2$$
$$\sigma \inf_{k} N_B(r,k) \leqslant \pi r^2 - \int_{F_{T^*}} E_B^- dk .$$

Remarque. — Ce lemme se généralise sur \mathbb{R}^n

$$\sup_{k} N_{B}(r,k) \geqslant \frac{V(B)}{\mu} r^{n} + c r^{(n-1)/2}$$

$$\inf_{k} N_{B}(r,k) \leqslant \frac{V(B)}{\mu} r^{n} - c r^{(n-1)/2}$$

où V(B) désigne le volume de la boule unité B dans \mathbb{R}^n et μ le volume d'un domaine fondamental du réseau.

Démonstration du théorème III.2. — On note $([\lambda_{j,0}^-, \lambda_{j,0}^+])_{j \in \mathbb{N}}$ les bandes spectrales de l'opérateur $H_0(k)$. $N_B(\sqrt{\lambda_{j,0}^-}, k)$ égal au nombre des valeurs propres de $H_0(k)$ inférieures ou égales à $\lambda_{j,0}^-$, il est clair que

$$\sup_{k} N_B(\sqrt{\lambda_{j,0}^-}, k) \leqslant j \leqslant \inf N_B(\sqrt{\lambda_{j,0}^+}, k)$$

du lemme (III.2) on a:

$$(\pi/\sigma)\lambda_{i,0}^- + C(\lambda_{i,0}^-)^{1/4} \le j \le (\pi/\sigma)\lambda_{i,0}^+ - C(\lambda_{i,0}^+)^{1/4}$$
.

Avec le même argument, on a :

$$j \leqslant C\lambda_{j,0}^- \text{ et } j \geqslant C\lambda_{j,0}^+$$

d'où

$$\lambda_{j,0}^- \leq (\sigma/\pi)j - C_j^{1/4} \text{ et } \lambda_{j,0}^+ \geq (\sigma/\pi)j + C_j^{1/4}$$
.

Pour l'autre inclusion, on utilise le lemme (III.1).

Bibliographie

- [1] REED M., SIMON B. Methods in modern mathematical physics, vol.IV, Analysis of Operators, .
- [2] KASIO-KATO. Perturbation theory of linear operators, , .
- [3] DIXMIE J. Les algèbres d'opérateurs dans l'espace hilbertien, , .
- [4] LAUDO E. Vorlesungen über Zahlentheorie Bd 2, Leipzig: Hirzel, 1927.
- [5] SKRIGANOV M.M.— The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Izvest math., 86 (1986), 107-121.
- [6] SKRIGANOV M.M. The multidimensional Schrödinger operator with periodic potentiel, Math. USSR Izvest, 22 n° 3 (1984), 619-645.
- [7] DAHLBERG B.E.J. and TRUBOWITZ E. A remark on two dimensional periodic potentials, Comment. Math. Helvetici, 57 (1982), 130-134.