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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 36 (2019-2021) 191-212

THE RELATIVE HEAT CONTENT FOR
SUBMANIFOLDS IN SUB-RIEMANNIAN GEOMETRY

Tommaso Rossi

Abstract. — We study the small-time asymptotics of the relative heat content
for submanifolds in sub-Riemannian geometry. First, we prove the existence of a
smooth tubular neighborhood for submanifolds of any codimension, assuming they
do not have characteristic points. Next, we propose a definition of relative heat
content for submanifolds of codimension k ⩾ 1 and we build an approximation
of this quantity, via smooth tubular neighborhoods. Finally, we show that this
approximation fails to recover the asymptotic expansion of the relative heat content
of the submanifold, by studying an explicit example.

1. Introduction

In this paper, we study the small-time behavior of the relative heat con-
tent for submanifolds in sub-Riemannian geometry.

Loosely speaking, the relative heat content for a submanifold S ⊂ M

can be regarded as the total amount of heat contained in S at time t,
corresponding to a uniform initial temperature distribution concentrated
on S. When S = Ω is an open and bounded domain, the problem of finding
an asymptotic expansion for the heat content has been extensively studied,
see for example [5, 6, 7, 8, 9, 17] for the Euclidean and Riemannian case, and
[2, 16, 19] for the sub-Riemannian case. In particular, in this situation, in
both the Riemannian and sub-Riemannian setting, the small-time behavior
of the heat content associated with Ω encodes geometrical information of
∂Ω, such as its perimeter or its mean curvature (c.f. Theorem 2.3). Thus, we
may expect that, in an analogous way, the asymptotics of the relative heat
content for a submanifold of higher codimension detects its geometrical
invariants.
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Up to our knowledge, the relative heat content for submanifolds has
never been systematically studied, not even in Riemannian geometry, so
we propose the following definition. Let M be a sub-Riemannian manifold
and let S ⊂ M be a smooth, compact submanifold of codimension k ⩾ 0.
Let ω be a smooth measure on M , and let µ be a probability measure on
S. Then, we consider µ as the initial datum for the heat equation in the
sense of distributions, and study the associated Cauchy problem:

(1.1)
(∂t − ∆)u(t, x) = 0, ∀ (t, x) ∈ (0, ∞) × M,

u(t, ·) t→0−−−→ µ, in D′(M),

where ∆ = divω◦∇ is the usual sub-Laplacian associated with ω. A solution
to this problem, in the sense of distribution, is given by

(1.2) u(t, x) =
∫

S

pt(x, y)dµ(y), ∀ (t, x) ∈ (0, ∞) × M,

where pt(x, y) is the usual heat kernel associated with ∆ and ω. We define
the relative heat content for a submanifold S as:

(1.3) HS(t) =
∫

S

∫
S

pt(x, y)dµ(x)dµ(y), ∀ t > 0.

Notice that, on the one hand if S = {x0} and µ = δx0 , we obtain the
trace heat kernel pt(x0, x0). On the other hand, if S is a 0-codimensional
submanifold, i.e. S is an open, relatively compact and smooth set, and we
choose µ = 1Sω, then (1.3) coincides with the usual relative heat content
as defined in [2]. Therefore, a small-time asymptotic expansion of (1.3)
would include many cases of interest, ranging from the trace heat kernel
asymptotics, see for example [4, 20], to the results of contained in [2].

Our attempt to compute the asymptotics of (1.3) consists in building
a suitable approximation of it, using smooth tubular neighborhoods of S.
When S is a smooth hypersurface, the existence of a tubular neighbor-
hood is guaranteed assuming that there are no characteristic points, cf. [2,
Def. 2.4]. Therefore, as a first step, we introduce a definition of a non-
characteristic submanifold, cf. Definition 3.1, generalizing the classical one
of non-characteristic hypersurface. Then, denoting by δS : M → [0, +∞)
the distance function from S, see (2.9) for the precise definition, we prove
the following.

Theorem 1.1. — Let M be a sub-Riemannian manifold and S ⊂ M be
a compact smooth non-characteristic submanifold of codimension k ⩾ 1.
Then, there exists r0 > 0 such that, denoting by Sr0 = {p ∈ M | 0 < δS <

r0}, the following conditions hold:
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(i) δS : Sr0 → [0, ∞) is smooth and such that ∥∇δS∥g = 1;
(ii) there exists a diffeomorphism G : (0, r0) × {δS = r0} → Sr0 such

that:

(1.4) δS(G(r, p)) = r and G∗∂r = ∇δS.

Theorem 1.1 generalizes the analogous result in [10, Prop. 3.1], and [14,
Lem. 23], to submanifolds of any codimension and is a key tool to build
both a canonical probability measure on S, cf. Lemma 4.1, and the approx-
imation of the relative heat content. Indeed, for any ε ⩽ r0, denoting by
Sε the tubular neighborhood of S, of radius ε, we consider the (rescaled)
relative heat content associated with Sε, namely

(1.5) Hε
S(t) = 1

ω(Sε)2

∫
Sε

∫
Sε

pt(x, y)dω(x)dω(y), ∀ t > 0.

We show that Hε
S converges point-wise to HS , as ε → 0, cf. Proposition 5.1.

Since now Hε
S is the (rescaled) relative heat content associated with a

non-characteristic open and bounded set, for any ε > 0, we can apply [2,
Thm. 1.1], see also Theorem 2.3 for the statement, and try to deduce the
asymptotics for the limit as ε → 0.

Unfortunately, the point-wise convergence of Hε
S is too weak to recover

any information regarding the small-time asymptotic expansion of the limit.
Indeed, by studying an explicit example, we show that the approximation
procedure using (1.5) fails to recover the asymptotic expansion of HS .
More precisely, we consider a closed simple curve in R3, equipped with the
Euclidean metric and the Lebesgue measure. In this case, on the one hand,
by a standard application of the Laplace method, it is possible to compute
the asymptotic expansion of HS(t) as t → 0 at any order: the coefficients
appearing in the expansion depend on the curvature of the curve and its
derivatives of any order. On the other hand, following the approximation
strategy described above, we obtain an expansion in the limit which can’t
possibly agree with the correct one since

• the only geometrical invariant appearing in the coefficients is the
curvature of the curve without its derivatives;

• the orders of the expansion don’t agree.

Structure of the paper

In Section 2, we recall the basic definitions of sub-Riemannian geometry.
In Section 3, we give the definition of a non-characteristic submanifold and

VOLUME 36 (2019-2021)



194 TOMMASO ROSSI

we prove Theorem 1.1. In Section 4, we build the canonical probability
measure on S, which is induced by the outer measure ω. In Section 5, we
introduce the definition of relative heat content for a submanifold S, we
build its approximation and we prove its point-wise convergence. Finally, in
Section 6, we show how the approximation fails to recover the asymptotic
expansion of the relative heat content of S.

2. Preliminaries

We recall some essential facts in sub-Riemannian geometry, following [1].

Sub-Riemannian geometry

Let M be a smooth, connected finite-dimensional manifold. A sub-Riema-
nnian structure on M is defined by a set of N global smooth vector fields
X1, . . . , XN , called a generating frame. The generating frame defines a
distribution of subspaces of the tangent spaces at each point x ∈ M , given
by

(2.1) Dx = span{X1(x), . . . , XN (x)} ⊆ TxM.

We assume that the distribution is bracket-generating, i.e. the Lie algebra
of smooth vector fields generated by X1, . . . , XN , evaluated at the point x,
coincides with TxM , for all x ∈ M . The generating frame induces a norm
on the distribution at x, namely

(2.2) gx(v, v) = inf
{

N∑
i=1

u2
i

∣∣∣∣∣
N∑

i=1
uiXi(x) = v

}
, ∀ v ∈ Dx,

which, in turn, defines an inner product on Dx by polarization. We use the
shorthand ∥ · ∥g for the corresponding norm. We say that γ : [0, T ] → M is
a horizontal curve, if it is absolutely continuous and

γ̇(t) ∈ Dγ(t), for a.e. t ∈ [0, T ].

This implies that there exists u : [0, T ] → RN , such that

γ̇(t) =
N∑

i=1
ui(t)Xi(γ(t)), for a.e. t ∈ [0, T ].
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Moreover, we require that u ∈ L2([0, T ],RN ). If γ is a horizontal curve,
then the map t 7→ ∥γ̇(t)∥g is integrable on [0, T ], see [1, Lem. 3.12]. We
define the length of a horizontal curve as follows:

(2.3) ℓ(γ) =
∫ T

0
∥γ̇(t)∥g dt.

The sub-Riemannian distance is defined, for any x, y ∈ M , by

(2.4) dSR(x, y) = inf{ℓ(γ) | γ horizontal curve between x and y}.

By Chow–Rashevskii Theorem, the bracket-generating assumption ensures
that the distance dSR : M × M → R is finite and continuous. Furthermore
it induces the same topology as the manifold one.

Remark 2.1. — The above definition includes all classical constant-rank
sub-Riemannian structures as in [12, 15] (where D is a vector distribution
and g a symmetric and positive tensor on D), but also general rank-varying
sub-Riemannian structures. The same sub-Riemannian structure can arise
from different generating families.

Geodesics and Hamiltonian flow

A geodesic is a horizontal curve γ : [0, T ] → M , parametrized with
constant speed, and such that any sufficiently short segment is length-
minimizing. The sub-Riemannian Hamiltonian is the smooth function H :
T ∗M → R,

(2.5) H(λ) = 1
2

N∑
i=1

⟨λ, Xi⟩2, λ ∈ T ∗M,

where X1, . . . , XN is a generating frame for the sub-Riemannian structure,
and ⟨λ, ·⟩ denotes the action of covectors on vectors. The Hamiltonian vec-
tor field H⃗ on T ∗M is then defined by ς(·, H⃗) = dH, where ς ∈ Λ2(T ∗M)
is the canonical symplectic form.

Solutions λ : [0, T ] → T ∗M of the Hamilton equations

(2.6) λ̇(t) = H⃗(λ(t)),

are called normal extremals. Their projections γ(t) = π(λ(t)) on M , where
π : T ∗M → M is the bundle projection, are locally length-minimizing
horizontal curves parametrized with constant speed, and are called normal

VOLUME 36 (2019-2021)



196 TOMMASO ROSSI

geodesics. If γ is a normal geodesic with normal extremal λ, then its speed
is given by ∥γ̇∥g =

√
2H(λ). In particular

(2.7) ℓ
(
γ|[0,t]

)
= t

√
2H(λ(0)), ∀ t ∈ [0, T ].

There is another class of length-minimizing curves in sub-Riemannian
geometry, called abnormal or singular. As for the normal case, to these
curves it corresponds an extremal lift λ(t) on T ∗M , which however may
not follow the Hamiltonian dynamics (2.6). Here we only observe that an
abnormal extremal lift λ(t) ∈ T ∗M satisfies

(2.8)
〈
λ(t), Dπ(λ(t))

〉
= 0 and λ(t) ̸= 0, ∀ t ∈ [0, T ],

that is H(λ(t)) ≡ 0. A geodesic may be abnormal and normal at the same
time.

Length-minimizers to a submanifold

Let S ⊂ M be a closed embedded submanifold of codimension k ⩾ 0 and
define the sub-Riemannian distance from S:

(2.9) δS(p) = inf {dSR(q, p), q ∈ S} , ∀ p ∈ M.

Let γ : [0, T ] → M be a horizontal curve, parametrized with constant speed,
such that γ(0) ∈ S, γ(T ) = p ∈ M \ S and assume γ is a minimizer for δS,
that is ℓ(γ) = δS(p). In particular, γ is a geodesic. Any corresponding nor-
mal or abnormal lift, say λ : [0, T ] → T ∗M , must satisfy the transversality
conditions, cf. [3, Thm. 12.13],

(2.10) ⟨λ(0), v⟩ = 0, ∀ v ∈ Tγ(0)S.

Equivalently, the initial covector λ(0) must belong to the annihilator bundle
A(S) = {λ ∈ T ∗M | ⟨λ, Tπ(λ)S⟩ = 0} of S.

The heat equation and the relative heat content for a domain

Let M be a sub-Riemannian manifold and let ω be a smooth measure
on M , i.e. defined by a positive tensor density. The divergence of a smooth
vector field is defined by

divω(X)ω = LXω, ∀ X ∈ Γ(TM),

where LX denotes the Lie derivative in the direction of X. The horizontal
gradient of a function f ∈ C∞(M), denoted by ∇f , is defined as the
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horizontal vector field (i.e. tangent to the distribution at each point), such
that

gx (∇f(x), v) = v(f)(x), ∀ v ∈ Dx,

where v acts as a derivation on f . In terms of a generating frame as in (2.1),
one has

∇f =
N∑

i=1
Xi(f)Xi, ∀ f ∈ C∞(M).

The sub-Laplacian is the operator ∆ = divω ◦ ∇, acting on C∞(M).
Again, we may write its expression with respect to a generating frame (2.1),
obtaining

(2.11) ∆f =
N∑

i=1

{
X2

i (f) + Xi(f)divω(Xi)
}

, ∀ f ∈ C∞(M).

We denote by L2(M, ω), or simply by L2, the space of real functions on M

which are square-integrable with respect to the measure ω. Let Ω ⊂ M be
an open relatively compact set with smooth boundary. This means that the
closure Ω̄ is a compact manifold with smooth boundary. We consider the
Cauchy problem for the heat equation on Ω, that is we look for functions
u such that

(2.12)
(∂t − ∆) u(t, x) = 0, ∀ (t, x) ∈ (0, ∞) × M,

u(0, ·) = 1Ω, in L2(M, ω),

where u(0, ·) is a shorthand notation for the L2-limit of u(t, x) as t → 0.
Notice that ∆ is symmetric with respect to the L2-scalar product and
negative, moreover, if (M, dSR) is complete as a metric space, it is essentially
self-adjoint, see [18]. Thus, there exists a unique solution to (2.12), and it
can be represented as

u(t, x) = et∆1Ω(x), ∀ x ∈ M, t > 0,

where et∆ : L2 → L2 denotes the heat semi-group, associated with ∆. We
remark that for all φ ∈ L2, the function et∆φ is smooth for all (t, x) ∈
(0, ∞) × M , by hypoellipticity of the heat operator, see [11]. Furthermore,
there exists a heat kernel associated with (2.12), i.e. a positive function
pt(x, y) ∈ C∞((0, +∞) × M × M) such that:

(2.13) u(t, x) =
∫

M

pt(x, y)1Ω(y)dω(y) =
∫

Ω
pt(x, y)dω(y).

VOLUME 36 (2019-2021)
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Definition 2.2 (Relative heat content). — Let u(t, x) be the solution
to (2.12). We define the relative heat content, associated with Ω, as

(2.14) HΩ(t) =
∫

Ω
u(t, x)dω(x), ∀ t > 0.

In [2], the authors proved the existence of a small-time asymptotic expan-
sion for HΩ(t), provided that Ω is a non-characteristic domain. Precisely,
denoting by

δ∂Ω(p) = inf {dSR(q, p), q ∈ ∂Ω} , ∀ p ∈ M,

the distance from the boundary of Ω and by σ the induced sub-Riemannian
measure on ∂Ω (i.e. the one whose density is σ = |iνω|∂Ω, where ν is the
outward-pointing normal vector field to Ω), we have the following result.
See Definition 3.1 for the notion of a characteristic point.

Theorem 2.3. — Let M be a compact sub-Riemannian manifold, equi-
pped with a smooth measure ω, and let Ω ⊂ M be an open subset whose
boundary is smooth and has no characteristic points. Then, as t → 0,

(2.15) HΩ(t) = ω(Ω) − 1√
π

σ(∂Ω)t1/2

− 1
12

√
π

∫
∂Ω

(
2g(∇δ∂Ω, ∇(∆δ∂Ω)) − (∆δ∂Ω)2)

dσt3/2 + o
(
t2)

.

Remark 2.4. — The compactness assumption in Theorem 2.3 is technical
and can be relaxed by requiring, instead, global doubling of the measure
and a global Poincaré inequality. We refer to [2] for more details.

3. Tubular neighborhood for submanifolds

Definition 3.1 (Non-characteristic submanifold). — Let M be a sub-
Riemannian manifold and let S ⊂ M be a smooth submanifold of codimen-
sion k ⩾ 0. We say that a point q ∈ S is non-characteristic if

(3.1) Dq + TqS = TqM.

We say that S is a non-characteristic submanifold if (3.1) holds for any
point q ∈ S.

Remark 3.2. — Notice that Definition 3.1 includes the usual one for hy-
persurfaces, indeed if S ⊂ M is a submanifold of codimension 1, it is easy
to check that

Dq ⊂ TqS ⇔ Dq + TqS ⊊ TqM.
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Under the assumption of non-characteristic submanifold, the distance
from S, δS defined in (2.9), is smooth and it allows to build smooth tubular
neighborhoods of S.

Theorem 3.3. — Let M be a sub-Riemannian manifold and S ⊂ M be
a compact smooth non-characteristic submanifold of codimension k ⩾ 1.
Then, there exists r0 > 0 such that, denoting by Sr0 = {p ∈ M | 0 < δS <

r0}, the following conditions hold:
(i) δS : Sr0 → [0, ∞) is smooth and such that ∥∇δS∥g = 1;
(ii) there exists a diffeomorphism G : (0, r0) × {δS = r0} → Sr0 such

that:

δS(G(r, p)) = r and G∗∂r = ∇δS.

Before giving the proof of the theorem, we need a preliminary lemma,
which can be regarded as a partial generalization of [10, Prop. 2.7].

Lemma 3.4. — Let M be a sub-Riemannian manifold and S ⊂ M be
a smooth submanifold of codimension k ⩾ 1. Let γ : [0, 1] → M be a
minimizing geodesic such that

γ(0) ∈ S, γ(1) = p ∈ M \ S, δS(p) = ℓ(γ).

If γ is an abnormal geodesic, then γ(0) is a characteristic point of S.

Proof. — Let λ : [0, 1] → T ∗M be an abnormal lift of γ: this means in
particular that π(λ(t)) = γ(t) and

(3.2) ⟨λ(0), Dγ(0)⟩ = 0, with λ(0) ̸= 0,

where ⟨·, ·⟩ denotes the dual coupling. Moreover, since γ is a minimizing ge-
odesic, any lift must necessarily satisfy the transversality condition (2.10).
Thus, since λ(0) ̸= 0, conditions (3.2), (2.10) imply that (3.1) fails at
q = γ(0). □

Proof of Theorem 3.3. — Let us consider the annihilator bundle of S,
AS, namely the vector bundle of rank k, whose fibers are given by

AqS =
{

λ ∈ T ∗
q M

∣∣ ⟨λ, TqS⟩ = 0
}

, ∀ q ∈ S.

At a point q ∈ S, let us fix a basis of the fiber AqS, say {λ1, . . . , λk}
and define, for any j = 1, . . . , k, the element vj ∈ Dq dual to λi via the
Hamiltonian H, i.e.

(3.3) vj = π∗H⃗(λj) =
N∑

i=1
⟨λj , Xi(q)⟩ Xi(q) j = 1, . . . , k.

VOLUME 36 (2019-2021)
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Step 1. — If q is non-characteristic, then the set {v1, . . . , vk} is linearly
independent.
Indeed assume there exists constants αi for i = 1, . . . , k, such that∑k

i=1 αivi = 0. Then,

0 =
k∑

j=1
αjvj =

k∑
j=1

αj

N∑
i=1

⟨λj , Xi(q)⟩ Xi(q)

=
N∑

i=1

〈
k∑

j=1
αjλj , Xi(q)

〉
Xi(q) = π∗H⃗(λ),

(3.4)

having set λ =
∑k

j=1 αjλj ∈ AqS. Notice that, by the Lagrange multiplier
rule, denoting by vλ = π∗H⃗(λ), for any λ ∈ T ∗

q M , we have

∥vλ∥2
g = inf

{
N∑

i=1
u2

i

∣∣∣∣∣ vλ =
N∑

i=1
uiXi(q)

}

=
N∑

i=1
⟨λ, Xi(q)⟩2 = 2H(λ).

(3.5)

Therefore, (3.4) implies that ∥π∗H⃗(λ)∥2
g = 2H(λ) = 0, or equivalently:

(3.6) ⟨λ, Dq⟩ = 0.

Since λ ∈ AqS and q is non-characteristic, by (3.6), we deduce that λ = 0.
Thus:

0 = λ =
k∑

j=1
αjλj ⇒ αj = 0, for any j = 1, . . . , k,

since {λ1, . . . , λk} was a basis of the fiber of AS. This concludes the proof
of the first step. Define now the sub-Riemannian exponential map from S,
i.e. the map

E : D ∩ AS → M ; E(λ) = π ◦ eH⃗(λ),

where D ⊂ T ∗M is the open set where the flow of H⃗ is defined up to time 1.
Consider also the zero section of the annihilator bundle, namely

i : S → AS; i(q) = (q, 0) ∈ AqS.

Step 2. — E is a local diffeomorphism at points of i(S). To prove the
claim, we consider a point (q, 0) ∈ i(S) and verify that d(q,0)E is invertible.
Identifying T(q,0)(D ∩ AS) ∼= TqS ⊕ AqS, we have, on the one hand E ◦ i =
IdS , therefore for a vector v = (v, 0) ∈ TqS ⊕ AqS,
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d(q,0)E(v) = d

dt

∣∣∣∣
t=0

E(λ(t)) = d

dt

∣∣∣∣
t=0

E ◦ i(γ(t)) = d

dt

∣∣∣∣
t=0

γ(t) = v,

since λ(t) = (γ(t), 0), with γ : (−ε, ε) → S, such that γ(0) = q and γ̇(0) = v.
On the other hand, take an element λ = (0, λ) ∈ TqS ⊕ AqS, then by
definition, we obtain

d(q,0)E(λ) = d

dt

∣∣∣∣
t=0

E(q, tλ) = d

dt

∣∣∣∣
t=0

E(q, tλ) = d

dt

∣∣∣∣
t=0

π ◦ etH⃗(λ)

= π∗H⃗(λ) = vλ.

Thus, choosing any basis for TqS and the basis {λ1, . . . , λk} for AqS, as
before, we may write the n × n matrix representing the differential of E as

d(q,0)E =
(

Idn−k

0

∣∣∣∣ v1, . . . , vk

)
where the vectors vj are defined in (3.3). Since, by the previous step, the set
{v1, . . . , vk} is linearly independent in Dq and, by construction, vj /∈ TqS

for any j = 1, . . . , k, we conclude that dE is invertible at i(S).
Step 3. — There exists U ⊂ D ∩ AS, such that E|U is a diffeomorphism

on its image. Moreover, U can be chosen of the form:

(3.7) U =
{

λ ∈ AS
∣∣∣ √

2H(λ) < r0

}
, for some r0 > 0.

The proof of this step follows verbatim what has been done in [10, Prop. 3.1],
cf. also [14, Lem. 23], once we have verified that

√
2H(·) is a fiber-wise norm

on the annihilator bundle. Since H is quadratic on fibers, it immediately
follows that

√
2H(·) is positive, 1-homogeneous and sub-additive. We are

left to prove that, for λ ∈ AqS,√
2H(λ) = 0 ⇔ λ = 0.

As already remarked in (3.6), an element λ ∈ AqS, such that
√

2H((q, λ)) =
0, annihilates both the distribution and TqS, thus, being q non-characteri-
stic, λ = 0.

Step 4. — E(U) = {p ∈ M | δS(p) < r0} = Sr0 ∪ S and, for elements
(q, λ) ∈ U we have δS(E(q, λ)) =

√
2H(λ). In particular, δS ∈ C∞(Sr0).

Firstly, we recall that, for an element λ ∈ U , the length of the curve

[0, 1] ∋ t 7→ π ◦ etH⃗(λ) ∈ M

is equal to
√

2H(λ) < r0, as one can check using (3.5). Thus, E(U) ⊂
Sr0 ∪ S. Secondly, we prove the opposite inclusion: up to restricting r0, we
may assume that Sr0 ⊂ K, for a compact set K ⊂ M . Therefore, for an
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element p ∈ Sr0 , there exists a minimizing geodesic γ : [0, 1] → M such
that

γ(0) = q ∈ S, γ(1) = p and ℓ(γ) = δS(p).

Applying Lemma 3.4, we deduce that γ is not an abnormal geodesic, mean-
ing that there exists a unique normal lift for γ, with initial covector given
by λ ∈ T ∗

q M , which implies

(3.8) γ(t) = π ◦ etH⃗(λ),

and in particular, E(q, λ) = p. Moreover, λ ∈ U as, by optimality, it satisfies
the transversality condition (2.10), and also

(3.9) ℓ(γ) =
√

2H(λ) < r0,

being p ∈ Sr0 . Finally, we conclude that p ∈ E(U) and δS(E(q, λ)) =√
2H(λ), by (3.9). Since

√
2H(·) is smooth, as long as H(λ) ̸= 0, we also

have that δS is smooth on the set E(U \ i(S)) = Sr0 .
Step 5. — There exists a diffeomorphism G : (0, r0) × {δS = r0} → Sr0

satisfying item (ii) of the statement. Moreover, ∥∇δS∥g = 1 in Sr0 .
Once again, this part of the proof follows verbatim [10, Prop. 3.1]. □

Remark 3.5. — Consider the set U = AS ∩ {
√

2H(·) < r0} defined
in (3.7). What we proved in the previous Theorem is that E defines a
diffeomorphism between U and Sr0 ∪ S. In particular, choosing a local
trivialization of the annihilator bundle, this means that

(3.10) Sr0 ∪ S ∼= AS ∩
{√

2H(·) < r0

}
∼=

locally
S × BH

r0
(0),

where BH
r0

(0) denotes the ball of radius r0, centered at the origin of the
Euclidean space (Rk,

√
2H(·)). Of course, in general, the annihilator bundle

will not be globally trivializable, however, this is the case when S is the
boundary of an open set and we are able to extend (3.10) to the whole
submanifold.

Whenever S is a boundary of an open set, we can refine Theorem 3.3
building a double-sided tubular neighborhood of S, in which we are able to
distinguish the inside and the outside of the open set. This is done using
the signed distance function. We recall here its definition.

Definition 3.6 (Signed distance). — Let M be a sub-Riemannian man-
ifold and Ω ⊂ M be an open subset. Define δ : M → R to be the signed
distance function from ∂Ω, i.e.
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δ(p) =
{

δ∂Ω(p) p ∈ Ω,

−δ∂Ω(p) p ∈ M \ Ω,

where δ∂Ω : M → [0, +∞) denotes the usual distance function from the
boundary of Ω.

Theorem 3.7 (Double-sided tubular neighborhood). — Let M be a
sub-Riemannian manifold and Ω ⊂ M be an open, relatively compact sub-
set, whose boundary is smooth and has no characteristic points. Denote by
Ωr0

−r0
= {p ∈ M | −r0 < δ < r0}. Then, there exists r0 > 0 such that, the

following conditions hold:
(i) δ : Ωr0

−r0
→ R is smooth and such that ∥∇δ∥g = 1;

(ii) there exists a diffeomorphism G : (−r0, r0) × ∂Ω → Ωr0
−r0

such that:

δ(G(t, p)) = t and G∗∂t = ∇δ.

Remark 3.8. — The main differences with respect to Theorem 3.3 are
that δ is smooth up to the boundary of Ω, and the diffeomorphism is built
starting from ∂Ω.

Proof of Theorem 3.7. — By Theorem 3.3, applied with S = ∂Ω, the
sub-Riemannian exponential map from ∂Ω is a diffeomorphism for small
covectors, namely there exists r0 > 0, such that:

E : A(∂Ω) ∩
{√

2H(λ) < r0

} ∼=−→ Ωr0
−r0

and |δ(E(q, λ))| =
√

2H(λ). Now, since Ω is an open set with smooth
boundary, A(∂Ω) is trivializable, i.e. there exists a never-vanishing and
inward-pointing smooth section

λ+ : ∂Ω → A(∂Ω); q 7→ λ+
q .

Furthermore, by non-characteristic assumption,
√

2H(·) is a fiber-wise
norm on the annihilator bundle, hence we may assume without loss of
generality that √

2H
(
λ+

q

)
= 1, ∀ q ∈ S.

Thus, we find a unique smooth function ξ(λ) ∈ C∞(A(∂Ω)) such that

λ = ξ(λ)λ+
q , λ ∈ Aq(∂Ω).

Hence, the annihilator bundle is trivializable via the map ξ, i.e.

F : A(∂Ω)
∼=−→ ∂Ω × R; F (λ) = (π(λ), ξ(λ)) .
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Notice that, by definition, |ξ(λ)| =
√

2H(λ). Moreover, ξ(λ) > 0, whenever
E(q, λ) ∈ Ω, by definition of λ+, ξ(0) = 0 and negative otherwise. There-
fore, having defined the signed distance such that it is positive inside of Ω,
we obtain that

δ(E(q, λ)) = ξ(λ), ∀ λ ∈
{√

2H(λ) < r0

}
,

proving the smoothness of δ on the set Ωr0
−r0

. Finally, define G as the
composition of E ◦ F −1 restricted to the set (−r0, r0) × ∂Ω. Since E and
F are diffeomorphisms, also G is and moreover,

G(t, q) = E
(
q, tλ+

q

)
∀ (t, q) ∈ (−r0, r0) × ∂Ω,

therefore δ(G(t, q)) = δ(E(q, tλ+
q )) = ξ(tλ+

q ) = t. This concludes the proof
of Theorem 3.7. □

4. Induced measure on S

Let ω be a smooth measure on M . We define a measure on S induced
by ω, assigning a tensor density. This construction specializes to the sub-
Riemannian perimeter measure, when S is the boundary of an open set.
Recall that, by Theorem 3.3, there exists r0 > 0 such that (3.10) holds
locally and define volH as the Riemannian measure associated with (Rk,

∥ · ∥⊥), where ∥ · ∥⊥ is a shorthand notation for
√

2H(·)|AqS . In particular,
volH is well-defined since ∥ · ∥⊥ is induced by the fiber-wise bilinear form

(4.1) (λ1, λ2)⊥ =
N∑

i=1
⟨λ1, Xi⟩⟨λ2, Xi⟩, ∀ λ1, λ2 ∈ AqS, q ∈ S,

where ⟨·, ·⟩ denotes the dual coupling.

Lemma 4.1. — Let M be a sub-Riemannian manifold, equipped with a
smooth measure ω, and let S ⊂ M be a compact smooth non-characteristic
submanifold of codimension k ⩾ 1. Then, there exists a unique smooth
probability measure µS on S, such that,

(4.2)
∫

M

h(p)dωε(p) ε→0−−−→
∫

S

h(q)dµS(q),

for any h ∈ Cc(M), where,

ωε = 1Sε

ω(Sε)ω, ∀ ε > 0.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



THE RELATIVE HEAT CONTENT FOR SUBMANIFOLDS 205

Proof. — Proceeding with hindsight, we are going to define explicitly
the measure µS and then prove the convergence. We may define µS locally,
hence, fix an open coordinate chart V ⊂ S for S and a local trivialization
of AS over V , so that

AS|V ∼= V × Rk.

By Theorem 3.3, we have that, denoting by Vr0 = E(AS|V ∩ {
√

2H(·) <

r0}),
Vr0

∼= AS|V ∩
{√

2H(·) < r0

}
∼= V × BH

r0
(0).

Consider on Vr0 , coordinates (x, z) where (x1, . . . , xn−k) are coordinates
on V and S ∩ Vr0 = {(x, z) | z = 0}. Thus, since ω is smooth, we have

dω(x, z) = ω(x, z)dxdz, with ω(·) ∈ C∞(Vr0),

where dx and dz are the Lebesgue measures in coordinates. Moreover,
since (4.1) is a metric along the fibers, we can define canonically a volume
associated with H, which in coordinates is given by

(4.3) dvolH(z) =
√

det Hq(z)dz, ∀ q ∈ S,

with never-vanishing density. Therefore, we may rewrite ω in terms of volH ,
obtaining

(4.4) dω(x, z) = ω(x, z)dxdz = ω(x, z)√
det Hq(z)

dxdvolH(z)

Finally, on the fiber, we can choose an orthonormal (w.r.t.
√

2H(·)) basis
of smooth local sections {λ1, . . . , λk}, so that volH(λ1, . . . , λk) = 1, and
define µ̃S in coordinates (x, z), to be the contraction of (4.4) along these
covectors, restricted to S, namely

dµ̃S(x) = ω(x, 0)√
det Hq(0)

dxdvolH(λ1, . . . , λk) = ω(x, 0)√
det Hq(0)

dx.

One can check that this procedure defines a smooth measure on S, indepen-
dently on the choice of the coordinates. We can now verify the convergence,
using a partition of the unity argument. Fix a covering of S with a finite
number of open charts {Vi}L

i=1 and consider the associated covering {V i
r0

}
of S ∪ Sr0 , defined by

V i
r0

= E
(

AS|Vi
∩

{√
2H(·) < r0

})
, ∀ i = 1, . . . , L.

Then, consider {ρi}L
i=1 to be a partition of unity subordinate to the covering

{V i
r0

} of S ∪ Sr0 . Exploiting the coordinate expression of µ̃S , we have, for
any ε ⩽ r0:
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ω(Sε) =
∫

Sε

L∑
i=1

ρi(q)dω(q)

=
L∑

i=1

∫
Vi

∫
BH

ε (x)
ρi(x, z) ω(x, z)√

det Hq(z)
dvolH(z)dx

= εk
L∑

i=1

∫
Vi

∫ 1

0

∫
Sk−1

ρi(x, εr, θ) ω(x, εr, θ)√
det Hq(εr, θ)

rk−1dθdrdx,

having expressed the volume volH in polar coordinates rk−1dθdr. There-
fore, up to a factor εk, we see that

ω(Sε)
εk

ε→0−−−→ ϖk

L∑
i=1

∫
Vi

ρi(x, 0)dµ̃S(x) = ϖk

∫
S

dµ̃S

where ϖk is the volume of the standard unit ball in Rk. Finally, reasoning
as above, since for any h ∈ Cc(M), we are able to extract a factor εk

from the integral of h over Sε, we obtain the convergence in the weak-star
topology (4.2), having normalized µ̃S to obtain a probability measure µS.

□

Remark 4.2. — Since ωε, for any ε ⩽ r0, has compact support which is
contained in Sr0 , we can extend the convergence (4.2) to any continuous
function on M .

5. Heat content for submanifolds

Let M be a sub-Riemannian manifold, equipped with a smooth measure
ω, and let S ⊂ M be a smooth, compact submanifold of codimension k ⩾ 1.
We may consider µ a smooth probability measure on S as initial datum for
the heat equation, in the sense of distributions, and study the associated
Cauchy problem:

(5.1)
(∂t − ∆)u(t, x) = 0, ∀ (t, x) ∈ (0, ∞) × M,

u(t, ·) t→0−−−→ µ, in D′(M).

A solution to this problem, in the sense of distribution, is given by

u(t, x) =
∫

S

pt(x, y)dµ(x), ∀ (t, x) ∈ (0, ∞) × M,
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which, by hypoellipticity, is a smooth function for positive times. Recall
that, by definition of the relative heat content associated with an open set
Ω ⊂ M , we have

(5.2) HΩ(t) =
∫

Ω

∫
Ω

pt(x, y)dω(x)dω(y), ∀ t > 0.

Thus, a suitable generalization of (5.2) for a submanifold S seems to be:

(5.3) HS(t) =
∫

S

∫
S

pt(x, y)dµ(x)dµ(y), ∀ t > 0.

Moreover, when S is non-characteristic, Lemma 4.1 provides with a canon-
ical probability measure on S, induced by ω, i.e. µS. Henceforth, we assume
S non-characteristic and fix µ = µS. In this setting, we can hope to obtain
an asymptotic expansion of (5.3).

Proposition 5.1. — Let M be a sub-Riemannian manifold, equipped
with a smooth measure ω, let S ⊂ M be a smooth, compact and non-
characteristic submanifold of codimension k ⩾ 1 and fix the probability
measure µS on S. Define, for any ε ⩽ r0,

(5.4) Hε
S(t) =

∫
M

∫
M

pt(x, y)dωε(x)dωε(y), ∀ t > 0.

Then, for any t > 0,

(5.5) Hε
S(t) ε→0−−−→ HS(t).

Proof. — Firstly, notice that, applying Lemma 4.1, we have that

(5.6) uε(t, x) =
∫

M

pt(x, y)dωε(y) = ⟨ωε, pt(x, ·)⟩ ε→0−−−→ ⟨µS, pt(x, ·)⟩,

for any t > 0 and y ∈ M . Secondly, since the heat kernel pt is smooth on
M × M , there exists a constant C(t) > 0 depending on t, such that:

(5.7) ∥pt(·, ·)∥L∞
loc(M×M) ⩽ C(t),

and we remark that the constant C(t) explodes as t → 0. Therefore, the
convergence (5.6) is locally uniform with respect to x ∈ M . In conclusion,

|Hε
S(t) − HS(t)| = |⟨ωε, uε(t, ·)⟩ − ⟨µS, u(t, ·)⟩|

⩽ |⟨ωε, uε(t, ·) − u(t, ·)⟩| + |⟨ωε, u(t, ·)⟩ − ⟨µS, u(t, ·)⟩|
⩽ ∥uε(t, ·) − u(t, ·)∥L∞(Sr0 ) |⟨ωε, 1⟩| + |⟨ωε − µS, u(t, ·)⟩| ,

and taking the limit as ε → 0 in the last line proves the desired result. □
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Remark 5.2. — The convergence (5.5) is never uniform as t → 0, being
the constant C(t) in (5.7) not bounded as t → 0. This suggests that, while
Hε

S seems to be the best possible approximation of the heat content asso-
ciated with S, using such a strategy to deduce the asymptotics of HS(t) is
not correct. Indeed, we can show that the coefficients of the expansion of
Hε

S can not approximate those of HS(t), in general.

6. An example: closed simple curve in R3

In R3 equipped with the Euclidean scalar product and the Lebesgue
measure, let us consider a biregular closed simple curve, parametrized by
arc-length, γ : [0, ℓ] → R3, where ℓ denotes the length of γ. Recall that a
smooth curve γ : I → R3 is biregular if

γ̇(s) ∧ γ̈(s) ̸= 0, ∀ s ∈ I,

where ∧ denotes the cross product in R3. In this setting, define S =
γ([0, ℓ]) ⊂ R3, submanifold of codimension 2. The tubular neighborhood of
S given by Theorem 3.3 coincides with the usual Euclidean tubular neigh-
borhood, which can be conveniently described by the Frenet-Serret moving
frame along γ, it being biregular. In particular, denoting by {T (s), N(s),
B(s)} the Frenet–Serret frame for s ∈ [0, ℓ], we have,

Sε = {γ(s) + r(cos θN(s) + sin θB(s)) | s ∈ [0, ℓ], θ ∈ (0, 2π], r ∈ (0, ε)},

∀ ε ⩽ r0.

Thus, in coordinates (s, r, θ), the Lebesgue measure is

(6.1) dxdydz = r(1 − rk(s) cos θ)dsdrdθ,

where k(s) = ∥γ̈(s)∥ is the curvature of γ, and the procedure of Lemma 4.1
gives the probability measure µS = ds/ℓ. Following the discussion of Sec-
tion 5, we define the heat content associated with S as

HS(t) = 1
ℓ2

1
(4πt)3/2

∫ ℓ

0

∫ ℓ

0
e− |γ(s)−γ(τ)|2

4t dsdτ, ∀ t > 0.

Asymptotic expansion of HS(t)

Denote by ϕτ (s) = |γ(s) − γ(τ)|2. We can explicitly compute the asymp-
totic expansion of HS applying the Laplace method to the integral

(6.2) Iτ (λ) =
∫ ℓ

0
e−ϕτ (s)λds, as λ → +∞.
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In particular, since γ is a simple curve, the phase ϕτ (s) has a strict min-
imum at s = τ , thus there exists ε = ε(τ) such that ϕ′

τ (s) > 0 for any
s ∈ [τ − ε, τ + ε] \ {τ}. A direct computation, building upon ∥γ̇∥ = 1,
yields:
ϕ′

τ (τ) = 0, ϕ′′
τ (τ) = 2, ϕ(5)

τ (τ) = −5∂τ

(
k(τ)2)

,

ϕ′′′
τ (τ) = 0, ϕ(4)

τ (τ) = −2k(τ)2, ϕ(6)
τ (τ) = −9∂2

τ

(
k(τ)2)

+ 2∥ ...
γ (τ)∥2.

Therefore the phase has a Taylor expansion at its minimum and we can
apply the Laplace method, which gives a full asymptotic expansion, cf. [13,
Thm. 8.1],

Iτ (λ) ∼ e−λϕτ (τ)
∞∑

i=0
Γ

(
i + 1

2

)
ai(τ)
λ

i+1
2

as λ → ∞,

where Γ is the Euler Gamma function, and the ai(τ) are given by explicit
formulas in terms of the derivatives of ϕτ at its minimum. Moreover, since,
for any τ ∈ [0, ℓ], the phase has an interior minimum, the odd coefficients
of the expansion vanish. For the even-order coefficients, we have

a0 = 1, a2 = 1
8k(τ)2,

a4 = 1
1152

(
36∂2

τ

(
k(τ)2)

+ 35k(τ)2 − 8∥ ...
γ (τ)∥2)

.

(6.3)

To conclude, we have to integrate with respect to τ the asymptotic expan-
sion of (6.2). In general, the expansion may not be uniform in τ ∈ (0, ℓ),
however, since γ is uniformly continuous on [0, ℓ] and can be extended by
periodicity on the whole real line, the choice of ε > 0 such that ϕ′

τ (s) > 0
for any s ∈ [τ − ε, τ + ε] \ {τ} can be made uniform, providing uniform
estimates of the remainder. In particular, we have

HS(t) ∼ 1
ℓ2

1
(4πt)3/2

∫ ℓ

0

∫ τ+ε

τ−ε

e− ϕτ (s)
4t dsdτ, as t → 0,

where ε > 0 is chosen uniformly with respect to τ . Hence, we conclude
that:

HS(t) ∼ 1
ℓ2

1
(4πt)3/2

∫ ℓ

0

∞∑
i=0

Γ
(

2i + 1
2

)
a2i(τ)(4t)

2i+1
2 dτ

= 1
ℓ2

1
4πt

∞∑
i=0

αit
i,

(6.4)

as t → 0, where the coefficients αi’s are defined by

αi = 22i−1(2i + 1)
∫ ℓ

0
a2i(τ)dτ, ∀ i ⩾ 0,
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and are given explicitly by (6.3), up to i = 2.

Approximation via tubular neighborhoods

We compute the asymptotic expansion of the approximation defined in
Proposition 5.1, when S = γ([0, ℓ]), and we compare its coefficients with
those obtained in (6.4). Recall that, by (5.4), we set

Hε
S(t) = 1

|Sε|2

∫
Sε

∫
Sε

1
(4πt)3/2 e− |x−y|2

4t dxdy, ∀ t > 0.

By Theorem 2.3, there exists an asymptotic expansion up to order 4 in
√

t,
of the form

(6.5) Hε
S(t) = 1

|Sε|2
(

αε
0 + αε

1t1/2 + αε
3t3/2 + o(t2)

)
,

where αε
0 = |Sε| and

(6.6)
αε

1 = − 1√
π

σε(∂Sε), αε
3 = − 1

12
√

π

∫
∂Sε

(
2∇δS · ∇(∆δS) − (∆δS)2)

dσε.

Notice that, in tubular coordinates (s, r, θ), ∇δS = ∂r, and, since (6.1)
holds,

dσr = r(1 − rk(s) cos θ)dsdθ, ∆δS = 1
r

+ ∂r (log(1 − rk(s) cos θ)) .

Thus, we can explicitly compute the coefficients (6.6):

αε
1 = − ε√

π

∫ ℓ

0

∫ 2π

0
(1 − εk(s) cos θ)dsdθ = −2εℓ

√
π

αε
3 = − ε

12
√

π

∫ ℓ

0

∫ 2π

0

(
− 3

ε2 + A1(s, ε, θ)
ε

+ A0(s, ε, θ)
)

(1 − εk(s) cos θ)dsdθ,

(6.7)

where A0, A1 are smooth functions defined by

A0(s, r, θ) = 2∂2
r (log(1 − rk(s) cos θ)) − (∂r (log(1 − rk(s) cos θ)))2,

A1(s, r, θ) = −2∂r (log(1 − rk(s) cos θ)) .
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Comparison between the two approaches

Let us compare the asymptotics of the two quantities in exam: for a fixed
ε > 0 and as t → 0, we have from (6.4) and (6.5)

Hε
S(t) = 1

|Sε|2
(

αε
0 + αε

1t1/2 + αε
3t3/2 + o(t2)

)
,

HS(t) = 1
ℓ2

1
4πt

(
α0 + α1t + α3t2 + o(t2)

)
,

where the coefficients are given by (6.7) and (6.3), respectively. At this
stage, on the one hand, we notice that the order in t of the expansions
doesn’t agree. On the other hand, the coefficients αε

1, αε
3 do not contain

fine geometrical information of S, indeed, the functions A0, A1 depend
only the curvature of γ, as opposed to (6.3), where derivatives of k(s) ap-
pear. Moreover, at a formal level, αε

1 → 0 as ε → 0, whereas αε
3 explodes:

it is possible to give meaning to these limits, taking into account the par-
abolic scaling between the space and time variables of the heat equation
and formally replacing t 7→ ε2t, in (6.5), however, we do not recover any
geometrical meaning.

Remark 6.1. — The approximating relative heat content is too coarse
a tool to detect the geometry of a submanifold of high codimension and
a different strategy is needed. Inspired by the construction of the tubular
neighborhood for S, we may study the asymptotic expansion of HS(t) using
a perturbative approach similarly to what has been done in [4], presenting
the sub-Laplacian of S as a perturbation of a simpler operator. This will
be object of future research.
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