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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 36 (2019-2021) 127-189

GLOBAL CALDERÓN–ZYGMUND INEQUALITIES ON
COMPLETE RIEMANNIAN MANIFOLDS

Stefano Pigola

Abstract. — This paper is a survey of some recent results on the validity and
the failure of global W 2,p regularity properties of smooth solutions of the Pois-
son equation ∆u = f on a complete Riemannian manifold (M, g). We review
different methods developed to obtain a-priori Lp-Hessian estimates of the form
∥ Hess(u)∥Lp ⩽ C1∥u∥Lp +C2∥f∥Lp under various geometric conditions on M both
in the case of real valued functions and for manifold valued maps. We also present
explicit and somewhat implicit counterexamples showing that, in general, this inte-
gral inequality may fail to hold even in the presence of a lower sectional curvature
bound. The rôle of a gradient estimate of the form ∥∇u∥Lp ⩽ C1∥u∥Lp +C2∥f∥Lp ,
and its connections with the Lp-Hessian estimate, are also discussed.
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1. Introduction

The so called Lp-Calderón–Zygmund inequality, 1 < p < +∞, is one of
the cornerstones in the regularity theory of elliptic equations. One has a
W 2,p solution u of the Poisson equation L(u) = f on a domain Ω ⋐ Rn for
some second order elliptic operator L (with, say, smooth coefficients), and
would like to estimate the Lp norm of the full Hessian of u in terms of the
datum f and, possibly, of the function itself. In fact, for any Ω′ ⋐ Ω, one
has

(1.1) ∥ Hess(u)∥Lp(Ω′) ⩽ A∥u∥Lp(Ω) +B∥f∥Lp(Ω)

where the constants A,B > 0 do not depend on the given solution u but,
instead, they depend on dimRn = n and p, on the geometry of the domains
Ω and Ω′ and on the structure of the operator L in terms of the modulus
of continuity of the coefficients and the ellipticity constant. It may happen
that inequality (1.1) is still valid with Ω′ = Ω = Rn and, in this case,
we speak of a global Calderón–Zygmund inequality for the operator L.
The prototypical operator for which this global phenomenon appears is
represented by the Euclidean Laplacian L = ∆. In fact, one has the more
striking estimate

(1.2) ∥ Hess(u)∥Lp ⩽ A∥∆u∥Lp ,

for every u ∈ C∞
c (Rn) and for a universal constant A = A(m, p) > 0. As a

consequence, since, by Cauchy–Schwarz, it is always true that

∥∆u∥Lp ⩽
√
n∥ Hess(u)∥Lp

and, by the interpolation inequalities,

∥∇u∥Lp ⩽ C {∥ Hess(u)∥Lp + ∥u∥Lp}
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it follows the remarkable fact that, in the Euclidean space, the Sobolev
norms

∥u∥W 2,p = ∥u∥Lp + ∥∇u∥Lp + ∥ Hess(u)∥Lp

and
∥u∥

W̃ 2,p = ∥u∥Lp + ∥∆u∥Lp

are equivalent on C∞
c (Rn). In particular, via the closure of C∞

c (Rn), they
define the same (Banach) Sobolev space. This has interesting connections
with the spectral theory of the operator L = −∆ + 1.

One is naturally led to ask if it is possible to extend these global aspects of
the Calderón–Zygmund theory to other differential operators. Keeping for
the moment as a background the Euclidean space, and writing L = gij∂2

ij +
1st order terms, we could interpret the second order coefficient matrix [gij ]
as (the inverse of) a Riemannian metric g on Rn. From this point of view,
even at the local level, the constant C reflects the geometry of (Rn, g) and
this could prevent any extension to the global level. Whence, the possibility
of producing a global Calderón–Zygmund inequality for the differential
operator L could be understood as a manifestation of the good geometry of
(Rn, g)(1) as in the case of the standard Euclidean space (Rn, gE). But in
fact, there is no need to fix a Euclidean background space. Everything can
be developed from the very beginning on a Riemannian manifold (M, g)
with the most natural (both analytically and geometrically) choice of the
operator, namely the Laplace–Beltrami operator L = ∆ of M . Clearly, if
on the one hand, from the local viewpoint (i.e. on a relatively compact
domain) there is no qualitative change with respect to the flat Euclidean
setting, on the other hand the influence of the geometry encoded in the
constants A,B > 0 implies that, as alluded to above, switching from the
local inequality to the global one is not at all a bypass product.

Along this way we have approached a land where on a complete, non-
compact Riemannian manifold (M, g) it is given a global solution of the
Poisson equation ∆u = f and we aim at deducing, a-priori on the base of
the geometry of M , that | Hess(u)| ∈ Lp(M) whenever u, f ∈ Lp(M), and
that the following a-priori estimate

∥ Hess(u)∥Lp(M) ⩽ A∥u∥Lp(M) +B∥f∥Lp(M)

holds for some constants A,B > 0 depending only on dimM,p and on the
geometry of M . Beside this, we also ask for a companion global gradient
estimate of the form

(1) As a matter of fact, in this generality, the operator presents a drift that could intro-
duce further nontrivial effects on the metric measure space geometry and analysis.

VOLUME 36 (2019-2021)



130 STEFANO PIGOLA

∥∇u∥Lp(M) ⩽ A∥u∥Lp(M) +B∥f∥Lp(M)

so to conclude that, in fact,

∥u∥W 2,p(M) ⩽ A∥u∥Lp(M) +B∥f∥Lp(M).

A possible way(2) to attack this problem consists in mimicking what
is typically done in the Euclidean space. Namely, we take a solution u

represented via the Green kernel of the Laplace operator and we estimate
this kernel and its derivatives on the base of the geometric assumptions on
the underlying space. This approach, that enables one to deduce also the
existence of a solution, works pretty well when (M, g) possesses a minimal,
positive Green function(3) and the (Ricci) curvature is nonnegative. In this
setting one even gets precise pointwise estimates that imply an Lp-control
on the growth over increasing balls. We refer the reader to the fundamental
work [62] by L. Ni, Y. Shi and L. F. Tam. In hyperbolic-like situations,
i.e., when the (Ricci) curvature is lower bounded and there is a spectral
gap, (existence and) a growth control on the solution is investigated by
L. Ni [61], and in the recent papers [59] by O. Munteanu, C.-J. Sung and
J. Wang, and [17] by G. Catino, D. Monticelli and F. Punzo. Further studies
under the validity of the so called weighted Poincaré inequalities(4) can be
found in the preprints [18, 60]. It is interesting to point out that, however,
none of these nice papers investigates, a-priori, the global W 2,p class of the
solutions of the Poisson equation.

The aim of the present paper is to give a survey of some recent results
and techniques that, avoiding any use of the Green kernel of the space,
enable one to deduce the global validity of a-priopri Lp Hessian and gradient
estimates for solutions of the Poisson equation on a Riemannian manifold.

The survey will move from the (quite well understood) Hilbertian case
to the Lp setting, showing via counterexamples the extent to which the
geometric assumptions are needed, and touching the case of manifold valued
maps, where the Poisson equation takes the form of the prescription of the
tension field along a given map.

(2) At least from the PDE viewpoint, but it is not the only classical approach. Another
way, with a functional analytic slant, relies on Riesz transform techniques [75]. We shall
adopt this viewpoint in the context of Riemannian manifolds.
(3) In the potential theoretic terminology, M is called non-parabolic.
(4) Where it is assumed the nonnegativity of the spectrum of a Schrödinger operator
whose potential term is the Ricci lower bound.
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The exposition is clearly sensitive of my personal taste and based on my
own contributions to this kind of global Calderón–Zygmund estimates on
manifolds. I hope that related (even fundamental) results in the literature
have not been missed. On the other hand, there are topics that will not be
covered, although they are interesting and very close to the subject of this
survey. Among them, I would like to mention the so called disturbed or
weighted Calderón–Zygmund inequalities where the Riemannian measure
is perturbed by a suitable weight that encodes the (unbounded) geometry
of the space. The interested reader is referred to the papers [2] by E. Amar
and [44] by D. Impera, M. Rimoldi and G. Veronelli.
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2. Basic notation

Manifolds

In what follows, unless otherwise specified, we always assume that (M, g)
is a smooth, connected Riemannian manifold of dimension dimM = m ⩾ 2
and without boundary ∂M = ∅. In local coordinates (x1, · · · , xn), the
metric coefficients are denoted by gij = g(∂i, ∂j) where ∂i = ∂/∂xi. Very
often, to simplify the notation, we write |X|2 instead of g(X,X).

Curvatures

The Riemann curvature tensor of (M, g) is denoted by

Riem(X,Y, Z,W ) = g
(
DXDY Z −DY DXZ −D[X,Y ]Z,W

)
VOLUME 36 (2019-2021)
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where D is the Levi–Civita connection. This latter gives rise to the sectional
curvature of M along the 2-pane spanned by the linearly independent tan-
gent vectors X and Y by the formula

sec(X ∧ Y ) = Riem(X,Y, Y,X)
g(X,X)g(Y, Y ) − g(X,Y )2 .

By saying that M has curvature bounded from below (resp. from above)
by K we mean that, for every x ∈ X e for every 2-plane Πx tangent to M
at x it holds Sect(Πx) ⩾ K (resp. ⩽ K).

If we trace the Riemann curvature tensor we get the Ricci curvature

Ric(X,X) =
n∑

j=1
Riem (X,Ej , Ej , X)

where {Ej} is a local o.n. frame field. Equivalently, if |X| = 1 and E1, · · · ,
Em−1 ∈ X⊥, then

Ric(X,X) =
n∑

j=1
Sect (X ∧ Ej) .

Inequalities involving the (metric tensor g and the) Ricci tensors Ric are al-
ways understood in the quadratic form sense. Namely, Ric is lower bounded
(resp. upper bounded) by K whenever Ric(X,X) ⩾ K|X|2 (resp. ⩽ K|X|2)
for every x ∈ X and for every vector X tangent to M at x. In this case,
we simply write Ric ⩾ K.

Finally, by tracing the Ricci tensor one gets the scalar curvature function

Scal =
m∑

j=1
Ric (Ej , Ej) ,

where, again, {Ej} is any local o.n. frame field.

Operators

The gradient, the Hessian and the Laplace–Beltrami operator of a smooth
function u are denoted, respectively, by ∇u, Hess(u) = Ddu and

∆u = traceg Hess(u) = div ∇u.

Here, the divergence is defined with the sign convention

divX =
m∑

j=1
g (DEi

X,Ei)

for a local o.n. frame field {Ej}. In particular, the Laplace–Beltrami oper-
ator is nonpositive.
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Metric objects

The symbol d(x, y) stands for the intrinsic (length) distance of M be-
tween x and y. The corresponding open ball centered at x and of radius
R > 0 is BR(x).

Measure objects

Unless otherwise is specified, integrals are always computed with respect
to the Riemannian measure dvol =

√
det[gij ]dx1 · · · dxm. To simplify the

notation we often omit to specify the measure and simply write
∫

M
f . The

Lp-norm of a function (or a tensor) is denoted with ∥·∥Lp being understood
that it is referred to the whole space M . In case it is needed to restrict the
attention to functions or tensors defined on a domain Ω of M we write
∥ · ∥Lp(Ω)

3. The L2 setting: preparatory discussions

3.1. L2 gradient and Hessian estimates in C∞
c

To start with, let us assume that (M, g) is a compact Riemannian man-
ifold of dimension dimM = m ⩾ 2. We consider a solution u ∈ C∞(M) of
the Poisson equation

∆u = f(x), on M,

for some given datum f ∈ C∞(M). Integrating by parts this equation and
using Young inequality we obtain, for every ϵ > 0,∫

M

|∇u|2 = −
∫

M

f u

⩽
ϵ2

2

∫
M

u2 + 1
2ϵ2

∫
M

f2

that is, the following L2-gradient estimate holds:

(3.1) ∥∇u∥2
L2 ⩽ ∥f u∥L1 ⩽

ϵ2

2 ∥u∥2
L2 + 1

2ϵ2 ∥f∥2
L2 .

On the other hand, since M is compact its Ricci tensor is lower bounded
and we can assume that Ric ⩾ −K2, with K ⩾ 0. Integrating by parts the
Bochner identity

1
2∆|∇u|2 = | Hess(u)|2 + g(∇∆u,∇u) + Ric(∇u,∇u)

VOLUME 36 (2019-2021)



134 STEFANO PIGOLA

we therefore get

0 = 1
2

∫
M

∆|∇u|2

=
∫

M

| Hess(u)|2 +
∫

M

g(∇∆u,∇u) +
∫

M

Ric(∇u,∇u)

⩾
∫

M

| Hess(u)|2 −
∫

M

(∆u)2 −K2
∫

M

|∇u|2

=
∫

M

| Hess(u)|2 −
∫

M

(∆u)2 +K2
∫

M

u∆u.

Whence, using again Young inequality in the last integral we conclude the
validity of the L2-Hessian estimate:

(3.2) ∥ Hess(u)∥2
L2 ⩽

K2ϵ2

2 ∥u∥2
L2 +

(
1 + K2

2ϵ2

)
∥f∥2

L2 .

Observe that, in order to derive (3.1) and (3.2), the compactness of M is
used to perform integration by parts and to insure that the Ricci tensor
is lower bounded. It follows that everything survives without changes in
the non-compact setting up to using compactly supported functions and
to assume the validity of the curvature condition. Summarizing, we have
obtained the following global estimate that, in elliptic regularity theory, is
known as the L2 Calderón–Zygmund inequality.

Proposition 3.1. — Let (M, g) be a Riemannian manifold of dimen-
sion m ⩾ 2 and satisfying Ric ⩾ −K2 for some constant K ⩾ 0. Then, for
any given ϵ > 0, there exists a constant C = C(K, ϵ) > 0 such that the
following estimate

(3.3) ∥u∥W 2,2 := ∥u∥L2 + ∥∇u∥L2 + ∥ Hess(u)∥L2 ⩽ C {∥u∥L2 + ∥∆u∥L2}

holds for every function u ∈ C∞
c (M).

3.2. Isometric immersions

In the context of isometric immersions into the Euclidean space,
Lp-Hessian estimates of the form (3.2), when applied to the component
functions of the map, have a clear geometric interpretation and display
some interesting applications to the pre-compactness theory, as we are go-
ing to outline.

Let Ψ = (Ψ1, · · · ,Ψn) : Mm → Rn be a smooth immersion of the
compact, m-dimensional manifold M into Rn. The standard flat metric gE
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of the Euclidean space is pulled back to M via Ψ and gives rise to the 1st

fundamental form of the immersion

(3.4) g = Ψ∗gE .

In particular, we have that

(3.5) |dΨ|2 =
n∑

i=1

∣∣∇Ψi
∣∣2 ≡ 1

that is, Ψ is a 1-Lipschitz map. The extrinsic geometry of the submanifold
is governed by its second fundamental form which is defined as the family
of vector valued bilinear forms Ax : TxM × TxM → Rn such that

(3.6) Ax(v, w) =
(

Hess
(
Ψ1) (x)(v, w), · · · , Hess (Ψn) (x)(v, w)

)
.

Up to interpreting the Hessian of a vector valued map as the vector filed of
the Hessian of its components, the previous formula can be written in the
form

(3.7) A = Hess(Ψ).

Observe that by differentiating the identity (3.5) it follows that, for every
v ∈ TxM , Ax(v, v) ∈ TxM

⊥ = NxM ⊆ Rn the normal space to M at
x. Obviously, here we are identifying TxM ≈ dxΨ(TxM) ⊆ Rn. Taking
the trace of the second fundamental form gives the normal vector field
H(x) ∈ NxM , called the mean curvature vector field of the immersion, and
from (3.7) we get

(3.8) H(x) = ∆Ψ

where, as above, the Laplacian of a vector valued map is nothing but the
vector of the Laplacians of its components. The immersion Ψ : M → Rn is
called minimal if H ≡ 0 and totally geodesic if A ≡ 0. In this latter case,
Ψ(M) is inside an affine m-plane of Rn.

With this notation, if we have an L2-Hessian estimate like (3.2) and we
apply it to each component of Ψ we get

(3.9)
∫

M

|A|2 ⩽ CZ2

{∫
M

distRn(Ψ,0)2 +
∫

M

|H|2
}
,

where CZ2 depends suitably on the geometry of M . Namely, the L2-norm
of the second fundamental form is controlled by the L2-norm of the mean
curvature via an extrinsic L2-diameter bound. In Section 5.6 we will extend
this kind of estimate to general ambient manifolds and general exponents
p and, moreover, the dependence of CZp on the C1,α geometry will be
emphasized.

VOLUME 36 (2019-2021)
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Remark 3.2. — Note that, obviously, the extrinsic diameter of the source
compact manifold:

diamRn(M) = sup {distRn(Ψ(x),Ψ(y)) : x, y ∈ M}

is dominated by its intrinsic diameter:

diam(M) = sup{d(x, y) : x, y ∈ M}.

We point out that this latter, in turn, can be estimated in terms of the
volume of M and its Euclidean radius, namely, the radius (independent on
the center) of the largest ball inside a local coordinate chart where g and
gE satisfy 2−1gE ⩽ g ⩽ 2gE in the sense of quadratic forms. We shall come
back to this in Section 5.1 below where we will collect some of the main
definitions of Riemannian radii and their basic estimates. Here, we limit
ourselves to observe that, given V,E > 0, if

(3.10) i) volM ⩽ V, ii) rEuc(x) ⩾ E, ∀ x ∈ M,

then there exists a constant D = D(V,E) > 0 such that

diam(M) ⩽ D.

Simply choose x, y ∈ M such that diamM = d(x, y), take a minimizing
geodesic γ : [0, 1] → M connecting γ(0) = x to γ(1) = y and put over
γ([0, 1]) a number h = ⌊diamM/4E⌋ ∈ N of disjoint balls BE/2(xi) centered
at xj ∈ γ([0, 1]). Since, by (3.10) ii), volBE/2(xj) ⩾ 2−m/2volEucBE(0) =: v
and the balls are disjoint, we get h·v ⩽ V . Whence the announced diameter
estimate follows.

When combined with elliptic regularity theory in the geometric setting
of convergence of Riemannian manifolds, this enables one to obtain pre-
compactness conclusions in the following class

M (m,n, V,E,H,CZ2) = {Ψ : (Mm, g) → Rn : M cmpt , vol(M)
⩽ V, rEuc ⩾ E, |H| ⩽ H, (3.9) holds}.

More precisely, we obtain the following corollary of a by now classical result
for surfaces due to J. Langer, [49], recently extended to any dimension and
codimension by P. Breuning, [10]. We do not insist in introducing all the
definitions related to the geometric convergence theory but instead we leave
the statement in a rather “suggestive form” and strongly recommend the
interested reader to consult the very well written and informative paper [74]
by G. Smith.
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Proposition 3.3. — Let us given a sequence of immersions

{Ψk : Mk → Rn} ⊆ M (m,n, V,E,H,CZ2).

Then, there exists a C1,α compact Riemannian manifold (M, g) of dimM =
m and a C1,α isometric immersion Ψ : M → Rn such that, for a suitable
subsequence {kj} and a sequence of points yj ∈ Rn it holds that Mkj → M

and Ψkj
− yj → Ψ in the (Cheeger–Gromov) C1,α-topology.

3.3. From C∞
c to L2: Sobolev spaces and cut-off functions

A natural question is the following:

Problem. — What happens if (M, g) is a complete, noncompact Rie-
mannian manifold satisfying Ric ⩾ −K2 and the class of functions C∞

c (M)
is replaced by L2(M)? Do the L2 gradient and Hessian estimates survive?

The answer is yes but switching from C∞
c to L2 is not completely trivial

as it could appear. The crucial ingredients will be represented by special
cut-off functions with controlled derivatives. We are going to split the dis-
cussion in two parts.

3.3.1. L2-gradient estimate: 1st order cut-off functions

These estimates are naturally related to the spectral properties of the
Laplace-Beltrami operator. = Recall that a symmetric, densely defined,
unbounded operator T : D ⊆ H → H on a Hilbert space H is called es-
sentially self-adjoint if its closure T̄ (in the graph sense) is a self-adjoint
operator. It was first observed by R. Strichartz in [76], that on a geodesi-
cally complete Riemannian manifold (M, g) the Laplace operator −∆ :
C∞

c (M) ⊆ L2(M) → L2(M) is essentially self-adjoint. In fact, according
to [70, pp. 136, 137], it is enough to show that for any λ > 0, the equation

∆u = λu on M

has no non-zero L2-solutions. One can verify that this is the case throughout
a Caccioppoli-type inequality of the form∫

M

|∇v|2ϱ2
k ⩽ C

∫
M

v2|∇ϱk|2

where C > 0 is an absolute constant, v = u± and {ϱk} ⊆ C∞
c (M) is a

sequence of cut-off functions satisfying

(3.11) a) 0 ⩽ ϱk ⩽ 1, b) ϱk ↗ 1, c) ∥∇ϱk∥L∞ ↘ 0,
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as k → ∞. The existence of this special sequence of 1st order cut-off func-
tions (in the language of [32]) is in fact a characterization of the geodesic
completeness of (M, g); see e.g. [66] for an ∞-parabolic viewpoint.

Thus, if we define

D(−∆max) =
{
u ∈ L2(M) : the distribution ∆u ∈ L2(M)

}
and

D(−∆min) =
{
u ∈ L2(M) : u = lim

L2
φj ,

∃ lim
L2

∆φj =: ∆u, for some {φj} ⊂ C∞
c (M)

}
the essential self-adjointness of −∆ implies that

(3.12) D(−∆max) = D(−∆min).

Now, let u,∆u ∈ L2(M). Since

u = lim
L2

φj , ∆u = lim
L2

∆φj ,

with φj ∈ C∞
c (M), by applying to φj the gradient estimate (3.1) we get

(3.13) ∥∇φj∥2
2 ⩽

ϵ2

2 ∥φj∥2
L2 + 1

2ϵ2 ∥∆φj∥2
L2 .

This latter yields ∇u = limL2 ∇φj . Indeed, clearly, the sequence of L2

vector fields {∇φj} is Cauchy and, therefore, it converges in L2 to some
vector field X. A weak convergence argument now shows that X = ∇u as
claimed. It follows that we can take the limit as j → +∞ into (3.13) and
deduce the validity of the following

Proposition 3.4. — Let (M, g) be a complete Riemannian manifold
and let u ∈ C∞(M) be a solution of the Poisson equation ∆u = f on M .
If u, f ∈ L2(M) then |∇u| ∈ L2(M) and, for any ϵ > 0,

∥∇u∥2
2 ⩽

ϵ2

2 ∥u∥2
L2 + 1

2ϵ2 ∥f∥2
L2 .

3.3.2. Sobolev spaces and density problems

In view of forthcoming discussions, and of the fact that Sobolev space
theory is the red wire connecting the various parts of the present survey,
we reformulate condition (3.12) and its subsequent implication in a slightly
different way. To this end, we need to introduce some notation. Given
1 < p < +∞, and u ∈ Lp(M) denote by ∇u, ∆u and Hess(u), respectively,

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



CALDERÓN–ZYGMUND THEORY ON MANIFOLDS 139

the distributional gradient, Laplacian and Hessian of u. Then, define the
Sobolev space

W 1,p(M) = {u ∈ Lp(M) : |∇u| ∈ Lp(M)}

with norm
∥u∥W 1,p = ∥u∥Lp + ∥∇u∥Lp ;

the Sobolev space

W 2,p(M) = {u ∈ Lp(M) : |∇u|, | Hess(u)| ∈ Lp(M)}

with norm
∥u∥W 2,p = ∥ Hess(u)∥Lp + ∥∇u∥Lp + ∥u∥Lp

and, finally, the Sobolev space

W̃ 2,p(M) = {u ∈ Lp(M) : ∆u ∈ Lp(M)}

with norm
∥u∥

W̃ 2,p = ∥∆u∥Lp + ∥u∥Lp .

All of them are reflexive Banach spaces. Moreover, if we limit ourselves to
Sobolev functions that “vanish at infinity” (in the sense we are going to
define) we give rise to new Banach spaces inside W 1,p, W̃ 2,p and W 2,p.
They are defined, respectively, as the closures

W 1,p
0 (M) = C∞

c (M)
W 1,p

⊆ W 1,p(M)

and

W̃ 2,p
0 (M) = C∞

c (M)
W̃ 2,p

⊆ W̃ 2,p(M),

W 2,p
0 (M) = C∞

c (M)
W 2,p

⊆ W 2,p(M).

The density problem in Sobolev space theory consists in understanding
geometric conditions under which these inclusions are, in fact, equalities.
The importance of this basic problem relies on the fact that it is very often
much more convenient to work with smooth compactly supported functions
and, therefore, one has to be sure that these are enough to approximate
every Sobolev function. In this respect, it is important to stress that, on a
complete manifold, there is no loss of information in assuming that Sobolev
functions are in fact smooth thanks to the following (special case of the)
Meyers-Serrin type result; see [31].

Theorem 3.5. — Let (M, g) be a complete Riemannian manifold. Then

W k,p(M) ∩ C∞(M)
W k,p

= W k,p(M)
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for every 1 ⩽ p < +∞ and k = 1, 2 (actually for every k ∈ N up to defining
the higher order Sobolev spaces).

In this framework, what Strichartz observed can be formulated by stat-
ing that, thanks to the existence of 1st order cut-off function (3.11), the
following density result holds.

Proposition 3.6 (Strichartz). — Let (M, g) be a complete Riemannian
manifold. Then

W 1,2(M) = W 1,2
0 (M)

and

W̃ 2,2(M) = W̃ 2,2
0 (M).

Later on in these notes we will touch the problem of extending the second
density conclusion to integrability exponents p ̸= 2 (the extension of the
first one is almost trivial). In fact we shall see that, quite surprisingly,
geodesic completeness is enough to include all the Lp scale, 1 < p < +∞;
see Theorem 4.8.

3.3.3. L2-Hessian estimates: Laplacian cut-off functions

The extension to the genuine L2 setting of (3.2) was first observed by L.
Bandara in [6]. The discussion presented here incorporates contributions
and viewpoints from [32, 33] by B. Güneysu and from the very recent [44]
by D. Impera, M. Rimoldi and G.Veronelli.

Everything here boils down to the next nontrivial result of independent
interest.

Theorem 3.7. — Let (M, g) be a complete Riemannian manifold sat-
isfying Ric ⩾ −K2 for some K ⩾ 0. Then, the following chain of equalities
holds:

(3.14) W̃ 2,2(M) = W̃ 2,2
0 (M) = W 2,2

0 (M) = W 2,2(M).

Before coming into the proof of Theorem 3.7, let us see how it implies
immediately the L2-Hessian estimate.

Corollary 3.8. — Let (M, g) be a complete, m-dimensional Riemann-
ian manifold satisfying Ric ⩾ −K2 for someK ⩾ 0. Then, for every solution
u ∈ C∞(M) ∩ L2(M) of the Poisson equation ∆u = f with f ∈ L2(M),
the Hessian estimate (3.2) holds true.
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Proof. — Indeed, since u ∈ W̃ 2,p(M), then u ∈ W 2,p(M) and by density
we find a sequence {φj} ⊂ C∞

c (M) such that

i) u = lim
L2

φj , ii) ∇u = lim
L2

∇φj , iii) Hess(u) = lim
L2

Hess(φj).

Applying (3.2) to each φj we get

∥ Hess(φj)∥L2 ⩽ C1∥φj∥L2 + C2∥∆φj∥L2

and the conclusion follows by taking the limit as j → ∞. □

Outline of the proof of Theorem 3.7. — According to Proposition 3.6
we shall focus on the equalities

(a) W̃ 2,2
0 (M) = W 2,2

0 (M)
(b) W 2,2

0 (M) = W 2,2(M).
Equality (a) is the easier of the two. Indeed, by the Cauchy–Schwarz in-
equality, for every φ ∈ C∞

c (M),

|∆φ| ⩽
√
m | Hess(φ)|

proving that
∥φ∥

W̃ 2,2 ⩽ C1∥φ∥W 2,2

for some C1 = C1(m) > 0 and, therefore,

W 2,2
0 (M) ⊆ W̃ 2,2

0 (M).

On the other hand, by applying the L2-Hessian estimate (3.2) for compactly
supported functions we see that

∥φ∥W 2,2 ⩽ C2∥φ∥
W̃ 2,2

for some constant C2 = C2(K) > 0 and, therefore, we also have the opposite
inclusion

W̃ 2,2
0 (M) ⊆ W 2,2

0 (M).
This finishes the proof of (a).

The proof of (b) relies on the following important lemma by R. Schoen
and S. T. Yau [73].

Lemma 3.9 (Laplacian cut-off functions). — Let (M, g) be a complete
Riemannian manifold of dimension m and Ricci curvature Ric ⩾ −K2. Let
also o ∈ M be a fixed reference point. Then, there exists a sequence of
cut-off functions φj ∈ C∞

c (M) satisfying
a) 0 ⩽ φj ⩽ 1, b)φj ↗ 1,
c) ∥∇φj∥L∞ → 0, d) ∥∆φj∥L∞ ⩽ C,

(3.15)

for some constant C = C(m,K,Geom(B1(o))) > 0 and for j → +∞.

VOLUME 36 (2019-2021)



142 STEFANO PIGOLA

In the language of [32, 44] these 2nd order cut-off functions are called
(weak(5) ) Laplacian cut-off functions..

Now, given u ∈ C∞(M) ∩ W 2,2(M), one is led to define uj = φju ∈
C∞

c (M) and try to show that ∥uj − u∥W 2,2 → 0 as j → +∞. Up to the
first order, there is no problem because∫

M

(u− uj)2 =
∫

M

(1 − φj)2
u2 → 0

and ∫
M

|∇u− ∇uj |2 ⩽ 2
∫

M

|∇u|2 (1 − φj)2 + 2
∫

M

u2 |∇φj |2 → 0

as j → +∞. If we try the same at the second order we realize that we have
only a control on ∆φj not on on the full Hess(φj). However we can still
invoke the help of the Bochner formula

1
2∆ |∇φj |2 = |Hess(φj)|2 + g (∇∆φj ,∇φj) + Ric (∇φj ,∇φj)

and use suitable integration by parts to replace | Hess(φj)| with |∆φj | in
the estimate of

∫
M

| Hess(u) − Hess(uj)|2. Joint with the properties of φj

this yields that ∫
M

|Hess(u) − Hess(uj)|2 → 0,

as j → +∞. □

Remark 3.10. — The proof of (b) we have proposed is based on the exis-
tence of special cut-offs. There is (at least) a second natural way to obtain
the equality W 2,2

0 (M) = W 2,2(M) in the above assumptions. It uses only
the L2-Hessian estimate on compactly supported functions. See Proposi-
tion 4.7 below. The reason why we have emphasized the cut-off function
approach is that it is much more powerful and flexible in terms of geomet-
ric conditions, [44]. Summarizing: the validity of Calderón–Zygmund is a
(strictly) stronger condition than the density property in Sobolev spaces.
In this sense the relation between Calderón–Zygmund and density must
be used in the other direction, i.e., in terms of counterexamples. Section 4
should clarify this sentence.

3.3.4. Final considerations on the L2-setting

Let us emphasize some of the main ingredients and interplays emerging
from the previous discussions. Let (M, g) be a noncompact Riemannian
manifold.
(5) Meaning that in d) we do not require that ∥∆φj∥L∞ → 0 as j → +∞.
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(A) Integration by parts shows that, for any u ∈ C∞
c (M), ∥∇u∥L2 ⩽

∥u∆u∥L1 . If M is geodesically complete, this inequality extends to
u ∈ C∞(M) satisfying u,∆u ∈ L2(M). This is related to the essen-
tial self-adjointeness of ∆ and can be formulated in terms of a den-
sity property of compactly supported smooth functions in W̃ 2,2(M).

(B) Assuming that Ric ⩾ −K2, integrating by parts the Bochner for-
mula gives that, for every u ∈ C∞

c (M), ∥ Hess(u)∥L2 ⩽ C1∥u∥L2 +
C2∥∆u∥L2 . If further M is geodesically complete, this inequality
extends to u ∈ C∞(M) with u,∆u ∈ L2(M). This extension relies
on the equality of Sobolev spaces established in Theorem 3.7. In
particular, it needs the equivalence of the Sobolev norms of W̃ 2,2

and W 2,2(M), and the density of C∞
c (M) in the Sobolev space

W 2,2(M). In fact, this latter property holds under a quadratic Ricci
decay Ric ⩾ −C(1 + r(x)2), see [44].

(C) Density properties in Sobolev spaces W k,p follow from the possi-
bility of producing sequences of cut-off functions with controlled
derivatives up the order k. As we shall see later, a natural way to
construct these cut-off functions is to use distance like functions
which are smooth and with controlled derivatives up to the or-
der k. This is what was done in the seminal work of Schoen–Yau
quoted before. Subsequently, the Schoen–Yau construction was ex-
tended to quadratic Ricci decays by D. Bianchi and A. G. Setti,
[8] but in their work only a control on the Laplacian is introduced.
The genuine control on the higher derivatives of distance like func-
tions in unbounded (but controlled) geometries is a contribution
of Impera–Rimoldi–Veronelli, [44, 45]. We refer the reader to these
papers, actually based on [8], for the up-to-date conditions joint
with further very nice applications.

Density questions in Sobolev spaces are naturally related to curvature.
This sentence is strongly true in the sense that, on the one side, controlling
the curvature implies density as discussed above and, on the other side, a
very recent and striking counterexample due to Veronelli, [79], shows that
density needs a curvature restriction.

Problem. — Is it similar for the L2 Calderón–Zygmund inequality at
the C∞

c (M) level? Namely, we have seen that a Ricci lower bound implies
their validity. What happens if the curvature is unbounded?

Example 3.11. — The first example showing that, in general, the L2 Hes-
sian estimate for compactly supported functions may fail if the curvature
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is unbounded, was discovered in [34]. Briefly, the example is constructed as
follows.

Let R2 be endowed with the complete Riemannian metric g that, in polar
coordinates (r, θ), writes as

g = dr ⊗ dr + σ2(r)dθ ⊗ dθ

where σ : R → R is a smooth function satisfying the following requirements

i) σ(t) > 0 ∀ t > 0, ii) σ(2k)(0) = 0 ∀ k ∈ N, iii) σ′(0) = 1.

The corresponding Riemannian manifold (R2, g), usually called a model
manifold with warping function σ, will be denoted by M2

σ.
We put ourselves in the setting where M2

σ has infinite volume and its
Laplace–Beltrami operator does not possess a positive Green kernel. Said
in equivalent terms, M2

σ is an infinite-volume parabolic manifold. It is well
known that this is equivalent to require that, respectively,

∫ +∞
σ(r) dr =

+∞ and
∫ +∞ dr

σ(r) = +∞. More precisely, we assume that

r ⩽ σ(r) ⩽ r + 1

for all r ⩾ 1. We are going to use the (rotationally symmetric) signed Green
kernel G : M2

σ \ {0} → R of the Laplacian, given by

G(r) =
∫ r

1

dt

σ(t) ,

as a new coordinate that replaces the distance function r in the polar
representation of R2. This looks pretty much in spirit of the fake distance
constructed on m ⩾ 3-dimensional non-parabolic manifolds by T. Colding
in [24] although we were not aware of this work at that time. See also the
recent [53].

Now, having fixed ϕ ∈ C∞
c ([0, 1]) and the corresponding sequence of

translated functions ϕk(t) = ϕ(t− k) ∈ C∞
c ([k, k+ 1]), we define the radial

cut-off functions uk ∈ C∞
c (M2

σ) by

uk(r) = ϕk ◦G(r).

Then, one can verify that the following estimates hold:
• ∥uk∥2

2 ≈
∫ k+1

k
(ϕk(s))2(σ ◦G−1(s))2ds ⩽ C e2k

• ∥∆uk∥2
2 ≈ 2

∫ k+1
k

(ϕ′′
k (s))2

(σ◦G−1(s))2 ds ⩽ C e−2k

• ∥ Hess(uk)∥2
2 ⩾

∫ k+1
k

(ϕ′
k(s))2( σ′

σ ◦G−1(s))2ds.
Note that the derivatives of σ, in fact its first derivative, appears only in the
lower estimate of the Hessian. Thus, in order to violate the L2 Calderón–
Zygmund inequality at the C∞

c -level we can choose r ⩽ σ(r) ⩽ r + 1
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carefully in such a way that: (a) it oscillates more and more and, (b) its
first derivative σ′(r) explodes sufficiently fast in the interval [k, k + 1] as
k → +∞. The first condition is just to ensure that an “almost vertical”
piece of σ can be found in any interval [k, k + 1].

The L2 picture is relatively well understood. Now, the basic questions
that will permeate the rest of the paper.

Problem. — What happens on the Lp scale, if 1 < p < +∞? What
are the geometric conditions on (M, g) ensuring that, given a smooth so-
lution of the Poisson equation ∆u = f on M with u, f ∈ Lp(M) it holds
that ∥u∥W 2,p ⩽ C1∥u∥Lp + C2∥∆u∥Lp? How the constants depend on the
geometry?

Remark 3.12. — In these basic problems the endpoint cases p = 1 and
p = +∞ will be not considered because the corresponding Calderón-Zyg-
mund theory is false even in the Euclidean space. More precisely, concerning
the Hessian estimate, we have the following counterexamples:

• (p = ∞) This case is intimately related with the failure of the
Schauder estimates outside the Hölder setting. Indeed, the exam-
ple in [30, Problem 4.9(a)], shows that there exists a function f ∈
C0

c (Rn) such that the Poisson equation ∆u = f has a solution
u0 ∈ C1(Rn) ∩ C∞(Rn \ {0}) with | Hess(u0)|(x) → +∞ as x → 0.
In particular, u0 ̸∈ C2(Rn) (or, better, u ̸∈ C1,1(Rn)). Now, if u1
is any other locally bounded solution of the same equation, then
u1 − u0 is harmonic and bounded near the origin. Therefore, by
elliptic regularity, it must be smooth in a neighborhood of 0. Since
u1 = u0 + (u1 − u0) we conclude that also | Hess(u1)(x)| → +∞
as x → 0, showing that the equation ∆u = f has no C2 (actually
C1,1) solution at all. Now, as a consequence of a very general and
abstract result of K. De Leeuw and H. Mirkil, [26, Proposition 2],
the validity of an L∞-estimate like ∥ Hess(φ)∥L∞ ⩽ C∥∆φ∥L∞ for
all φ ∈ C∞

c (Rn) and for some universal constant C > 0 is com-
pletely equivalent to the fact that for any function f ∈ C0(Rn)
satisfying f(x) → 0 as |x| → +∞, it holds that ∆u = f has a
solution with ∂2

iju ∈ C0(Rn). Thus, the above example shows that
no such L∞-estimate can be satisfied.

• (p = 1) In the paper [63, Part 1] D. Ornstein constructs a (some-
what) explicit sequence φk ∈ C∞

c (C2
1(0)), where C2

1(0) is the unit
cube of R2, for which
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∫
R2

∣∣∂2
xyφk

∣∣ ⩾ k

∫
R2

∣∣∂2
xxφk

∣∣+
∣∣∂2

yyφk

∣∣ .
In particular, the inequality ∥ Hess(φ)∥L1 ⩽ C∥∆φ∥L1 cannot be
true on C∞

c (R2) with a uniform constant C > 0. In fact, in the
same paper, it is proved a much more general and abstract result
on the failure of the L1 estimate, which is inspired by the L∞-case
studied in [26].

We are going to give an overview of what is known so far in the direc-
tion of the above problems. We shall start discussing some illuminating
(counter)examples and then we will follow the scheme we have adopted in
the Hilbertian case, namely, we shall investigate separately the validity of
the Hessian and the gradient estimates first studying the C∞

c case and,
then, moving to the Lp level.

Following [32, 34], in the sequel we shall make use of the following ter-
minology.

Definition 3.13. — Let (M, g) be an m-dimensional Riemannian man-
ifold. We say that an Lp-Calderón–Zygmund inequality holds on M if there
exists a constant C > 0 such that

(CZ) ∥ Hess(φ)∥Lp ⩽ C {∥φ∥Lp + ∥∆φ∥Lp}

for every φ ∈ C∞
c (M).

4. Lp-Hessian estimates: counterexamples

We have seen in Example 3.11 that, in general, the validity of an L2

Calderón–Zygmund inequality, (CZ)(2), may fail, even at the C∞
c level,

on a 2-dimensional, parabolic, model manifold. Since the volume of this
manifold is infinite, nothing can be deduced concerning the validity or
the failure of (CZ)(p) when p ̸= 2. Moreover, the estimates we gave are
simplified by the assumption that we are in a 2-dimensional space. However,
in the paper [51], S. Li is able to strengthen the construction so to include
every dimension m ⩾ 2 and every 1 < p < +∞, thus completing the
picture.

Theorem 4.1. — For any m ⩾ 2 and every 1 < p < +∞ there exists
a complete, parabolic, model manifold Mm

σ := (Rm, dr ⊗ dr + σ2(r)gSm−1)
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with unbounded (radial) sectional curvature such that, along a sequence
φk ∈ C∞

c (Mm
σ ), CZ(p) is violated, i.e.,

lim
k→+∞

∥ Hess(φk)∥Lp

∥φk∥Lp + ∥∆φk∥Lp

= +∞.

Next we point out that, for large values of p, the constant in (CZ)(p)
cannot depend only on a lower sectional curvature bound. This is obtained
by G. De Philippis and J. Zimbron in [27] as a consequence of their har-
monic function theory on RCD(n,K) spaces and answers in the negative a
question rised in [32].

Theorem 4.2. — Let m < p < +∞. There exists a sequence of com-
pact(!) Riemannian manifolds (Mm

k , gk) with SectMk
⩾ 0 and diam(Mk) ⩽

D such that, for some φk ∈ C∞(Mk),

(4.1) ∥∆gk
φk∥Lp + ∥∇gk

φk∥Lp ⩽ 1

and

(4.2) lim
k→+∞

∥Hessgk
(φk)∥Lp = +∞.

Remark 4.3. — Note that, by volume comparison, [65], also the volumes
of Mk are uniformly upper bounded.

Remark 4.4. — In the above statement nothing is said about the Lp norm
of φk. However, up to translating each φk by a suitable constant ck ∈ R
(that does not affect neither the assumptions nor the conclusion), we can as-
sume that ∥φk∥Lp ⩽ C for some uniform constant C = C(K,D,m, p) > 0.
Indeed, recall from [72, Theorem 5.6.6] that, on a compact m-dimensional
Riemannian manifold (M, g) with Ric ⩾ −K2, K ⩾ 0, the following Lp

Neumann–Poincaré inequality holds∥∥∥∥u− −
∫

M

u

∥∥∥∥p

Lp

⩽ Cp
1 diam(M)peC2Kdiam(M)∥∇u∥p

Lp

for every u ∈ C∞(M) and for some constants C1 = C1(m, p), C2 =
C2(m) > 0. Thus, in the assumptions of Theorem 4.2, letting ck = −

∫
M
φk

we have that

∥φk − ck∥Lp ⩽ C := C1D,

as claimed.
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Remark 4.5. — Combining the above observation with the interpolation
inequalities that we shall discuss in Section 5.4 below, we deduce the fol-
lowing fact of independent interest. Given any Riemannian manifold (M, g)
we agree to denote(6)

ZM∞
c (M) =

{
φ ∈ C∞

c (M) :
∫

M

φ = 0
}

where, obviously, the compact support condition is for free (and removed
from the notation) when M is compact.

Proposition 4.6 (Neumann-CZ(p)). — Let (M, g) be a compact, m-
dimensional Riemannian manifold of diameter D and Ricci curvature Ric ⩾
−K2, K ⩾ 0. Let also 1 < p < +∞ be fixed. Then, in the class ZM∞(M),
the validity of (CZ)(p) is equivalent to the next variant of the Calderón-
Zygmund inequality

(CZ’) ∥ Hess(φ)∥Lp ⩽ C ′ {∥∆φ∥Lp + ∥∇φ∥Lp} ,

in the following precise sense:
- If (CZ)(p) holds (at least on ZM∞(M) ⊂) C∞(M) with a constant
C > 0 then (CZ’)(p) is satisfied on ZM∞(M) with a constant C ′ =
C ′(C,m, p,K,D) > 0.

- If (CZ’)(p) holds on ZM∞(M) with a constant C ′ > 0 then (CZ)(p)
holds with a constant C = C(C ′, p) > 0 in the class C∞(M) (and
in particular on ZM∞(M)).

With this in mind, the proof of Theorem 4.2 goes as follows.
Proof of Theorem 4.2 (sketch). — According to Proposition 4.6 it is

enough to prove that the constant in (CZ’)(p), p > m, cannot depend only
on m, p and on a lower bound of the sectional curvature.

The starting point is the existence of a sequence of compact, m-dimensio-
nal Riemannian manifolds (Mk, gk) with diamMk ⩽ D and SectMk

⩾ 0 that
converges in the measured Gromov-Hausdorff topology to a non-collapsed
Alexandrov space (Xm, d,H m) satisfying the following conditions

(a) Curv(X) ⩾ 0 in the sense of Alexandrov.
(b) X has a dense set of sharp singularities, in the sense that the tangent

cones at each point of this dense set are singular cones.
The limit space is the boundary of a convex set in Rm+1 and is constructed
in [64, Example (2)]. The existence of the approximating sequence is ob-
served e.g. in [1, Theorem 1].

(6) the symbol ZM is the acronym of “zero mean”. The upper and lower indices denote
the regularity of the functions involved and the fact that they are compactly supported.
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The proof now proceeds by contradiction. Assume that (CZ’)(p), p > m,
holds with a constant depending only on m, p and on the lower bound of the
sectional curvature. Then, using the Morrey–Sobolev embedding theorem
we deduce the existence of a uniform constant E = E(m, p,D) > 0 such
that, for every k and for every u ∈ C∞(Mk),

(4.3) ||∇u|(p) − |∇u|(q)| ⩽ E(∥∆u∥Lp + ∥∇u∥Lp)dk(p, q)
p−m

p on Mk.

Now, according to Appendix B, we consider a nonconstant W 1,2 ∩ Lp-
solution u∞ : X → R of the Poisson equation ∆Xu∞ = g∞ with g∞ ∈
Lp(X), and we assume that there exists a sequence of solutions uk : Mk →
R of ∆gk

uk = gk ∈ Lp on Mk satisfying the following conditions:
• uk → u∞ strongly in W 1,2;
• ∆uk = gk → g∞ = ∆u∞ strongly in Lp, hence, ∥∆uk∥Lp ⩽ C1;
• ∥uk∥W 1,p ⩽ C2.

Using (4.3) along uk we get∣∣|∇uk|(p) − |∇uk|(q)
∣∣ ⩽ Cdk(p, q)

p−m
p

for some constant C > 0 independent of k, and then, passing to the limit,
we deduce that |∇u∞| is a continuous function; see [41, Proposition 3.3].
On the other hand, as a consequence of [27, Theorem 1.1], we have that
|∇u∞(x)| = 0 at sharp singular points of the Alexandrov space X. Since
this set is dense in X, u∞ must be constant, a contradiction. □

There is a third category of counterexamples that rely on the lack of
compact supported approximation of Sobolev functions, as alluded to in
Section 3.3.2. In fact, we have the following simple, although nontrivial,
observation; [79].

Proposition 4.7. — Let (M, g) be a complete, m-dimensional Rie-
mannian manifold and let 1 < p < +∞ be fixed. Then, keeping the notation
of Section 3.3.2, the following implication holds:

(CZ)(p) =⇒ W 2,p(M) = W 2,p
0 (M) = W̃ 2,p

0 (M) = W̃ 2,p(M).

This implies that, given u ∈ Lp(M) with ∆u ∈ Lp(M) it holds also that
|∇u|, | Hess(u)| ∈ Lp(M) and, hence, there exists a sequence of cut-off
functions φk ∈ C∞

c (M) such that

φk
W 2,p

→ u.

We make a crucial use of the following surprising result by O. Milatovich,
[37, Appendix A], extending Strichartz’s to the Lp-scale.
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Theorem 4.8. — Let (M, g) be a complete Riemannian manifold of
dimension dimM = m and let 1 < p < +∞ be fixed. Then,

W̃ 2,p
0 (M) = W̃ 2,p(M).

Proof of Proposition 4.7. — According to Theorem 4.8,

W̃ 2,p
0 (M) = W̃ 2,p(M).

On the other hand, by the Cauchy–Schwarz inequality, |∆u| ⩽
√
m| Hess(u)|

and, therefore,

W 2,p
0 (M) ⊆ W̃ 2,p

0 (M).

To conclude the validity of the opposite inclusion

W̃ 2,p
0 (M) ⊆ W 2,p

0 (M)

observe that, by (CZ)(p), ∥φ∥W 2,p ⩽ C∥φ∥
W̃ 2,p for every φ ∈ C∞

c (M).
This proves that

W̃ 2,p(M) = W̃ 2,p
0 (M) = W 2,p

0 (M) ⊆ W 2,p(M).

Finally, using the Meyers-Serrin type result, Theorem 3.5, joint with Cau-
chy–Schwarz again, yields that

W 2,p(M) ⊆ W̃ 2,p(M)

and the chain of equalities is completed. □

Accordingly, we have the following new counterexample.

Corollary 4.9. — Let (M, g) be a complete Riemannian manifold
where, for some 1 < p < +∞, the inclusion of W 2,p

0 (M) in W 2,p(M) is
strict. We know from [79] that, at least for p ⩾ 2, such a manifold exits.
Its volume is finite and its curvature growths more than quadratically (like
r4). Then, on this manifold, (CZ)(p) must be violated.

Remark 4.10. — The previous discussion shows that finding counterex-
amples to second order density results is harder than finding counterexam-
ples to Calderón–Zygmund inequalities. On the other hand, from the purely
Calderón–Zygmund viewpoint, a nice feature of Example 3.11 and Theo-
rem 4.1 is that the violating sequence of compactly supported functions is
rather explicit. This is useful in some instances, see again [79].
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5. Lp-Hessian estimates in C∞
c : the local-to-global

approach

In order to extend on a manifold, with appropriate adjustments, the
classical integral inequalities enjoyed by the Euclidean space (or by other
model geometries) there is a classical strategy that moves from local con-
siderations to the desired global result via a gluing procedure.

When specified to Calderón–Zygmund, this strategy is articulated in the
following steps.

(A) On “small” balls of a complete manifold, where the metric is C1

controlled, we have the validity of (CZ)(p):
(A.1) either by transplanting the Euclidean estimate (soft)
(A.2) or by proving directly (CZ)(p) on the manifold (hard).

(B) Lifting Euclidean inequalities may give rise to first order (gradient)
terms that we have to get rid of.

(C) If the intersection multiplicity of the balls is uniformly controlled,
then, we can sum up the local inequalities and conclude the validity
of the global one.

Remark 5.1. — This method is robust enough to encompass Lipschitz
maps u : (M, g) → (N, g) between complete manifolds with positive har-
monic radii. As we shall see in Section 5.6, this gives rise to a quantitative
nonlinear CZ(p) that, in case of compact manifolds, can be applied to
isometric immersions in the same spirit of Section 3.2.

Let’s implement the strategy step by step.

5.1. Controlling the metric coefficients in small balls

In a coordinate system ϕ = (x1, · · · , xm) where each coordinate function
is harmonic, the local expression of the Laplace–Beltrami operator is purely
second order and displays a 0th order dependence on the metric coefficients.
This follows from the fact that 0 = ∆xj = gikΓj

ki where, we recall, Γi
ki

denote the Christoffel symbols with respect to ϕ. Nowadays, it is very well
understood that, generically, in these coordinates we have the maximal
regularity control on the metric coefficients under the minimal amount of
control of the curvature tensor. The game is then to estimate from below,
in terms of the geometry, the radius of the ball where such coordinates are
defined. This very classical topic goes under the name of estimates of the
harmonic radius. Beside the original papers by J. Jost and H. Karcher, [47],
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M. Anderson, [3], and Anderson and J. Cheeger, [4], we refer the reader
to [40] for a panoramic view on the subject with applications to convergence
theory. Due to its crucial role in what we are going to do, we take some time
to define everything with some degree of detail. Let us start by introducing
the following

Definition 5.2 (a pletora of radii). — Let (M, g) be a Riemannian
manifold and let x ∈ M be a fixed reference point.

– The conjugate radius at x is the supremum of all R > 0 such that
the exponential map expx : BR(0) ⊂ TpM → BR(x) is non-singular,
hence an immersion. We denote this radius by rconj(x).

– The injectivity radius at x is the supremum of all R > 0 such
that the exponential map expx : BR(0) ⊂ TpM → BR(x) is a diffeo-
morphism. We denote this radius by rinj(x) and the corresponding
coordinates are called normal coordinates at x.

– The Euclidean radius at x is the supremum of all R > 0 such
that there exists a coordinate chart ϕ : BR(x) → Rm satisfying
(a) 2−1[δij ] ⩽ [gij ] ⩽ 2[δij ].

We denote this radius by rEuc(x).
– The C0,α-harmonic radius at x, α < 1/m, is the supremum of

all R > 0 such that there exists a coordinate chart ϕ : BR(x) → Rm

satisfying
(a) 2−1[δij ] ⩽ [gij ] ⩽ 2[δij ];
(b) R1−mα∥gij∥α,BR(x) ⩽ 1;
(c) ϕ is a harmonic map, i.e., gijΓk

ij = 0 and thus ∆ = gij∂ij .
We denote this radius by rharm,C0,α(x).

– The Ck,α harmonic radius at x, k ⩾ 1, is the supremum of all
R > 0 such that there exists a coordinate chart ϕ : BR(x) → Rm

satisfying
(a) 2−1[δij ] ⩽ [gij ] ⩽ 2[δij ];

(b1)
∑

1 ⩽ |J| ⩽ k R
|J|∥∂Jgij∥0,BR(x) ⩽ 1;

(b2) Rk+α∥∂Jgij∥α,BR(x) ⩽ 1, for all |J | = k;
(b3) ϕ is a harmonic map.
We denote this radius by rharm,Ck,α(x).

– The W k,p harmonic radius at x, k ⩾ 1 and 1 < p < +∞, is the
supremum of all R > 0 such that there exists a coordinate chart
ϕ : BR(x) → Rm satisfying
(a) 2−1[δij ] ⩽ [gij ] ⩽ 2[δij ];
(b)

∑
1 ⩽ |J| ⩽ k R

|J|−m/p∥∂Jgij∥Lp(BR(x)) ⩽ 1;
(c) ϕ is a harmonic map.
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We denote this radius by rharm,W k,p(x).

Remark 5.3. — All these radii are positive and depend continuously on
the reference point. In particular, if M is compact,

r•(M) := inf
x ∈ M

r•(x) > 0.

As a matter of fact, the Euclidean and the harmonic radii are even Lipschitz
continuous. This is not generally true for the injectivity radius and the
reason is the possible presence of conjugate points. We shall come back to
this important fact in a moment.

Remark 5.4. — There is a hierarchy between the harmonic radii collected
in the above definition. Accordingly, in terms of the geometry, a lower
estimate of rharm,Ck,α is more demanding than an estimate of rharm,C0,α

which in turn, by Sobolev embeddings, is implied by a lower estimate of
rharm,W k,p . The Euclidean radius, introduced by B. Güneysu in [9, 33],
is the roughest of this family of radii as it captures only the local bi-Lip
content of the metric. Nevertheless, working within the Euclidean radius
is enough to get interesting heat kernel estimates and therefore it would
be important to understand how much geometry must be controlled to get
a lower estimate. Needless to say, every time we are able to control the
C0,α-harmonic radius (a lower Ricci bound joint with a lower injectivity
radius bound is enough) we can control the Euclidean radius but this looks
too much demanding. The example presented in Appendix A shows that
controlling the injectivity radius is not enough.

By combining curvature bounds with injectivity radius estimates gives a
uniform lower control on the harmonic (and Euclidean) radius, where the
metric coefficients are close, in the above specified sense, to the Euclidean’s.
We shall need the following important result concerning the C1,α-harmonic
radius.

Theorem 5.5 (Jost-Karcher, Anderson). — Let B2r(x) be a compact
ball in the Riemannian manifold (M, g). Assume that either one of the
following conditions is satisfied:

(a) Let i(x) := min(r, rinj(x)) > 0 and assume that rconj(y) ⩾ i(x) for
every y ∈ B i(x)

2
(x).

(b) Let i(x) := min(r, infy ∈ Br(x) rinj(y)) and assume that i(x) > 0.
Finally, let R(x) = ∥ Ric ∥L∞(B2r(x)). Then, there exists H = H(r,R(x),
i(x),m, α) > 0 such that

rharm,C1,α(x) ⩾ H.
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Remark 5.6. — As it is stated, case (a) of Theorem 5.5 may look slightly
unconventional. It represents an abstract version of Jost–Karcher estimate
in [47]. In fact, note that:

• The peculiarity of case (a) is that, from the viewpoint of the in-
jectivity radius, its value at a single point is enough to have an
estimate of the harmonic radius at that point. This is especially
relevant when the conjugate locus is empty.

• If Sect ⩽ S2 then, by Rauch comparison, rconj(y) ⩾ π/S. It follows
that Theorem 5.5(a) applies when | Sect | ⩽ S2 by choosing r ⩽
π/S. This is the original formulation by Jost-Karcher.

• If Sect ⩽ S2, r ⩽ π/S, and Br(0) ⊆ TxM is endowed with the
pull-back metric ĝ = exp∗

x g then r̂inj(0) ⩾ r. It follows that, when
| Sect | ⩽ S2, Theorem 5.5(a) applies to (Br(0), ĝ) and gives a har-
monic radius bound H > 0 depending only on S,m and α. This has
many applications in obtaining local uniform estimates of solutions
of PDEs under sectional curvature assumptions. In this respect, we
suggest the reader to take a look at the illuminating paper [15] by
G. Carron.

Remark 5.7. — Case (a) of Theorem 5.5 reduces to (b) thanks to the
following result by S. Xu, [81], showing that, in a very precise sense, the
obstruction for rinj to be 1-Lipschitz continuous is inside the conjugate
locus.

Theorem 5.8. — Let (M, g) be a Riemannian manifold. Given x ∈ M ,

rinj(y) ⩾ min
(
rinj(x), rconj(y)

)
− d(x, y), ∀ y ∈ B rinj(x)

2
(x).

In particular, if M is complete and does not contain conjugate points, then
the function x 7→ rinj(x) is 1-Lipschitz.

Remark 5.9. — Case (b) of Theorem 5.5 is the contribution of Ander-
son [3], who first realized that a sectional curvature absolute bound can be
replaced by a Ricci curvature absolute bound(7) up to paying the prize of
imposing an injectivity radius constraint not only at the needed point but
in a neighborhood of this incriminated point. Equivalently, switching from
sectional to Ricci curvature implies that the pointwise harmonic radius es-
timate depends on the behaviour of injectivity radius in a neighborhood of
the point.

(7) in the language of A. Naber we are switching from “Hessian” to “Laplacian” bounds.
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5.2. Transplanting the Euclidean inequality

The origin of everything contained in these notes is the celebrated Calde-
rón–Zygmund inequality in the Euclidean space Rn. A standard reference,
for those oriented in PDEs, is D. Gilbarg and N. Trudinger bible; see [30,
Chapter 9]. Let 1 < p < +∞. Then, there exists a constant C = C(n, p) > 0
such that

∥ Hess(u)∥Lp ⩽ C · ∥∆u∥Lp

holds for every u ∈ C∞
c (Rn). The classical proof starts from the represen-

tation formula

∂|J|

∂xJ
u(x) = −

∫
Rn

∂|J|

∂xJ
G(x− y)∆u(y)dy,

where G is the (possibly signed) Green kernel of Rn, and consists in ob-
taining estimates of the corresponding singular integrals. A completely new
approach, based on iterative estimates of the distribution function of the
Hardy-Littlewood maximal function of | Hess(u)|2 is due to L. Caffarelli,
[11, 12]. This latter proof, that works for fully nonlinear operators, later
inspired L. Wang [80], who provided an argument that looks very suitable
to be adapted on a Riemannian manifold. See Section 5.3.

The Calderón–Zygmund inequality for the Laplacian actually extends to
a uniformly elliptic operator of second order L and localizes on compact
domains without any boundary conditions. More precisely, given Ω ⋐ Rn,
let L = aij∂2

ij with ∥aij∥C1(Ω) ⩽ A, aijvivj ⩾ λ|v|2, for some constants
A, λ > 0. Accordingly, for any domain Ω1 ⋐ Ω2 ⋐ Ω, there exists a constant
C > 0 depending on Ω1,Ω2, p, m, the ellipticity constant λ > 0 and the
C1-bound A, such that

∥ Hess(u)∥Lp(Ω1) ⩽ C
{

∥u∥Lp(Ω2) + ∥Lu∥Lp(Ω2)
}

holds for every u ∈ C∞(Ω2). Since, in harmonic coordinates,

• Hess(u)ij = ∂2
iju− Γk

ij∂ku with Γk
ij = Γ(g, ∂g)

• ∆u = gij∂2
iju

• |∇u|2 = gij∂iu ∂ju,
• dvol =

√
det g dx

from these considerations we obtain that, within the C1,α harmonic radius
of x ∈ M , the Euclidean inequality transplants to M .
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Lemma 5.10 (Euclidean CZ transplanted). — Let x ∈ M and 0 < 2r <
rH(x) := rharm,C1,α(x). Then, for any u on BrH

(x):

C−1 ∥∥1Br(x) Hess(u)
∥∥

Lp

⩽
∥∥1B2r(x)u

∥∥
Lp +

∥∥1B2r(x)∆u
∥∥

Lp +
∥∥1B2r(x)∇u

∥∥
Lp

for some constant C = C(m, rH(x), p) > 0.

In the sequel, in order to glue local inequalities together, we will ask
rH to be uniform in x. This will be done by requiring suitable geometric
conditions as explained in Theorem 5.5.

5.3. Local inequality without transplantation

Transplanting is the easiest but not the unique way to produce local (CZ)
(p) on manifolds. If we have a control on the Sectional curvature, using L.
Wang ideas we can prove the following partial result. See [57].

Theorem 5.11. — Let (M, g) be a complete m-dimensional Riemann-
ian manifold. Fix x̄ ∈ M and let S = S(x̄) > 0 and D = D(x̄) > 0 be
s.t.

| Sect | ⩽ S, on B4(x̄)
and

volB2R(x) ⩽ D · volBR(x), ∀ B2R(x) ⋐ B4(x̄).
Let p ∈ (m/2,+∞)∩[2,+∞). Then, there exists a constant C = C(D,S,m,
p) > 0 such that the following inequality∫

B1(x̄)
| Hess(u)|p ⩽ C

{∫
B2(x̄)

|u|p +
∫

B2(x̄)
|∆u|p

}
.

holds for every u ∈ C2(B4(x̄)).

Remark 5.12. — Some observations on the statement are in order.
(a) The large exponent is unnatural and depends on mean value in-

equalities. We expect to be able to lower it.
(b) The sectional curvature bound is used to get locally uniform Schau-

der estimates. These are obtained from the Euclidean’s in the lifted
ball (Bπ/

√
S(0), ĝ) of Tx̄M endowed with the Riemannian metric

ĝ = exp∗
x g. This is possible because L∞ bounds of solutions of

PDEs are stable by local isometries. Moreover, as we have already
observed, Jost–Karcher estimate of the harmonic radius applies in
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this situation; see Theorem 5.5 and Remark 5.6. Finally, in har-
monic coodinates, Schauder estimates depend only on the C1-norm
of gij .

(c) Due to the previous observation one may be tempted to get directly
the Lp estimate using the lifting metric. This is forbidden because
of no control on the number of sheets of the local covering expx :
Bπ/

√
S(0) → Bπ/

√
S(x) as x moves in M . For instance this problem

happens when M = Hm/Γ with vol(M) < +∞, [57].

Outline of the Proof. — We follow closely [80]. Fix p ⩾ 2 (large enough)
and let u ∈ C2(B12(x̄)) be a solution of ∆u = f . We have to estimate
the Lp norm of | Hess(u)| on B1(x̄). The idea is to reduce the problem
to estimating (on a larger ball) the distribution function ωM(| Hess(u)|2)(x)
of the maximal function M(| Hess(u)|2)(x) of the pointwise square norm
| Hess(u)|2(x) of the Hessian of u.

Indeed, since p ⩾ 2, for any locally integrable function g one has

(5.1)
∫

B1(x̄)
|g|p =

∫
B1(x̄)

(g2)
p
2 ⩽

∫
B1(x̄)

M(|g|2)
p
2

and, for any fixed N > 1, using the Lebesgue–Stieltjies integral, it holds

(5.2)
∫

B1(x̄)
M
(
g2)p/2

= p

∫ +∞

0
tp−1ωM(g2)(t2) dt

= p

+∞∑
k=0

∫ N k+1

N k

tp−1ωM(g2)
(
t2
)

dt+ p

∫ 1

0
tp−1ωM(g2)

(
t2
)

dt

⩽ pN p−2(N − 1)
+∞∑
k=1

N pkωM(g2)
(
N 2k

)
+ p volB1(x̄).

Now, suppose we have rescaled u to u/λ in such a way that

vol
({

M
(
| Hess(u)|2

)
> N 2}) < ϵvolB1(x̄)

where the stretching factor λ > 0 is suitably chosen (depending on the
local geometry and on ∥u∥Lp + ∥f∥Lp). Then, using a mixture of PDEs
theory and a version of the the Vitali covering Lemma, it is shown that,
for a suitable choice of δ > 0 depending on the local geometry and on ϵ,
one has the following estimate:
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(5.3) ωM(| Hess(u)|2)
(
N 2k

)
⩽

k∑
i=1

ϵiωM(f2)

(
δ2 (N 2)k−i

)
+ ϵkωM(| Hess(u)|2)(1)

⩽
k∑

i=1
ϵiωM(f2)

(
δ2 (N 2)k−i

)
+ ϵkvolB1(x̄).

This is the hard analytic part of the proof. Summarizing we have obtained:

(5.4)
∫

B1(x̄)
| Hess(u)|p

⩽ C1

+∞∑
k=0

N kp
k∑

i=1
ϵiωM(f2)

(
δ2 (N 2)k−i

)
+ C2volB1(x̄)

= C1

+∞∑
i=1

ϵiN ip
+∞∑
k=i

ωM(f2)

(
δ2 (N 2)k−i

)
+ C2volB1(x̄)

= C1

+∞∑
i=1

ϵiN ip
+∞∑
k=0

ωM(f2)
(
δ2N 2k

)
+ C2volB1(x̄)

provided ϵ > 0 is small enough that ϵN p < 1 (so to have the convergence
of the geometric series). Here, we have set

(5.5) C1 ≃ N p−2(N − 1), C2 ≃ N p−2(N − 1).

On the other hand, using again the Stieltjies integral as in (5.2), we easily
obtain the lower estimate∫

B1(x̄)
M
(
f2) p

2 ⩾
pδp(N − 1)

N p

+∞∑
k=1

N kpωM(f2)
(
δ2N 2k

)
.(5.6)

Inserting into (5.4) this latter gives

(5.7)
∫

B1(x̄)
| Hess(u)|p

⪅
N 2(p−1)

δp

∫
B1(x̄)

M
(
f2) p

2 + N p−2(N − 1)volB1(x̄).

Whence, recalling the strong q − q estimate of the maximal function with
q = p

2 > 1, we conclude

(5.8)
∫

B1(x̄)
| Hess(u)|p ⪅

N 2(p−1)

δp

∫
B6(x̄)

|f |p + N p−2(N − 1)volB1(x̄).
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After scaling back the function u this latter writes in the form of an Lp

Calderón–Zygmund inequality. □

5.4. Getting rid of the gradient term

Recall that, as a drawback of the transplantation procedure, an Lp-norm
of the gradient of the function appeared. The genuine Lp control of the
gradient in terms of the function and its Laplacian will be discussed in the
last section of the paper; see Section 8. What we need here is just the the
interpolation inequalities collected in the next lemma. As we shall see in a
moment, it also has interesting “abstract” consequences.

Lemma 5.13. — Let (M, g) be an m-dimensional Riemannian manifold
and let 1 < p < +∞ be a fixed exponent.

(A) Assume 2 ⩽ p < ∞. Then, there is a constant C = C(p) > 0 such
that for any ε > 0, one has

∥∇φ∥Lp ⩽
C

ε
∥φ∥Lp + Cε∥ Hess (φ) ∥Lp ,(Ip⩾2)

for every φ ∈ C∞
c (M).

(B) Assume 1 < p ⩽ 2 and that M is complete with possibly nonempty
boundary ∂M ̸= ∅. Then, there is a constant C = C(p) > 0 such
that for any ε > 0, one has

∥∇φ∥Lp ⩽ 2C∥φ∥
1
2
Lp∥∆φ∥

1
2
Lp ⩽

C

ε
∥φ∥Lp + Cε∥∆φ∥Lp ,(Ip⩽2)

for every φ ∈ C∞
c (M).

The proof of (Ip⩾2) is elementary and relies on integration by parts and
on Young inequalities, [34]. The multiplicative inequality (Ip⩽2), instead,
is a contribution of T. Coulhon and X.-T. Duong, [25], and it is obtained
via heat-kernel estimates. Actually, in [25] only the boundaryless case is
considered. The presence of the boundary can be overcome using the com-
plete Riemannian extension construced in [68, Theorem A]. In [25] it is also
observed that (Ip⩽2) can be extended to the whole Lp-scale on complete
manifolds that, essentially, have nonnegative Ricci curvature. We shall see
in Section 8 that a lower Ricci curvature bound is enough to extend (Ip⩽2)
(but not in the form of a multiplicative inequality) to the space W̃ 2,p(M)
for every 1 < p < +∞.

By combining Lemma 5.13 with Lemma 5.10, and using also the har-
monic radius estimates of Theorem 5.5 we get the following conclusion.
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Corollary 5.14. — Let (M, g) be an m-dimensional complete Rie-
mannian manifold satisfying ∥ Ric ∥L∞ < R and rinj(M) = i > 0. Then,
there exists a radius rH = rH(m,R, i) > 0 and a constant C = C(m, rH , p)
> 0 such that the following Calderón–Zygmund inequality∥∥1Br(x) Hess(u)

∥∥
Lp ⩽ C

{∥∥1B2r(x)u
∥∥

Lp +
∥∥1B2r(x)∆u

∥∥
Lp

}
holds on any ball Br(x) with 0 < 2r < rH and for every u ∈ C∞(BrH

(x)).

Let us now point out some abstract consequences of the interpolation
inequalities. The first application gives an indication on how much Lp-
gradient estimates and Calderón–Zygmund inequalities are closely related.
For a more extensive discussion see Section 8.1.

Corollary 5.15 (Lp-estimates of the gradient in C∞
c ). — If, for some

1 < p < +∞, (CZ)(p) holds on a complete Riemannian manifold (M, g)
then

∥∇φ∥Lp ⩽ C · {∥φ∥Lp + ∥∆φ∥Lp} , ∀ φ ∈ C∞
c (M).

Moreover, if we restrict the range to 1 < p ⩽ 2, then the above estimate
holds without assuming the validity of (CZ)(p).

As a second consequence we have that the validity of (CZ)(p) depends
only on the geometry at infinity of the underlying manifold. A similar
phenomenon appears also in the setting of Sobolev inequalities [14].

Corollary 5.16 (ends and connect sum). — Let (M, g) be a complete,
non-compact Riemannian manifold and let 1 < p < +∞. Then

M satisfies (CZ)(p) ⇔ the ends of M satisfy (CZ)(p)

In particular, given complete m-dimensional Riemannian manifolds (M1,

g1) and (M2, g2)

M1,M2 satisfy (CZ)(p) ⇒ M1#M2 satisfies (CZ)(p).

5.5. Conclusion: summing up the local inequalities

One of the classical and powerful consequences of the relative volume
comparison is that complete manifolds with uniform lower Ricci bounds
are locally doubling spaces. This fact is crucial in many contexts starting
from the celebrated Gromov pre-compactness theorem. Here, we need to
record the following finite multiplicity intersection property of such spaces,
see e.g. [39].
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Lemma 5.17. — Let (M, g) be a complete, m-dimensional Riemann-
ian manifold. Assume that, for a radius r0 > 0 there exists a (doubling)
constant D = D(r0) > 0 such that

volB2r(x) ⩽ D volBr(x)

for every x ∈ M and every 0 < 2r < r0. Then, there exists a number N =
N(m,D, r0) ∈ N with the following property: having fixed 0 < 2r < r0,
there exists a sequence of balls {Br(xj)} that cover M and such that every
point of M is contained in no more than N balls of the family {B2r(xj)}.

Thanks to this property we can sum up the local inequalities obtained
in Theorem 5.11 and Corollary 5.14 and get the following global result.

Theorem 5.18. — Let (M, g) be complete Riemannian manifold of di-
mension dimM = m and let p ∈ R. Assume that either one of the following
set of assumptions is satisfied:

(5.9) ∥ Ric ∥L∞ = R < +∞, rinj(M) = i > 0, p ∈ (1,+∞)

or

(5.10) ∥ Sect ∥L∞ = S < +∞, p ∈ [2,+∞) ∩ (m/2,+∞).

Then, there exists a constant C > 0 depending on m, p and either on R, i

or on S, such that CZ(p) holds true, namely,

(5.11) ∥ Hess(φ)∥Lp ⩽ C {∥φ∥Lp + ∥∆φ∥Lp} , ∀ φ ∈ C∞
c (M).

This completes the discussion on the current status of the art on the
local-to-global approach to prove global Calderón–Zygmund inequalities
for real valued functions with compact support. As a matter of fact, as one
may have already noted, the compactness of the support is used only in
the interpolation inequalities whose validity, at the C∞

c -level, requires only
the completeness of the manifold. On the other hand, it is true that in the
bounded Ricci setting where the interpolation inequalities are applied, they
hold for Lp functions, as we shall see in Section 8.

5.6. A word on manifold-valued maps

According to [36], the local-to-global approach is robust enough to be
adapted to manifold valued Lipschitz maps between complete manifolds
with positive harmonic radii. What we get is a Calderón–Zygmund in-
equality for certain systems of PDEs. These inequalities contain a natural
nonlinear term that, in some sense, encodes the non-flatness (= finiteness
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of the harmonic radius) of the target space. When the source manifold is
compact and the map is isometric these inequalities extend, in a quantita-
tive way, to general ambient manifolds and to the whole Lp-scale, what we
saw in Section 3.2.

In order to state the main result of the section, we need to introduce some
notation. Let u : M → N be a smooth map between Riemannian manifolds
(M, g) and (N,h) of dimensions, respectively, dimM = m, dimN = n. For
any given point x̄ ∈ M we take coordinate charts (U,φ = (x1, · · · , xm))
of M centered at x̄ and (V, ψ = (y1, · · · , yn)) centered at u(x̄) such that
u(U) ⊆ V . We also fix the index convention i, j, k, · · · ∈ {1, · · · , m} and
α, β, γ, · · · ∈ {1, · · · , n}. Then, the generalized Hessian of u is the tensor
field along u that, in local coordinates, writes as

Hess(u) = Hess(u)α
ij dx

i ⊗ dxj ⊗ ∂

∂yα

∣∣∣∣
u

where

Hess(u)α
ij = ∂2

iju
α − MΓk

ij∂ku
α + NΓα

βγ(u) ∂iu
β∂ju

γ

= M Hess(uα)ij + NΓα
βγ(u) ∂iu

β∂ju
γ .

Tracing the generalizes Hessian gives rise to the generalized Laplacian, also
called the tension field, of the map u. Again, in local coordinates,

∆u = (∆u)α ∂

∂yα

∣∣∣∣
u

where
(∆u)α = ∆uα + gij NΓα

βγ(u) ∂iu
β∂ju

γ .

Note that, in case u : M → N is an isometric immersion, then Hess(u) and
∆u are, respectively, the second fundamental form and the mean curvature
vector field of the submanifold.

Using tension fields instead of the ordinary Laplacian one is naturally
led to study the corresponding Poisson equation

∆u = G

where G = Gα ∂
∂yα

∣∣∣
u

is a smooth vector field along the map u. If G ≡ 0
then u is called a harmonic map.

There is an endless literature on the existence and the regularity theory
for harmonic maps. However, very little is known in the case of a nonzero
tension field G. In fact, the only paper that we are aware of this subject
is [21] by W. Cheng and J. Jost. It investigates the existence of a solution
of the Dirichlet problem in the homotopy class of a given boundary datum,
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and in the special setting of non-positively curved target spaces. Moreover,
the first part of the same paper contains an L2-Hessian inequality that looks
pretty much like a (nonlinear) Calderón–Zygmund inequality for maps (in
homotopy classes). Similarly to what happens in the real valued case, the
study in the L2 setting is helped very much by the use of the Bochner
formula.

The inequality we are going to state is different, it has a purely C1,α

dependence, it allows the source and target manifolds to be non-compact,
and it works on the whole Lp-scale.

Theorem 5.19. — Let (M, g), (N,h) be connected Riemannian mani-
folds and set m := dim(M), n := dim(N). Assume that M is geodesically
complete and that its C1,α-harmonic radius satisfies rharm,C1,α(M) > 0.
Assume also that N is geodesically complete with C1,α-harmonic radius
rharm,C1,α(N) > 0. Then for every 1 < p < +∞, there exists a constant
C = C(p,m, n, α, rEuc(M)) > 0, which only depends on the indicated pa-
rameters, such that for all 0 < L ⩽ +∞, all L -Lipschitz continuous maps
u ∈ C2(M,N), and any o ∈ N , one has

C−1∥ Hess(u)∥Lp

⩽ ∥∆u∥Lp +r−1∥du∥Lp +rharm,C1,α(N)−1∥du∥2
L2p +r−2 ∥distN (u, o)∥Lp ,

where we have set

(5.12) r = min
(
rharm,C1,α(M),

rharm,C1,α(N)
max(L , 1) , 1

)
.

The argument roughly goes as follows: Hessian and Laplacian have a 1st
order dependence on the source and target metrics. If we can map balls
within the harmonic radius into balls with the same property then we have
a local estimate, up to using the center of the target ball as a reference origin
to compute distances. This is where it is used that the map is Lipschitz.
The actual quantitative dependence from the harmonic radii is a metter
of scaling. Finally, we have to switch from the local estimate to the global
one. This makes use of two ingredients: (a) a further observation on the
fact that the reference origin can be fixed by keeping the same structure
of the estimate; (b) the gluing procedure already described in the setting
of real valued functions. Originally, we imposed a lower Ricci condition
on the source manifold so to have a local doubling inequality that gives
the existence of the covering by balls with finite intersection multiplicity.
However, this is not needed: the local doubling follows once we have a
positive Euclidean radius and this is for free because it is even assumed
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that the C1,α-harmonic radius of M is positive. I am grateful to Gilles
Carron for this remark.

Note that, in case L = +∞ (i.e. no Lipschitz assumption is assumed
on u) the statement of Theorem 5.19 becomes nontrivial only if rharm,C1,α

(N) = +∞. Under this latter assumption, the presence of the “nonlinear”
first order term ∥du∥2

L2p disappears, and the Calderón–Zygmund inequality
takes the classical form. However, having an infinite harmonic radius means
precisely that (N,h) is the standard Euclidean space. This is shown in the
next result, whose proof follows from the very definition of C1,α-harmonic
radius via an Ascoli–Arzelà argument; see e.g. [36].

Proposition 5.20. — Let (M, g) be a complete, non-compact, con-
nected m-dimensional Riemannian manifold and assume that there exists
some o ∈ M and some α ∈ (0, 1) such that rharm,C1,α(o) = +∞. Then,
(M, g) is isometric to the Euclidean Rm.

It then follows that Theorem 5.19 actually recovers, with a quantitative
dependence on the harmonic radius of the source, what we obtained in
Theorem 5.18 under assumption (5.9).

To conclude the section let us specify Theorem 5.19 to isometric immer-
sions. The estimate we get, in the form it is stated, cannot be reduced to the
Euclidean estimate via Nash embedding because, in general, the extrinsic
geometry in Nash theorem cannot be controlled.

Corollary 5.21. — Let (M, g) be compact and assume that the am-
bient manifold (N,h) is complete, with rharm,C1,α(N) > 0. Then, for every
1 < p < +∞ and for every R ⩾ 0 such that rEuc(M) ⩾ R, there exists a
constant

C = C
(
p,dim(M),dim(N), R

)
> 0,

which only depends on the indicated parameters, such that for every iso-
metric immersion Ψ : M → N one has

(5.13) C−1∥A∥Lp

⩽ ∥H∥Lp + vol(M)1/p
(
r−1 + rharm,C1,α(N)−1 + r−2diamN (Ψ(M))

)
,

where

r = min
(
rharm, C1,α(M), rharm, C1,α(N), 1

)
.
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6. Lp-Hessian estimates in C∞
c : the functional analytic

approach

In Euclidean spaces there is (at least?) a second classical approach to
prove the Calderón–Zygmund inequality (1.2) for the Laplace operator.
This viewpoint has a deep functional analytic flavour and relies on the
Lp-boundedness of the so called Riesz transform; see [75, Chapter III, Sec-
tion 1.3].

6.1. From Euclidean space to manifolds

Let (M, g) be a complete Riemannian manifold of dimension dimM

= m ⩾ 2. Take the self-adjoint realization of the square root (−∆) 1
2 :

C∞
c (M) ⊂ L2(M) → L2(M) of the positive definite Laplace–Beltrami op-

erator −∆; see [76]. Using the very definition and integration by parts, we
get

∥dφ∥2
L2 =

∫
M

φ(−∆φ) =
∥∥∥(−∆) 1

2φ
∥∥∥2

L2
.

On noting that this chain of equalities can be re-written in the form∥∥∥d(−∆)− 1
2φ
∥∥∥

L2
= ∥φ∥L2

one is led to consider the operator

R = d(−∆)− 1
2 : C∞

c (M) ⊂ L2(M) → L2Λ1(M)

where Λ1(M) is the bundle of 1-forms endowed with the compatible metric
and connection inherited from g. The previous equality tells us that R

extends to a bounded operator on L2(M).
Suppose now that (M, g) is the standard Euclidean space (Rm, gE). Then,

it is customary to introduce R in the context of singular integrals via the
kernel

K(x) = −cm|x|−m+1,

where cm > 0 is a dimensional constant. Thus, up to identifying 1-forms
and vector fields,

R(φ)(x) = lim
ϵ → 0

∫
|y| > ϵ

∇K(y)φ(x− y) dy.

In fact, this definition extends to functions in Lp(Rm) and it turns out that
the corresponding operator is Lp-bounded. It follows that, having fixed
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1 ⩽ p < +∞, there exists a constant C = C(m, p) > 0 such that, for every
u ∈ Lp(Rm),

(6.1) ∥R(u)∥Lp ⩽ C∥u∥Lp .

Let Rj denote the jth component of R, which is defined via ∂K(y)
∂yj . Then,

on any φ ∈ C∞
c (Rm), the following crucial relation holds:

(6.2) ∂2φ

∂xi∂xj
= Ri(Rj(∆φ)).

Whence, using (6.1), we immediately obtain the desired Euclidean Calde-
rón–Zygmund inequality∥∥∥∥ ∂2φ

∂xi∂xj

∥∥∥∥
Lp

⩽ C2∥∆φ∥Lp

for every φ ∈ C∞
c (Rm). A natural question now arises:

Problem. — What we expect to survive in the general setting of com-
plete Riemannian manifolds?

There is a stream of deep works concerning the Lp-boundedness of the
Riesz transform on functions, starting from the seminal papers by Stri-
chartz, [76], where the question on manifolds was first proposed, and by D.
Bakry, [5], where a first answer in terms of Ricci lower bounds was given.
In particular, it is known that R is bounded on the whole Lp-scale, 1 <

p < +∞, if the Ricci curvature is nonnegative but intriguing (topological)
obstructions for some values of p appear as soon as we relax Ric ⩾ 0
to Ric ⩾ −K. In this case, it is still proved by Bakry in [5] that the Lp-
boundedness can be obtained for the shifted Riesz transform(8) (−∆+a)− 1

2 ,
with a > 0. Thus, for instance, if (M, g) is Ricci lower bounded and has
a spectral gap λ1(−∆) > 0 (as in the Hyperbolic space), we recover the
validity of (6.1).

On the other hand, it is clear that (6.2) must be replaced by some-
thing defined co-variantly on the underlying manifold. In fact, recall that
Hess(u) = Ddu, where D is the covariant derivative on Λ1(M) induced
by the Levi-Civita connection of M . Therefore, in order to implement a
version of (6.2) that, in a way similar to the Euclidean setting, yields the
validity of the Calderón–Zygmund inequality, we have to study covariant
versions of the Riesz transform. This topic is already present in the lit-
erature. See for instance [78] which is very relevant for the next section,

(8) Sometimes called also local Riesz transform.
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[52] by N. Lohoué, and also [55] by G. Mauceri, S. Meda and M. Vallarino.
However, apparently, many aspects still require a deeper understanding.

To the best of our knowledge, the first paper where (covariant) Riesz
transform techniques are used to get Lp-Calderón–Zygmund inequalities on
Riemannian manifolds is [34]. Further investigations are announced in [16].
We are going to briefly outline the main steps of the argument.

6.2. CZ(p), 1 < p ⩽ 2, via Riesz transform

Let (M, g) be a complete, m-dimensional Riemannian manifold satisfying
Ric ⩾ −K, K > 0. We consider the operators

d(−∆ +K + 1)− 1
2 : L2(M) → L2Λ1(M),

and
D(∆1 +K + 1)− 1

2 : L2Λ1(M) → L2T 2
0 (M),

where ∆1 = dδ + δd is the Hodge Laplacian on 1-forms, D denotes its
covariant derivative and T 2

0 (M) is the vector bundle of 2-covariant tensor
fields. Since, obviously,

−∆ +K + 1 = D∗D +K + 1 ⩾ D∗D + 1

and, by the Weitzenböck formula,

∆1 +K + 1 = D∗D + Ric +K + 1 ⩾ D∗D + 1,

we have that both these Riesz transforms are bounded in L2 by 1; see [34,
Lemma 4.17].

Now, we want to prove that, for a suitable range of values of p, there
exists a constant C > 0 such that the inequality

(CZ(p)) ∥ Hess(φ)∥Lp ⩽ C {∥∆φ∥Lp + ∥φ∥Lp}

holds for every φ ∈ C∞
c (M). Clearly, it is enough to show that

∥Ddφ∥Lp ⩽ C∥(−∆ +K + 1)φ∥Lp , on C∞
c (M).

which, in turn, is equivalent to∥∥Dd(−∆ +K + 1)−1φ
∥∥

Lp ⩽ C∥φ∥Lp .

Using the spectral calculus we write

(−∆ +K + 1)−1 = (−∆ +K + 1)− 1
2 (−∆ +K + 1)− 1

2 .
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On the other hand, it can be deduced from e.g. [28, Remark B.12], that
the following commutation rule holds:

d(−∆ +K + 1)− 1
2 = (∆1 +K + 1)− 1

2 d.

Whence, we are reduced to prove that∥∥∥D(∆1 +K + 1)− 1
2 d(−∆ +K + 1) 1

2φ
∥∥∥

Lp
⩽ C∥φ∥Lp

and this is implied by the existence of some constants C1, C2 > 0 such that∥∥∥d(−∆ +K + 1)− 1
2φ
∥∥∥

Lp
⩽ C1∥φ∥Lp(6.3) ∥∥∥D(∆1 +K + 1)− 1

2ω
∥∥∥

Lp
⩽ C2∥ω∥Lp .(6.4)

Since (6.3) holds by the fundamental work of Bakry, [5], we have obtained
the following abstract result.

Proposition 6.1. — Let (M, g) be a complete, m-dimensional Rie-
mannian manifold satisfying Ric ⩾ −K for some K > 0. Let also 1 <

p < +∞ be fixed. If the (shifted) covariant Riesz transform on 1-forms
D(∆1 +K + 1)− 1

2 is bounded in Lp then CZ(p) holds.

Thus everything boils down to detect suitable geometric restrictions on
the Riemannian manifold (M, g) in such a way that the covariant Riesz
transform is Lp. One of the most general results to our disposal, valid
in the range 1 < p ⩽ 2, is [78, Theorem 4.1] by A. Thalmaier and F.-
Y. Wang. Accordingly, we get the following theorem that, when compared
with Theorem 5.18, has the nice feature to work for small values of p
without any injectivity radius condition.

Theorem 6.2. — Let (Mm, g) be a complete, m-dimensional Riemann-
ian manifold satisfying

(a) ∥ Riem ∥L∞ + ∥DRiem ∥L∞ < +∞.
(b) |Btr(x)| ⩽ γtγetδ+rδ |Br(x)|, ∀ x ∈ M , ∀ t ⩾ 1, some γ > 0 and

0 ⩽ δ < 2.
Then, for every 1 < p ⩽ 2, there exists a constant C > 0 depending on
p,m and the geometric data such that CZ(p) holds for every φ ∈ C∞

c (M).

Remark 6.3. — Due to the restriction δ < 2, the generalized volume
doubling condition (b) excludes hyperbolic geometries.

Beside the final aspect of Theorem 6.2, that comes from a black-box
application of Thalmaier–Wang result, what we think is really relevant in
this Section is that, thanks to the connection with Lp-Calderón–Zygmund
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inequalities, we have a new perspective in the study of (both shifted and
genuine) covariant Riesz transforms.

7. From C∞
c to Lp: special cut-off functions

In Sections 5 and 6 we have encountered two different methods to prove
the validity of a-priori Lp-Hessian estimates on C∞

c functions. They in-
volve various geometric conditions on the underlying complete manifold.
Following the scheme we have outlined in the L2 case, it is now the time to
extend the results to functions in the space C∞ ∩ W̃ 2,p. Namely, the goal
is to prove that:
if we are given a solution u ∈ C∞(M) of the Poisson equation ∆u = f

with u, f ∈ Lp(M) then | Hess(u)| ∈ Lp(M) and, in fact, ∥ Hess(u)∥Lp ⩽
C{∥u∥Lp + ∥f∥Lp}, for some constant C > 0 independent of u.

7.1. Density via second order cut-offs

The most natural way to switch from C∞
c to Lp integral estimates is to

use density arguments. These, in turn, take advantage from the existence of
a special family of cut-offs. Actually, in the very special case of Calderón–
Zygmund inequalities, one can also use a somewhat different argument, as
explained in Section 7.2. But the approach via cut-offs is so important,
general and flexible in terms both of the inequalities involved and in the
underlying geometric conditions, that deserve to be dealt with in detail.

In view of our purposes, following [34, 44], we set the next

Definition 7.1. — Say that φk ∈ C∞
c (M) is a sequence of (weak(9))

Hessian cut-off functions if the following conditions are met:
(a) φk → 1, as k → +∞.
(b) ∥∇φk∥L∞ → 0, as k → +∞.
(c) ∥ Hess(φk)∥L∞ ⩽ C, for some constant C > 0.

In general, on a complete Riemannian manifold, such a sequence does
not exist. Indeed, for instance, its presence forces the Sobolev density
W 2,p(M) = C∞

c (M) but, according to Veronelli example, [79], this is not
always the case.

(9) The term “weak” refers to the fact that we do not require ∥ Hess(φk)∥L∞ → 0. When-
ever this decaying condition is satisfied we speak of (genuine) Hessian cut-off functions.
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Among all the possible cut-off functions one can construct, the most
common in Geometric Analysis are those with radial symmetry. The reason
is that their properties, in terms of control of the derivatives, can be read
directly in the geometry (say curvature restrictions) of the space. Here is a
suggestive example.

Example 7.2. — Let (M, g) be a complete, m-dimensional Riemannian
manifold satisfying ∥ Sect ∥L∞ < +∞. Assume also that rinj(o) = +∞ for
some fixed origin o ∈ M (e.g. the pole of a model manifold Mm

σ ). Set
d(x) = dist(x, o). Then:

(i) d is smooth on M \ {o} and proper.
(ii) |∇d| = 1 by the Gauss Lemma.
(iii) | Hess(d)| ⩽ C on M \ B1(o) by the Hessian comparison theorem,

[65].
Clearly, the singularity of d can be smoothed out without touching all its
good properties. For instance, take h : R⩾0 → R⩾0 such that

(j) h(s) is smooth (and even convex if we like).
(jj) h(s) = s2 for 0 ⩽ s ≪ 1 and h(s) = As+B, s ≫ 1,

and define d̃ : M → R⩾0 by

d̃(x) = h(d(x)).

Then, d̃ still satisfies (i)–(iii) on M . Finally, take any smooth function
φ : R → [0, 1] s.t. φ(t) = 1 on |t| < 1 and φ(t) = 0 on |t| > 2 and, for every
k ∈ N, let

(7.1) φk(x) = φ

(
d̃(x)
k

)
.

Then, {φk} s a sequence of genuine Hessian cut-off functions.
In the same vain, one can relax the curvature condition to | Sect |(x) ⩽

C(1 + d(x)2) and, correspondingly, replace(iii) by
(iii’) | Hess(d)|(x) ⩽ C ′d(x) on M \B1(o).

This is enough to get, via (7.1), the desired sequence of weak Hessian cut-
offs.

In the previous example, if we remove the injectivity radius condition,
things became much more complicated. Although the philosophy underly-
ing the construction of Hessian cut-offs is the same, we now have to take
care of the fact that d(x) is only Lipschitz and the smoothing procedure
requires extra nontrivial work. As far as we know, the problem was first
considered in [19] by. J. Cheeger and M. Gromov where they assume that
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the sectional curvature is bounded and use the mollifiers technique(10) . The
proof in [19] is rather sketchy but, using a completely different argument,
based on heat kernel methods, L.-F. Tam, [77], provided a complete proof.
Actually, M. Rimoldi and G. Veronelli, [71], observed that Tam proof works
as well by assuming that the Ricci tensor is bounded and the injectivity
radius has a positive lower bound. Only very recently it was realized that
bounded geometry is a too much strong restriction as the following result
by Impera–Rimoldi–Veronelli shows; [44].

Theorem 7.3. — Let (M, g) be a complete Riemannian manifold. Hav-
ing fixed a reference origin o ∈ M , let d(x) = dist(x, o). If, for some
0 ⩽ η ⩽ 1, either

(a1) | Ric |(x) ⩽ C(1 + d(x)2)η

(a2) rinj(x) ⩾ C(1 + d(x))−η

or
(b) | Sect |(x) ⩽ C(1 + d(x)2)η

for some constant C > 0, then, there exists a (distance-like) function d̃ ∈
C∞(M) such that∥∥∥d− d̃

∥∥∥
L∞

< +∞,
∥∥∥∇d̃

∥∥∥
L∞

< +∞,
∥∥∥(1 + d)−η

∣∣∣Hess(d̃)|
∥∥∥

L∞
< +∞.

Summarizing: in any of the sets of assumptions in Theorems 5.18 and 6.2
we have the existence of a sequence of (genuine) Hessian cut-off functions
{φk}. Therefore, if we are given a solution u ∈ C∞(M) of the Poisson
equation ∆u = f , with u, f ∈ Lp(M), evaluating CZ(p) along uφk we get

∥φk Hess(u)∥Lp

⩽ C∥uφk∥Lp + C
∥∥|∇φj | |∇u|

∥∥
Lp + C∥φkf∥Lp + C∥uHess(φk)∥Lp .

and taking the limits as k → +∞ gives the desired estimate

∥ Hess(u)∥Lp ⩽ C{∥u∥Lp + ∥f∥Lp}.

7.2. Density via Calderón–Zygmund

Let, again, 1 < p < +∞. If one is interested only in Calderón–Zygmund
inequalities then there is a short-cut to get the extension from C∞

c to Lp. In

(10) one of the deep insights of their proof is that, whenever you have a sectional curvature
bound and are interested in L∞ estimates then, by lifting locally to the tangent space
via the exponential map, no injectivity radius assumption is needed.
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fact, we have observed in Proposition 4.7 that, if (M, g) is a complete Rie-
mannian manifold satisfying (CZ)(p) on C∞

c (M) then the following chain
of inequalities of Sobolev spaces holds true:

W 2,p(M) = W 2,p
0 (M) = W̃ 2,p

0 (M) = W̃ 2,p(M).

Thus, given u ∈ C∞(M) satisfying u ∈ Lp(M) and ∆u ∈ Lp(M), we have:
• |∇u| ∈ Lp(M), | Hess(u)| ∈ Lp(M), so that, u ∈ C∞(M)∩W 2,p(M),

and
• there exists a sequence φk ∈ C∞

c (M) such that φk → u in W 2,p(M).
As a consequence, by applying CZ(p) to φk, gives

∥ Hess(φk)∥Lp ⩽ C {∥φk∥Lp + ∥∆φk∥Lp}

and by taking the limit as k → +∞ we conclude that this inequality extends
to u (with the same constant)

∥ Hess(u)∥Lp ⩽ C {∥u∥Lp + ∥∆u∥Lp}

as desired.

8. Lp-gradient estimates

In order to complete the picture on the global W 2,p-estimates for smooth
solutions of the Poisson equation, we need to investigate the validity of Lp-
estimates of the gradient.

8.1. The case 1 < p < +∞

We saw in Corollary 5.15 that the inequality

(8.1) ∥∇φ∥Lp ⩽ C · {∥φ∥Lp + ∥∆φ∥Lp} , ∀ φ ∈ C∞
c (M)

holds, for some universal constant C > 0, in the following situations:
• for 1 < p ⩽ 2 on any complete manifold, thanks to the interpolation

inequality (Ip⩽2);
• for p ⩾ 2 on a (possibly incomplete) manifold that supports (CZ)

(p), thanks to interpolation inequality (Ip⩾2).
On the other hand, we have already mentioned the Milatovic density result,
[37, Appendix A], stating that,

(M, g) complete ⇒ W̃ 2,p(M) = C∞
c (M)

W̃ 2,p
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in the range 1 < p ⩽ 2(11) . Whence, as we did in the L2 setting, we
immediately get from (8.1) the following:

Theorem 8.1. — Let (M, g) be a complete Riemannian manifold. Fix
1 < p ⩽ 2. Then, there exists a constant C > 0 such that, if u ∈ C∞(M)
is a solution of the Poisson equation ∆u = f with u, f ∈ Lp(M) then

∥∇u∥Lp ⩽ C · {∥u∥Lp + ∥f∥Lp} .

The case 2 < p < +∞ is more delicate and, apparently(!), requires
some restriction on the geometry. To what extent the geometry must be
controlled is not completely clear due the lack of concrete counterexamples.
To the best of our knowledge, the most general result so far known is the
following theorem by L. J. Cheng, A. Thalmaier and J. Thompson [22]. Its
proof is based on stochastic calculus.

Theorem 8.2. — Let (M, g) be a complete, m-dimensional Riemannian
manifold satisfying Ric ⩾ −K2, for some K ⩾ 0. Fix any 1 < p < +∞.
Then, there exists a constant C = C(m, p,K) > 0 such that the conclusion
of Theorem 8.1 holds true.

We are going to provide a different (and somewhat direct) argument,
based on Riesz transform estimates and deep facts in operator theory. It
was suggested to me by Stefano Meda.

Proof. — Let u ∈ W̃ 2,p(M), i.e., u,∆u ∈ Lp(M). By Milatovich den-
sity result, Theorem 4.8, there exists an approximating sequence {φj} ⊂
C∞

c (M) such that

i) u = lim
Lp

φj , ii) ∆u = lim
Lp

∆φj .

Now we recall that, under Ricci lower bounds, we have the Bakry Lp esti-
mate (6.3) of the shifted Riesz transform. On the other hand (see e.g. [5])∥∥∥(−∆ +K + 1) 1

2φj

∥∥∥
Lp

⩽ C
{√

K + 1∥φj∥Lp +
∥∥∥(−∆) 1

2φj

∥∥∥
Lp

}
.

Therefore
∥∇φj∥Lp ⩽ C ′

{
∥φj∥Lp +

∥∥∥(−∆) 1
2φj

∥∥∥
Lp

}
.

It remains to take care of the last summand. Here, since the Laplace–
Beltrami operator is sectorial, we can appeal to what is known in the lit-
erature as the moment inequality, see [38, Proposition 6.6.4] according to
which ∥∥∥(−∆) 1

2φj

∥∥∥
Lp

⩽ C ′′ ∥φj∥
1
2
Lp ∥∆φj∥

1
2
Lp

(11) Remember that p = 2 is Strichartz seminal observation [76].

VOLUME 36 (2019-2021)



174 STEFANO PIGOLA

holds with some uniform constant C ′′ > 0. Summarizing,

∥∇φj∥Lp ⩽ C ′′ {∥φj∥Lp + ∥∆φj∥Lp} .

for some constant C = C(m, p,K) > 0. This estimate implies

∇u = lim
Lp

∇φj

and, thus, it extends to j → +∞. The proof of Theorem 8.2 is completed.
□

Remark 8.3. — Tracing back the dependence of the constant C on the
parameters, and precisely looking at the paper by Bakry, [5], we see that
C depends linearly on the lower curvature bound K. This recovers (once
optimized with respect to the parameter involved) what is obtained in [22]
using stochastic methods.

We conclude this section with some abstract considerations. As we have
already remarked in the Introduction, gradient estimates are important in
themselves. However, if our interest is merely in the Calderón–Zygmund
theory, a funny phenomenon appears. Namely: for 2 < p < +∞, and on a
complete manifold (M, g), the implication

(8.2)
{

∆u = f

u, f ∈ C∞(M) ∩ Lp(M)
⇒ |∇u| ∈ Lp

is just a formal consequence of the Calderón–Zygmund inequality. To see
this, following [37], observe that, for any function u ∈ C∞(M), the inequal-
ity

∥∇u∥p
Lp ⩽ ∥u∆pu∥L1

can be obtained using integration by parts and 1st-order cut-off func-
tions. Here we have adopted the notation ∆pu = div(|∇u|p−2∇u) for
the p-Laplacian of u. Whence, unwinding the definition of ∆p and using
Young and Hölder inequalities we obtain that, for a solution u ∈ Lp of
∆u = f ∈ Lp,

(8.3) ∥∇u∥2
Lp ⩽ C∥u∥Lp

(
∥f∥Lp + (p− 2)∥ Hess(u)∥Lp

)
< +∞.

The claimed implication (8.2) now follows from (8.3) provided that the
Lp-Hessian estimate holds on M . We can summarize what we have seen in
the following

Proposition 8.4. — Let (M, g) be a complete Riemannian manifold
and let 2 ⩽ p < +∞. Assume that there exists a constant C > 0 such that

∥ Hess(u)∥Lp ⩽ C{∥u∥Lp + ∥∆u∥Lp}, ∀ u ∈ W̃ 2,p(M).
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Then, there exists a new constant C ′ > 0 such that

(8.4) ∥∇u∥Lp ⩽ C ′ · {∥u∥Lp + ∥∆u∥Lp} , ∀ u ∈ W̃ 2,p(M).

The moral of this abstract observation is that, if we are searching for
an Lp-Hessian estimate on a complete Riemannian manifold, with p ⩾ 2,
then, whatever the geometric restrictions on the manifold are, the validity
of an Lp-gradient estimate is a necessary condition. This fact could be
used to find new examples where the Lp-Hessian estimate does not hold.
“Simply” construct a complete manifold where the Lp-gradient estimate is
not satisfied.

A closely related and interesting question is how much the Lp gradient es-
timates are subordinated to the validity of Calderón–Zygmund inequalities.
In this respect, it was asked by Baptiste Devyver whether it is possible to
construct a (smooth!) complete Riemannian manifold for which (8.4) holds
true but the corresponding CZ(p) inequality (on compactly supported func-
tions) does not hold.

8.2. The endpoint case p = +∞

To complete the picture on the Lp-gradient estimates we have to dis-
cuss what happens in the (only admissible) endpoint case p = +∞. This
is not related to any Calderón–Zygmund theory but it is an important
topic (even more important) that permeates the whole Geometric Analy-
sis. The “founding fathers” in the context of manifolds with lower Ricci
bounds(12) are S.Y. Cheng and S.T. Yau [23] with their ubiquitous local
gradient estimates for positive harmonic functions. Accordingly if B2R(o)
is a relatively compact ball in the m-dimensional Riemannian manifold
(M, g) and Ric ⩾ −(m − 1)K on B2R(o) for some constant K ⩾ 0, then
every harmonic function u > 0 on B2R(o) satisfies

sup
BR(o)

|∇ log u|(x) ⩽ (m− 1)
√
K + C

R
,

where C > 0 is a dimensional constant. Actually, one can enlarge the class
of equations to ∆u = a(x)g(u) and the Ricci tensor is also allowed to decay
to −∞ provided the asymptotic behaviour of a(x) and the Ricci decay are
suitably related to each others. This is a contribution of Bianchi–Setti [8].

(12) In the Euclidean space, gradient estimates for bounded solutions of the Poisson
equation ∆u = f(u) were known to L. Modica [58].
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When the sign restriction is removed, gradient estimates for bounded so-
lutions of ∆u = g(u) were previously obtained in [69] by A. Ratto and
M. Rigoli. All these papers have in common the special structure of the
datum f in the Poisson equation ∆u = f . But in order to merely get a gra-
dient bound in terms of the solution itself, this restriction can be removed.
The following result, stated for the drifted Laplacian and with upper inte-
gral bounds, can be found in [82, Theorem 4.1] by Q. Zang and M. Zhu.
See also P. Li book [50].

Theorem 8.5. — Let (M, g) be a complete m-dimensional Riemannian
manifold satisfying Ric ⩾ −K, for someK ⩾ 0. Then, there exist a constant
C = C(m,K) > 0 and a radius r0 = r0(m,K) > 0 such that, for all balls
Br(o) with 0 < r ⩽ r0 and o ∈ M , and for all solutions u ∈ C∞(M) of

∆u = f, on Br(o)

it holds

∥∇u∥L∞(Br/2(o)) ⩽ C
{
r−2∥u∥L∞(Br(o)) + ∥f∥L∞(Br(o))

}
.

In particular, if the equation is satisfied on all of M , then we obtain the
global L∞-gradient estimate

∥∇u∥L∞ ⩽ C{∥u∥L∞ + ∥f∥L∞}.

The proof relies on Moser iteration and the constant has a somewhat
implicit dependence from the curvature bound. Using a completely different
argument, everything can be quantify if we replace the Ricci assumption
with a double-side control on the sectional curvature. In fact, we have the
following result from [35].

Theorem 8.6. — Let (M, g) be a complete Riemannian manifold, m =
dimM . Then there exists a dimensional constant C = C(m) > 0 such that,
for all x ∈ M and r > 0 such that the following holds.
If u is a smooth solution of ∆u = f in Br(x) then, for any ϵ > 0,

∥∇u∥L∞(Br/4(x)) ⩽
C

min
(

1, r,
(

∥ Sect ∥L∞(Br/2(x)) + ϵ
)−1/2

)
{

∥f∥L∞(Br/2(x)) + ∥u∥L∞(Br/2(x))
}
.
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9. Lp-gradient estimates: counterexamples?

As the question mark in the title of the Section suggests, the picture
concerning the failure of the Lp-estimates of the gradient (and consequently
also of their validity) at the moment is only sketchy (to me, obviously).

A first natural question concerns the range of values of p where it is
reasonable to consider these inequalities. According to Remark 3.12, in the
study of the validity of Lp-Hessian estimates on a complete Riemannian
manifold we have to exclude the endpoint cases p = 1 and p = +∞. Thus,
if we are mainly interested in developing a Calderón–Zygmund theory, then
the Lp-gradient estimates are just companion of the Hessian estimates,
and it is natural as well to maintain the range 1 < p < +∞. On the
other hand, the interest in the gradient estimates is independent of any
Calderón–Zygmund theory and permeates the Geometric Analysis. Since,
from the very beginning of this survey, we have decided to separate the
study of first and second order inequalities we still have to discuss what
happens if p = 1 or p = +∞. Now, we shall see in Section 8 that a lower
Ricci bound is enough to get L∞ estimates and that, furthermore, we can
improve the dependence of the constant on the geometry when we have
a double sided control on the sectional curvature. The case p = 1 looks
drastically different. The corresponding estimate should fail even in the
Euclidean space as one can try to prove using Hardy space theory [56].

In the rest of the section we shall restrict our attention to the range
1 < p < +∞. At the present state of understanding, and as we have
discussed in Sections 5.4 and 8, in order to violate the Lp-gradient esti-
mates we have the following few chances: (a) if 1 < p ⩽ 2, we have to
use a geodesically incomplete manifold; (b) if 2 < p < +∞ then: (b.1) we
can focus on manifolds that do not support either (CZ)(p) or a sequence
of cut-off functions with controlled Hessian; (b.2) otherwise we can use a
complete manifold with Ricci curvature unbounded from below. To be hon-
est, concerning this second alternative, it is not at all clear to what extent
a controlled decay at −∞ is really forbidden.

From the viewpoint of Lp functions, the trivial situation is that repre-
sented by (a). For instance, the punctured Euclidean space M = Rm \ {0},
m ⩾ 3, endowed with its flat metric does not support an Lp-gradient esti-
mate for every m

m−1 < p < m
m−2 .

To see this, let us consider the Green function of Rm with pole at 0:

G(x) = 1
r(x)m−2 .
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Since G is harmonic, the Lp-norm of its Laplacian is trivially finite. More-
over, since ∫

0+

rm−1

rp(m−2) dr < +∞,

integrating in polar coordinates shows that the singularity of G is Lp-
integrable. On the other hand,

|∇G(x)|p = (m− 2)p

r(x)p(m−1)

with ∫
0+

rm−1

rp(m−1) dr =
∫

0+

dr

r(m−1)(p−1) = +∞

showing that the singularity of |∇G| is not Lp-integrable. Thus, having
fixed any cut-off function φ ∈ C∞

c (Rm) satisfying φ = 1 near 0 we get
that the function u = φG ∈ C∞(M) violates the Lp-gradient estimate, as
expected.

Note that there is no hope to violate the Lp-gradient estimate at the C∞
c

level. Indeed, M is an open set of Rm where the Lp-gradient estimate on
C∞

c -functions holds for any 1 < p < +∞. Note also that the choice of the
flat space Rm is inessential because, given a Riemannian manifold (M, g),
in a small neighborhood of a reference point x̄ ∈ M , the metric has the
polar expression g = dr⊗dr+(r2δij +o(r2))θi ⊗θj where gSm−1 =

∑
θi ⊗θi

is the standard metric of Sm−1. Moreover, near the singularity, the Green
kernel with pole at x̄ and its gradient have exactly the same behaviour as
the Euclidean one.

10. Final result and an application

Summarizing what we have seen in the previous sections, we have the
following comprehensive (although far from being complete) picture.

Theorem 10.1 (global W 2,p regularity). — Let (M, g) be a complete,
m-dimensional Riemannian manifold and let p ∈ R. Assume that one of
the following sets of assumptions (A ), (B), (C ) or (D) is satisfied:
(A 1) Ric ⩾ −K for some K ⩾ 0;
(A 2) p = 2

or
(B1) ∥ Ric ∥L∞ < +∞;
(B2) rinj(M) > 0;
(B3) p ∈ (1,+∞);
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or
(C 1) ∥ Riem ∥L∞ + ∥DRiem ∥L∞ < +∞;
(C 2) |Btr(x)| ⩽ γtγetδ+rδ |Br(x)|, ∀ x ∈ M , ∀ t ⩾ 1, some γ > 0 and

0 ⩽ δ < 2;
(C 3) p ∈ (1, 2];

or
(D1) ∥ Riem ∥L∞ < +∞;
(D2) p ∈ [2,+∞) ∩ (m/2,+∞).

Then, there exists a constant C = C(m, p,Geom(M)) > 0 such that the
following holds.
Let u ∈ C∞(M) be a solution of the Poisson equation:

∆u = f, on M.

If u, f ∈ Lp(M) then u ∈ W 2,p(M) and

(10.1) ∥∇u∥Lp + ∥ Hess(u)∥Lp ⩽ C {∥u∥Lp + ∥f∥Lp} .

In conclusion of this survey we would like to mention a concrete situation
where this result applies.

For any given constant c ⩽ 0, let Mm+1
σc

denote the spaceform (model
manifold) of constant sectional curvature Sect ≡ c. Thus, Mm+1

σ0
= Rm+1

and Mm+1
σ−1

= Hm+1.
We consider an oriented, isometric immersion f : M → Mm+1

σc
of the com-

plete, m-dimensional Riemannian manifold (M, g) into Mm+1
σc

. Its Gauss
map is denoted by ν. A widely studied family of such hypersurfaces are
those with constant mean curvature (CMC for short) H(x) = Hν(x),
H ∈ R. By an isoperimetry argument, the volume of unit balls of M does
not collapse at infinity, namely:

inf
x ∈ M

volB1(x) = v > 0.

Thus, if we also assume that the hypersurface has bounded second funda-
mental form

|A| ∈ L∞(M)
then, by Gauss equations,

∥ Sect ∥L∞ = S < +∞.

and it follows from [20] that also the injectivity radius is lower bounded by
a positive constant:

rinj(M) = i > 0.
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Therefore, Theorem 10.1 applies and gives that, for any 1 < p < +∞,
there exists a constant C = C(m, p, S, i) > 0 such that if u ∈ C∞(M) is a
solution of the Poisson equation ∆u = f with f, u ∈ Lp(M) then the global
W 2,p estimate (10.1) is satisfied.

Now, interesting information on the extrinsic geometry of the CMC hy-
persurface f : M → Mm+1

σc
is encoded in the kernel of its stability operator,

which is the Schrödinger operator

L = ∆ +
(
|A|2 +mc

)
.

The solutions u ∈ C∞(M) of the corresponding equation

Lu = 0

give rise to the vector space J (M) of the Jacobi functions(13) of the hyper-
surface. From the previous discussion we deduce the validity of the following
result.

Corollary 10.2. — Let f : M → Mm+1
σc

be a complete, CMC hyper-
surface with bounded second fundamental form in the spaceform Mm+1

σc
of

constant curvature c ⩽ 0. Let u ∈ J (M) be a Jacobi function. If u ∈ Lp(M)
for some p ∈ (1,+∞) then

∥∇u∥Lp + ∥ Hess(u)∥Lp ⩽ C∥u∥Lp < +∞.

where C > 0 is an absolute constant independent of u.

When m = 2, Mm+1
σc

= R3 and f : M → R3 is a k-unduloid, the
dimension of the space J (M) ∩ L2(M) is studied e.g. in [48], by N. Ko-
revaar, R. Kusner and J. Ratzkin, in connection with the singularities of
the moduli space of CMC surfaces. Due to the periodicity of its k-ends, a
k-unduloid satisfies the assumptions of thecorollary. Another class of CMC
hypersurfaces to which the corollary applies is that of finite total curvature
hypersurfaces. This means that∣∣∣∣A − 1

m
H
∣∣∣∣2 ∈ Lq(M),

with q ⩾ m/2. In this setting, in order to avoid nonexistence issues, one
typically asks for the validity of the compatibility condition

H2 + c ⩽ 0.

Thus, for instance, in the Euclidean space Mm+1
σc

= Rm+1, this condition
forces H = 0, i.e. f is a minimal immersion. Since, in the finite total

(13) Sometimes called Jacobi fields but this terminology may be confusing.
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curvature assumption, one has
∣∣A − 1

m H
∣∣ (x) → 0 as x → ∞, see e.g. [67],

we are still in the position to apply the corollary, as claimed.

11. A very brief account on very recent develoments

After the first draft of this survey was posted on arXiv, many important
and beautiful results on the global Calderón–Zygmund theory appeared.

11.1. Counterexamples

• In the paper [54], by using a localized version of the De Philippis-
Zimbron arguments, L. Marini and G. Veronelli are able to con-
struct a smooth, complete, m-dimensional Riemannian manifold
(M, g) with Sect > 0 on which (CZ)(p) is violated for p > m.
This, in particular, implies that there are complete manifolds with-
out (CZ)(p) where the Lp-gradient estimates hold, thus answering
in the affirmative the question asked by Devyver; see the discussion
after Proposition 8.4.

• In the subsequent paper [43], S. Honda, L. Mari, M. Rimoldi and
G. Veronelli use a clever trick to show that, actually, counterex-
amples to (CZ)(p) with Sect ⩾ 0 (and nontrivial topology) can be
obtained on the whole scale 2 < p < +∞.

• In the above mentioned [54] by Marini-Veronelli, elaborating on
the examples in [34] and [51], it is shown that (CZ)(2) may fail if
the Ricci lower bound is replaced by Sect ⩾ −λ(dist(x, o)), where
λ(t) > 0 is any increasing function such that λ(t) → +∞ as t →
+∞. More generally, they obtain counterexamples to (CZ)(p) in
any dimension m = dimM ⩾ 2, and for every 1 < p < +∞.

11.2. Positive results

• Let 1 < p < 2. In the recent preprint [7], using a mixture of prob-
abilistic techniques and heat kernel estimates in the spirit of [25],
R. Baumgarth, B. Devyver and B. Güneysu prove that the gen-
eralized volume doubling condition (C 2) in Theorem 10.1 can be
removed. As a matter of fact, they show much more than this:
namely, that a C1-bound on the Riemann tensor is enough to have
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the validity of covariant Riesz transform estimates on forms and,
as a direct consequence, of (CZ)(p). It is a striking result obtained
by J. Cao, L.-J. Cheng and A. Thalmaier in the very recent [13]
that the validity of (CZ)(p) can be proved in the sole assumption
Ric ⩾ −K.

• Let 2 < p < +∞. In the above quoted [13], Cao-Cheng-Thalmaier
are also able to prove, for the first time, the validity of (CZ)(p)
in unbounded curvature settings. More precisely, by keeping Ric ⩾
−K, they assume that | Riem |2 + |DRic |2 ⩽ H(x) where the func-
tion H(x) ⩾ 0 belongs to a certain Kato class. The proof involves
stochastic machineries. As a consequence, they can deduce a new
density result for the Sobolev space W 2,p(M); see Proposition 4.7.

Appendix A. Estimates of the Euclidean radius

This section aims to show that a lower estimate of the Euclidean radius
cannot depend solely on an injectivity radius bound (and an upper bound
of the sectional curvature).

It is known that closed hyperbolic m-dimensional manifolds may have
arbitrarily large injectivity radii [29]. Thus, given m ∈ N⩾ 2, we find a
sequence ik → +∞ such that, for every k ∈ N there exists a closed m-
dimensional Riemannian manifold Mk := (Mk, gk) with the following prop-
erties:

(1) SectMk
≡ −1.

(2) rinj(Mk) = ik.
Now, for every k ∈ N we scale the metric gk by its injectivity radius thus
obtaining a new Riemannian manifold M̃k := (Mk, g̃k = i−2

k gk) such that:

(1) S̃ectk ≡ −i2k
(2) rinj(M̃k) = 1.

Suppose now, by contradiction, that, for any m ∈ N⩾ 2 and i ∈ R> 0, there
exists a universal constant C = C(m, i) > 0 with the following property:
For every complete Riemannian manifold (M, g) of dimension dimM = m

and injectivity radius rinj(M) = i, the Euclidean radius rEuc(M) of M
satisfies rEuc(M) ⩾ C.

Specifying this inequality to the sequence M̃k we get

rEuc(M̃k) ⩾ C,
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for some constant C = C(m) > 0. This implies that, having fixed õk ∈ M̃k,
there exists a coordinate chart φ̃k : B̃C(õk) → Rm such that

2−1 · δij ⩽ (g̃k)ij ⩽ 2 · δij .

Let R = R(m) > 0 be defined by (recall that rinj(M̃k) = 1)

R = min(1, C).

Observe that
φ̃k

(
B̃R/2(õk)

)
⊆ BR/

√
2(0)

and, therefore,

vol
(
B̃R/2(õk)

)
=
∫

φ̃k

(
B̃R/2(õk)

)√det g̃k(x)dx

⩽
∫

φ̃k

(
B̃R/2(õk)

) 2m/2dx

⩽
∫
BR/

√
2(0)

2m/2dx = Cm.

On the other hand, since B̃R/2(õk) is isometric to the ball of the same
radius in Hm

−i2
k
, we have

vol
(
B̃R/2(õk)

)
= ωm

∫ R/2

0

{
i−1
k sinh(ikt)

}m−1
dt → +∞.

as k → +∞. Contradiction.

Appendix B. Poisson equation on limit spaces

The proof of Theorem 4.2 by De Philippis and Zimbrón, showing that
the Calderón–Zygmund constant cannot depend solely on a lower sectional
curvature bound, is slightly different from the original one. Indeed, rather
than harmonic function theory, it makes use of the Poisson equation on the
limit space. In the assumptions of the theorem, this limit space supports
a (non-constant) solution which is approximated by smooth solutions, of
corresponding Poisson equations, on the converging sequence.

Let

M(m,D,K) =
{(M, g) cpt Riem. manifold : dimM = m, diam(M) ⩽ D, Ric ⩾ −K} .
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Its (compact) closure in the measured Gromov–Hausdorff (mGH) topology
is denoted by M(m,D,K). Observe that, by volume comparison and the
uniform bound D of the diameter, there exists V = V (m,D,K) > 0 such
that volX ⩽ V for every X ∈ M(m,D,K).

Proposition B.1. — Let (Mk, gk, xk) ∈ M(m,D,K) be a pointed se-
quence converging in the mGH topology to a non collapsed limit space
(X,x∞, µ∞) ∈ M(m,D,K). Let also 2 ⩽ p < +∞. Then, there exist
non-constant functions uk ∈ C2(Mk), gk ∈ Lip(Mk) and u∞ ∈ W 1,2(X) ∩
Lp(X), g∞ ∈ Lp(X) such that:

(1) −
∫

Mk
gk = 0 and −

∫
X
g∞ = 0;

(2) ∆Mk
uk = gk → g∞ = ∆Xu in the strong Lp (hence L2) sense

of K. Kuwae and T. Shioya, and S. Honda, [41, Definition 1.1,
Proposition 3.31], [42, Definition 2.12]. In particular, ∥∆Mk

uk∥Lp →
∥∆Xu∞∥Lp ;

(3) uk → u in the strong W 1,2 sense, as k → +∞;
(4) ∥uk∥W 1,p ⩽ L for some constant L = L(p,m,D,K) > 0. In partic-

ular:
(a) uk → u∞ in the strong Lp (hence L2) sense and, hence, ∥uk∥Lp

→ ∥u∞∥Lp ;
(b) ∇Mkuk → ∇Xu∞ in the weak Lp (hence L2) sense.

Proof. — Since diamMk → diamX > 0 and, for any r > 0, volBMk
r (xk)

→ volBX
r (x∞), then, up to choosing k ≫ 1, we can assume that diamMk ⩾

1
2 diamX and volMk ⩾ 1

2 volX. Note also that, by volume comparison,
volBMk

r (xk) ⩽ α(r) for some (exponential like) function depending only
on m and K.

With this preparation, we choose 0 < R < 1
4 diamX such that α(R) ⩽

1
4 volX. Thus, for k ≫ 1,

volBMk

R (xk) ⩽ α(R) ⩽ 1
4volX ⩽

1
2volMk.

Next, we define fk : Mk → [0, 1] to be a Lipschitz function satisfying

i) supp(fk) ⊆ BMk

R (xk), ii) fk = 1 on BMk

R/2(xk), iii) ∥∇fk∥L∞ ⩽
2
R
,

and we note that

−
∫

Mk

fk ⩽
volBMk

R (xk)
volMk

⩽
1
2 .

Finally, we let

gk = fk − −
∫

Mk

fk.
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Clearly, by definition, −
∫

Mk
gk = 0 and ∥gk∥L∞ ⩽ 1. Moreover, gk ⩾ 1

2 on
BMk

R/2(xk) showing that, in particular, ∥gk∥L∞ ⩾ 1
2 and gk ̸≡ const. Due to

the zero mean condition this is in fact equivalent to the fact that gk ̸≡ 0.
From the uniform L∞-bound of {gk} and the uniform volume upper

bound V of {Mk} we get ∥gk∥Lq ⩽ V 1/q for every q > 1 and, therefore, there
exists a subsequence (still denoted by gk) that converges to g∞ ∈ Lp(X)
in the strong Lp (hence L2) sense. Indeed, by [41, Proposition 3.19], up to
passing to a subsequence, gk converges weakly to a function g∞ ∈ Lp(X).
On the other hand, since, by iii), {gk} are uniformly Lipschitz, then they
are asymptotically uniformly continuous in the sense of [41, Definition 3.2].
It follows from [41, Remark 3.8 and Proposition 3.32] that gk converges
in the strong Lp-sense to g∞, as claimed. In particular, by the definition
of convergence, −

∫
X
g∞ = 0 and, since ∥gk∥Lp → ∥g∞∥Lp with ∥gk∥Lp ⩾

1
2V

1/p, we deduce that g∞ is non-constant (i.e.. non-zero).
Now, let uk ∈ C2(Mk) be the (obviously non-constant) unique solution

of the Poisson equation

∆gk
uk = gk, on Mk,

satisfying

−
∫

Mk

uk = 0.

Then, by [42, Theorem 1.1], uk converges in the strong W 1,2-sense to the
unique solution u∞ ∈ W 1,2(X) of the Poisson equation

∆Xu∞ = g∞ ∈ Lp, on X

satisfying −
∫

X
u∞ = 0.

We claim that {uk} is a bounded sequence in W 1,p(Mk) and, in particu-
lar, up to passing to a subsequence, uk → u∞ strongly in the Lp sense and
∇Mkuk → ∇Xu∞ weakly in the Lp-sense. Indeed, since uk → u∞ strongly
in W 1,2 then, in particular, ∥uk∥L2 is a bounded sequence. Whence, recall-
ing that ∥gk∥Lq ⩽ V 1/q for every q > 1 and using the L∞-gradient estimates
in [82, Corollary 4.2] or [46, Theorem 3.1], we deduce that ∥∇Mkuk∥L∞ ⩽
C for some uniform constant C = C(m,D,K) > 0. This implies that
∥∇Mkuk∥Lp ⩽ C1 for a suitable constant C1 = C1(p,m,D,K) > 0. Whence,
using the Neumann–Poincarè inequality (or, again,[82, Corollary 4.2]) yields
that ∥uk∥Lp ⩽ C2 for some constant C2 = C2(p,m,D,K) > 0. It follows
that {uk} ⊂ W 1,p(Mk) is a bounded sequence, as claimed. To conclude, we
now apply the precompactness result contained in [41, Theorem 4.9]. □
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