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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 36 (2019-2021) 103-126

ON THE NOTIONS OF LOWER RICCI CURVATURE
BOUND FOR DISCRETE GRAPHS

Hervé Pajot

Abstract. — The Ricci curvature plays an important role in Riemannian ge-
ometry. The assumption that the manifold has nonnegative Ricci curvature implies
some geometric and topological constraints (For instance, the diameter of the man-
ifold is bounded and so the manifold is compact. This is the famous Bonnet–Myers
Theorem). In these notes, we present several approaches to extend this kind of
results in the setting of discrete graphs, in particular Cayley graphs of finitely
generated groups.

1. Introduction

In Riemannian geometry, there are some natural assumptions, for in-
stance:

(i) The manifold has negative sectional curvature (or more generally,
the sectional curvature has an upper bound).

(ii) The manifold has nonnegative Ricci curvature (or more generally,
the Ricci curvature has a lower bound).

It is possible to extend some of these notions in the case of continuous
metric spaces: Hadamard spaces, Alexandrov spaces, CAT-spaces (See for
instance [5] or [4]), spaces with bounded synthetic Ricci curvature in the
sense of Lott–Villani–Sturm (See [13, 22, 19] and [20]). By a continuous
space (Usually called arcwise connected spaces), we mean a metric space
(X, d) such that for any pair of points x and y in X, there exists a contin-
uous map γ : [a, b] → X so that γ(a) = x and γ(b) = y. In other words,
there is a (continuous) curve joining x and y. Most of the time, we also
have to assume that the metric space (X, d) is geodesic, in the sense that
given two points x and y in X, there exists a curve γ : [0, l] → X joining
x and y so that d(γ(s), γ(t)) = |t − s| for all s, t ∈ [0, l]. In this case, l is
equal to d(x, y).
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It is quite natural to try to extend the previous notions of “space with
controlled curvature” to the discrete setting, for instance to Cayley graphs
of finitely generated groups. This extension is far away to be straightfor-
ward, since the existence of (nice) continuous curves plays an important role
in these theories. In the case of negative sectional curvature, Gromov (and
others) developed the notion of hyperbolic groups which is quite robust.
The situation is not so clear in the case of nonnegative Ricci curvature. For
instance, one goal is to give discrete versions of these well-known results in
Riemannian geometry and geometric analysis.

Theorem 1.1 (Bonnet–Myers). — Let (M, g) be a complete Riemann-
ian manifold of dimension n ⩾ 2 such that there exists a constant α > 0 so
that for any unit tangent vector ξ of M , Ric(ξ, ξ) ⩾ (n − 1)α > 0. Then,
M is compact with diameter less than π/

√
α.

Note that this theorem concerns manifolds with a positive lower bound
for the Ricci curvature. Another way to express this result is to assume that
the Ricci curvature of M is at least that of the standard sphere Sn. Then,
the diameter of M is at most that of Sn. This is a comparison theorem in
the sense of Riemannian geometry (See [6] or [9]).

Theorem 1.2 (Buser). — Let (M, g) be a complete Riemannian mani-
fold with nonegative Ricci curvature of dimension n. Then, M supports a
Poincaré inequality, that is for any smooth function f : M → R, any ball
B in X,

−
∫

B

|f(x) − fB |dx ⩽ 2n−1diam(B) −
∫

2B

|∇f |(x)dx.

Here, fB = −
∫

B

f(x)dx = 1
V olg(B)

∫
B

f(x)dx where V olg(B) denotes the

Riemannian volume of the ball B.
The last theorem has important applications in geometric analysis (Esti-

mates of the decay of the heat kernel, boundedness of the Riesz transform,
dimension of the space of harmonic functions with polynomial growth, . . .

See [17, Chapter 4]). For a nice proof of Theorem 1.2, see [18].
In the first section, we describe what we call the discrete setting (As op-

posed to the continuous one). Then, we present three different approaches,
all of them are related to optimal transportation. They are inspired by the
Riemannian case that we will briefly discuss before going to the discrete
case.

I would like to thank Jérôme Bertrand, Gérard Besson, Gilles Courtois,
Maé Miachon-Lemeulle, Raphael Rossignol and Andrea Seppi for hepful
conversations about the topics of these notes.
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2. The setting: discrete graphs and Cayley graphs

Let G be an infinite graph. By this, we mean that G is given by an
infinite set V of vertices and by a set E of edges that join some vertices of
V .Thus, an edge is of the form (x, y) where x, y ∈ V . We say that the edge
(x, y) is oriented if x is the origin of the edge and y is the endpoint (In this
case (x, y) ̸= (y, x)). For convenience, we will assimilate (most of the time)
V to G. We will say that x and y in G are neighbours if they are related
by an edge of E (Or more precisely the corresponding vertices are related
by an edge of E). In this case, we will write x ∼ y. A path between x and
y in G is a subset of G of the form (x0, . . . , xk) where x0 = x, xk = y and
for any i = 0, . . . , k − 1, xi ∼ xi+1. A graph is connected if for all vertices
x and y, there exists a path joining x and y. We will always assume that
the graph G is connected. The geodesic distance between x and y is then
the smallest k such that there exists a path (x0, . . . , xk) in G joining x and
y. Hence, we can see G as a metric space.

At each adge (x, y), we assign a weight mxy so that mxy = myx > 0
if x ∼ y and mxy = 0 otherwise. Then, we set m(x) =

∑
y∼x mxy and

p(x, y) = mxy

m(x) (if y ∼ x). Note that, for any x ∈ G,
∑

y ∈ G p (x, y) =∑
y∼x p (x, y) = 1. Thus, the weights mxy determine a random walk on G

and p(x, y) should be seen as the probability to jump from x to y. We set
V (x, r) = m(B(x, r)) =

∑
y ∈ B(x,r) m(y) where B(x, r) is the ball (For the

geodesic distance) of center x ∈ G and radius r ∈ N∗.
For x ∈ G, denote by dx the number of neighbours of x (dx is the degree

of G at x). We say that G is locally finite if for any x ∈ G, dx is finite, and
that G is uniformly locally finite if there exists D ∈ N∗ so that dx ⩽ D for
any x ∈ G.
Basic (but useful) examples are unweighted graphs. In this case, we set
mxy = 1 for every x, y ∈ G, x ∼ y. Since the graph is equipped with weights
that are all equal to 1, this terminology of “unweighted graph” is quite
ambiguous but is often used. Thus, m(x) is the number of neighbours of x

and p(x, y) = 1
m(x) is related to the classical random walk on a graph. Note

also that V (x, r) ⩾ card(B(x, r)) since m(y) ⩾ 1 for any y ∈ B(x, r) and
that V (x, r) ⩽ Dcard(B(x, r)) if G is uniformly locally finite (with constant
D). Hence, the counting measure and the measure m are equivalent, that
is for any x ∈ G, any r > 0,

card(B(x, r)) ⩽ m(B(x, r)) ⩽ Dcard(B(x, r)).

Thus, we can also consider that G is equipped with the counting measure.
This would not change anything in what follows except some constants.

VOLUME 36 (2019-2021)
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Typical examples of unweighted (and uniformly locally finite) graphs are
given by Cayley graphs. Let (G, .) be a group. We say that G is finitely
generated if there exists a finite family, called a generating family, S =
{s1, . . . , sN } in G so that for any g ∈ G, there exist elements of S denoted
by sσ(1), . . . , sσ(M) so that g = sσ(1) . . . . . sσ(M). The infimum over the
M ∈ N such that we get this kind of decomposition is called the length of
g and is denoted by |g|. We now define the Cayley graph of G related to S

by G = (V, E) where V is the set of elements of G and the edges are of the
form (x, y) if there exists s ∈ S so that y = x.s (We then write y ∼ x). In
this case, the geodesic distance on the graph is given by d(x, y) = |x−1.y|
(Word metric). Cayley graphs are equipped with the counting measure.
We always assume that S does not contain the identity element e of G. A
generating family S is said to be symmetric if s−1 ∈ S whereas s ∈ S. This
notion will be useful in the sequel. See [8] for more details on geometric
group theory.

3. The Poincaré inequality and the Couhlon/Saloff-Coste
condition

One motivation of Coulhon and Saloff-Coste in [18] was to prove exis-
tence of isoperimetric type inequalities on discrete graphs under suitable
geometric conditions. For this, they use a Poincaré inequality which is valid
under some curvature assumptions. Thus, they get a discrete analog of The-
orem 1.2. Before giving their result, we need a couple of definitions.
Let G be an infinite (But locally finite) connected graph. If f : G → R is a
function, the length of its gradient is |∇f |(x) =

∑
y ∼ x |f(y) − f(x)|.

Remark 3.1. — Another possible definition (Often used in probability to
study random walks) is

|∇f | (x) =
(∑

y∼x

|f(x) − f(y)|2 p (x, y)
)1/2

.

A classical assumption on the weights is that there exists some p0 > 0 so
that p(x, y) ⩾ p0 whenever x, y ∈ G. If G is uniformly locally finite and
under the previous assumption, choosing one of these definitions would
change nothing but constants in what concerns Poincaré inequalities.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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We say that G satisfies the Poincaré inequality if there exist constants
C, C ′ > 0 so that∑

y ∈ B(x,n)

|f(y) − fn(x)| m(y) ⩽ Cn
∑

y ∈ B(x,C′n)

|∇f |(y)m(y)

whenever x ∈ G, n ∈ N∗ and f : G → R is a function (with finite support).
Here,

fn(x) = 1
V (x, n)

∑
y ∈ B(x,n)

f(y)m(y).

In the case of uniformly finite and unweighted graphs, we have 1 ⩽ m(y) ⩽
D and the previous Poincaré inequality is equivalent to the more classical
one: ∑

y ∈ B(x,n)

|f(y) − fn(x)| ⩽ Cn
∑

y ∈ B(x,C′n)

|∇f |(y)

where fn(x) = 1
V (x,n)

∑
y ∈ B(x,n) f(y). As we will see later, it turns out

that in a lot of examples, C ′ = 2.
We now will describe what Coulhon and Saloff-Coste (See [18]) call

graphs with positive curvature. Let G be an unweighted graph (We can
also consider weighted graphs. But for simplicty, we first restrict ourself
to the unweighted case). Fix x ∈ G and n ∈ N∗. For any pair of points
(y, z) ∈ B(x, n)2, assume that a geodesic path γyz joining y and z has
been chosen. Set Γ(x, n) = {γy,z; y, z ∈ B(x, n)}. Note that if γ ∈ Γ(x, n),
γ ⊂ B(x, 2n) by the triangle inequality. Then, define the geometric quantity
(Which depends on the choice of geodesics between two points):

K(x, n) = 1
V (x, n) max

e ∈ B(x,2n)∩E
card {γ ∈ Γ(x, n); e ∈ γ} .

We say that G is a graph with positive curvature in the sense of Coulhon–
Saloff-Coste if there exist a constant C ⩾ 0 and a choice of geodesic paths
γy,z (joining y and z in G) for all y, z ∈ B(x, n) so that K(x, n) ⩽ Cn for
any x ∈ G and any n ∈ N∗.

Example 3.2. — The Cayley graph of a finitely generated group with
polynomial growth is a graph with positive curvature in the previous sense.
Recall that a group has polynomial growth if there exists d ∈ N so that
lim supn→+∞

V (x,n)
nd < +∞ for any x ∈ G. This definition does not depend

on the set of generators S. By a famous (but difficult) result of Gromov, a
group with polynomial growth is almost nilpotent (and the converse is also
true). See for instance [21, Chapter 6]. A proof of Kleiner starts by proving
a Poincaré inequality in the same spirit as the theorems below (See [10]).

VOLUME 36 (2019-2021)
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Theorem 3.3. — Any unweighted graph with positive curvature sup-
ports a Poincaré inequality.

Proof. — If e is an oriented edge of G, we denote by e+ and e− its
endpoints. Fix x ∈ G and n ∈ N∗. Then for any y, z ∈ B(x, n), by the
triangle inequality, we have

|f(y) − f(z)| ⩽
∑

e ∈ γy,z

|f(e+) − f(e−)|

where γy,z is the geodesic joining y and z given by the curvature assump-
tion.
Hence, ∑

y,z ∈ B(x,n)

|f(y) − f(z)| ⩽
∑

y,z ∈ B(x,n)

∑
e ∈ γy,z

|f(e+) − f(e−)| .

This implies

∑
y ∈ B(x,n)

|f(y) − fn(x)| =
∑

y ∈ B(x,n)

∣∣∣∣∣∣f(y) − 1
V (x, n)

∑
z ∈ B(x,n)

f(z)

∣∣∣∣∣∣
=

∑
y ∈ B(x,n)

∣∣∣∣∣∣ 1
V (x, n)

∑
z ∈ B(x,n)

(f(y) − f(z))

∣∣∣∣∣∣
⩽

1
V (x, n)

∑
y,z ∈ B(x,n)

|f(y) − f(z)|

⩽
1

V (x, n)
∑

y,z ∈ B(x,n)

∑
e ∈ γy,z

|f(e+) − f(e−)| .

Finally, by the curvature assumption, we get

1
V (x, n)

∑
y,z ∈ B(x,n)

∑
e ∈ γy,z

|f(e+) − f(e−)|

⩽
1

V (x, n)
∑

e ∈ B(x,2n) ∩ E

card {γ ∈ Γ(x, n); e ∈ γ} |f(e+) − f(e−)|

⩽ K(x, n)
∑

y ∈ B(x,2n)

|∇f |(y)

⩽ Cn
∑

y ∈ B(x,2n)

|∇f |(y).

The proof of the Poincaré inequality is complete. □

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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We now consider the case of weighted graphs. For this, we follow the
notations of the second section. Fix first x ∈ G and n ∈ N∗. For any pair
of points (y, z) ∈ B(x, n)2, we choose a geodesic path γyz joining y and z.
Set Γx,n = {γyz, y, z ∈ B(x, n)}. We say that G is a graph with positive
curvature in the sense of Coulhon–Saloff-Coste if there exist a constant
C ⩾ 0 and a choice of geodesic paths γy,z (joining y and z in G) for all y,
z ∈ B(x, n) such that 1

V (x,n)
∑

γ ∈ Γ(x,n), e ∈ γ m(γ+)m(γ−) ⩽ Cnm(e) for
any x ∈ G, any n ∈ N∗, any e ∈ E ∩ B(x, 2n). Here, γ+ and γ− are the
endpoints of γ and m(e) = me+e− where e+ and e− are the endpoints of
the edge e. Note that in the case of unweighted graphs, this definition is
equivalent to the previous one.

Theorem 3.4. — Any weighted graph with positive curvature supports
a Poincaré inequality.

Proof. — The proof is essentially the same as in the unweighted case.
For the convenience of the reader, we repeat it. If e is an oriented edge of
G, we denote by e+ and e− its endpoints. Then for any y, z ∈ B(x, n), by
the triangle inequality, we have

|f(y) − f(z)| ⩽
∑

e ∈ γy,z

|f(e+) − f(e−)| .

Hence,∑
y,z ∈ B(x,n)

|f(y) − f(z)| m(y)m(z)

⩽
∑

y,z ∈ B(x,n)

∑
e ∈ γy,z

|f(e+) − f(e−)| m(y)m(z).

This implies∑
y ∈ B(x,n)

|f(y) − fn(x)| m(y)

=
∑

y ∈ B(x,n)

∣∣∣∣∣∣f(y) − 1
V (x, n)

∑
z ∈ B(x,n)

f(z)m(z)

∣∣∣∣∣∣m(y)

=
∑

y ∈ B(x,n)

∣∣∣∣∣∣ 1
V (x, n)

∑
z ∈ B(x,n)

(f(y) − f(z))

∣∣∣∣∣∣m(y)m(z)

⩽
1

V (x, n)
∑

y,z ∈ B(x,n)

|f(y) − f(z)| m(y)m(z)

VOLUME 36 (2019-2021)
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⩽
1

V (x, n)
∑

y,z ∈ B(x,n)

∑
e ∈ γy,z

|f(e+) − f(e−)| m(y)m(z)

Finally, by using the curvature assumption, we get∑
y,z ∈ B(x,n)

∑
e ∈ γy,z

|f(e+) − f(e−)|m(y)m(z)

⩽
∑

e ∈ B(x,2n)

∑
γ ∈ Γ(x,n), e ∈ γ

m(γ+)m(γ−) |f(e+) − f(e−)|

⩽ CnV (x, n)
∑

e ∈ B(x,2n) ∩ E

|f(e+) − f(e−)| m(e)

⩽ CnV (x, n)
∑

y ∈ B(x,2n)

|∇f |(y)m(y).

The proof of the Poincaré inequality is complete. □

We now relate this notion of positive curvature to the so-called demo-
cratic condition which was introduced in the continuous case by Lott and
Villani in their theory of synthetic Ricci curvature (See [13] or [22]). The
democratic condition in a geodesic measure space (X, d, µ) states that, for
any pair of points y and z in X, there exists a choice of a geodesic γy,z join-
ing y and z in X such that the number of such geodesics passing through
a point x ∈ X is uniformly controlled (that is, the bound does not de-
pend on x). Roughly speacking, the democratic condition means that if you
would like to travel from y to z in X, you are not obliged to pass through a
given point x ∈ X. This is a good intuitive idea of how a space with positive
curvature should look. Lott and Villani proved that a non-branching ge-
odesic measure space (X, d, µ) with nonnegative synthetic Ricci curvature
satisfies the democratic condition which implies the existence of Poincaré
inequalities.

We can give a discrete version of the result of Lott and Villani (Un-
published work with Jérôme Bertrand). Given a positive integer D, the
set of curves γ of length at most D in G is viewed as a subset of GD+1

by repeating the ending point if necessary. We will also use the following
notation: If µ is a measure on a space Y and f : X → Y is a measurable
map between the spaces X and Y , we denote by f♯µ the image measure
of µ by f . We say that G satisfies the discrete democratic condition on a
ball B = B(x, n) if there exist a constant C ⩾ 0 and a probability measure
π ∈ P(G2n) supported in the set of geodesics in G such that
(CD1) (e0, e2k)♯π = mB ⊗ mB where ei(γ) = γ(i) (Evaluation map) and

mB = 1
m(B) m|B . Here, mB ⊗ mB denotes the product measure.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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(CD2) If we set Θ(e) =
∑

γ ∈ G2k χγ(e)π(γ) for any e ∈ E where χγ is the
characteristic function of γ (namely χγ(e) = 1 if and only if the
endpoints of e are of the form γ(i), γ(i + 1)), then Θ(e) ⩽ Cn m(e)

m(B) .

Lemma 3.5. — A graph Γ with positive curvature also satisfies the dis-
crete democratic condition on any ball B of G.

Proof. — Assume that B = B(x, n) where x ∈ G and n ∈ N∗. For any
y,z ∈ B, there exists a geodesic path γxy such that for any e ∈ 2B ∩ E (As
previously, we denote by Γ(x, n) this set of “good” geodesic paths)∑

γ ∈ Γ(x,n), e ∈ γ

m(γ+)m(γ−) ⩽ Cnm(e)m(B).

Let us denote by S the map

S : B × B −→ G2n

(y, z) 7−→ γy,z
.

Then, we set π = S♯mB ⊗ mB . By definition, we have

(e0, e2n)♯π = mB ⊗ mB

and
π(γy,z) = m(y)m(z)

m(B)2 but π(γ) = 0 otherwise.

By using π, the discrete democratic condition is clearly satisfied:∑
γ ∈ G2n

χγ(e)π(γ) ⩽
∑

γ ∈ Γ(x,n), e ∈ γ

m(γ+)m(γ−)
m(B)2

⩽ C
nm(e)
m(B) . □

Lemma 3.6. — Every graph satisfying the discrete democratic condition
on any ball (with a uniform constant) satisfies a Poincaré inequality.

Proof. — Fix a ball B = B(x, n) in G. Let f be a map on G. We start
with the following equality

f(y) − f(z)

= 1
π({γ; γ(0) = y, γ(2n) = z})

∑
{γ;γ(0)=y,γ(2n)=z}

(
f(γ(0))−f(γ(2n))

)
π(γ).

Now, by using

|f(γ(0)) − f(γ(2n))| ⩽
2n−1∑
i=0

|f(γ(i) − f(γ(i + 1))|

VOLUME 36 (2019-2021)
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we get

|f(y) − f(z)| ⩽ 1
π ({γ; γ(0) = y, γ(2n) = z; })∑

γ ∈ (e0,e2n)−1(y,z)

∑
e ∈ E ∩ 2B

|f(e+) − f(e−)| χγ(e)π(γ).

By the democratic condition (CD1), π({γ; γ(0) = y, γ(2n) = z}) =
m(y)m(z)

m(B)2 . So, summing the above inequality over y and z yields∑
y,z ∈ B

|f(y) − f(z)| m(y)m(z)

⩽
∑

γ

∑
e ∈ E ∩ 2B

|f(e+) − f(e−)| χγ(e)π(γ)m(y)m(z).

Hence, by using Fubini theorem and the democratic condition (CD2), we
get∑

y, z ∈ B

|f(y) − f(z)| m(y)m(z) ⩽ Cnm(B)
∑

e ∈ E ∩ 2B

|f(e+) − f(e−)| m(e)

⩽ Cnm(B)
∑

y ∈ 2B

|∇f |(y)m(y)

and the proof is complete since∑
y ∈ B(x,n)

|f(y) − fn(x)| m(y)

⩽
1

V (x, n)
∑

y ∈ B(x,n)

∑
z ∈ B(x,n)

|f(y) − f(z)| m(y)m(z)

= 1
m(B)

∑
y ∈ B

∑
z ∈ B

|f(y) − f(z)| m(y)m(z). □

4. Optimal transportation and the approach of Ollivier

The starting point of Ollivier’s work (See [14]) is the following nice obser-
vation which gives an intuitive idea of the meaning of the Ricci curvature.
Let (M, g) be a Riemannian manifold. Consider x ̸= y in M and r > 0
small enough (For instance, r ⩽ d(x, y)/10). Denote by x (Respectively y)
a generic point in B(x, r) (Respectively in B(y, r)). If M has nonegative
Ricci curvature, the distance d(x, y) is less or equal in average than d(x, y).
This can be see by using Jacobi fields and parallel transport. The idea of
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Ollivier was to formalize this notion in an abstract setting by using optimal
transportation, more precisely the Wasserstein distance between probabil-
ity measures

Let (X, d) be a Polish space (That is, a complete and separable metric
space). A random walk m on X is a family of probability measures mx on
X for any x ∈ X so that

(i) The measure mx depends continuously on the points x ∈ X (With
respect to the weak topology);

(ii) The measures mx have finite moment, that is there exists a point
O ∈ X (and hence for any point O in X) so that

∫
d(0, y)dmx(y) <

∞ for every x ∈ X.
The Ricci curvature R(x, y) of (X, d, m) along the pair of points (x, y)

of X is given by

R(x, y) = 1 − W1(mx, my)
d(x, y)

where W1 is the L1-Wasserstein distance. Recall that if µ and ν are two
probabilities measure on X, the L1-Wasserstein distance between µ and ν

is defined by

W1(µ, ν) = infσ

∫
X×X

d(x, y)dσ(x, y)

where the infimum is taken over all the probability measures σ on X × X

so that σ(A×X) = µ(A) and σ(X ×A) = ν(A) whenever A ⊂ X is a Borel
set. By the Kantorovich duality, we also have

W1(µ, ν) = sup
f

(∫
fdµ −

∫
fdν

)
where the supremum is taken over all the 1-Lipschitz functions f : X → R
(That is |f(x) − f(y)| ⩽ d(x, y) for every x, y ∈ X). In our setting of
graphs, mx(y) = p(x, y) and thus

W1 (mx, my) = sup
f1−Lip

(∑
z∼x

f(z)p(x, z) −
∑
z∼y

f(z)p(y, z)
)

.

Example 4.1. — We come back to the case of Riemannian manifolds.
Let (M, g) be a smooth complete Riemannian manifold of dimension n.
We denote by dg the Riemmanian distance and by V olg the Riemannian
volume. Fix x ∈ M and consider two tangents vectors v and w at x. Let
ε, δ > 0. Set y = expx(δv) (where expx is the exponential map at x). If
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ũ is the tangent vector at y obtained by parallel transport of u along the
geodesic t → expx(tv), then as (ε, δ) → (0, 0), we get

dg

(
expx(εw), expy(εũ)

)
= δ

(
1 − ε2

2 S(v, w) + O
(
ε3 + δε2)) ,

where S(v, w) is the sectional curvature in the tangent plane generated by v

anf w. Consider now the Markov chain on M (depending on the parameter
ε > 0) given by

dmx(y) = 1
V olg(B(x, ε))χB(x,ε)dV olg(y).

Then, if x ∈ M , v is a tangent vector at x and y is a point on the geodesic
starting from x in the direction v, we get

R(x, y) = ε2Ric(v, v)
2(n + 2) + O

(
ε3 + ε2dg(x, y)

)
if dg(x, y) is small enough and where Ric is the classical Ricci curvature
tensor. This example is taken from [14]. Note also that the scaling by ε2

comes from the fact that Riemannian manifolds are locally Euclidean up
to second order.

Example 4.2. — If G = [0, 1]N is the discrete cube equipped with the
Haming distance (the length of an edge is one) and the lazy random walk
m, that is mx(x) = p(x, x) = 1/2 and mx(y) = p(x, y) = 1

2N if y ∼ x. Then,
R(x, y) = 1/N if x ∼ y. We now sketch a proof of this statement (See [15]
for more details). Without loss of generality, we assume that x = (0, . . . , 0)
and y = (0, 1, 0, . . . , 0). For any i ⩾ 2, we denote by xi (Respectively yi)
the neighbour of x (Respectively of y) such that the i-coordinate of x

(Respectively of y) is switched. Thus, the measure mx (Respectively the
measure my) is supported on the set {x, y, x2, . . . , xN } (Respectively on
the set {y, x, y2, . . . , yN }). Consider now the following coupling between
mx and my:

– for i ⩾ 2, move xi to yi. It is possible since mx(xi) = my(yi) = 1
2N .

– Since mx(x) = 1
2 and mx(y) = 1

2N , move 1
2 − 1

2N of the mass of
mx(x) to y.

– 1
2N of the mass of mx(x) remains at the same place x.

With this coupling, we get R(x, y) ⩾ 1/N . It turns out that this coupling is
optimal. To see this, consider the function f : G → {0, 1} so that the image
f(z) of z ∈ G is the first coordinate of z. Thus, f is 1-Lipschitz and f(x) =
0, f(y) = 1. By using the function, we get that W1(mx, my) ⩾ 1−1/N and
thus R(x, y) ⩽ 1/N .
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We say that the graph G has nonnegative Ricci curvature in the sense
of Ollivier if for every x ∈ G, every y ∈ G, R(x, y) ⩾ 0.

For any x ∈ X, we define the jump of the random walk (mx)x ∈ X at x by
J(x) = W1(δx, mx) where δx is the Dirac measure at x. We now give a (very
weak) discrete version of the Bonnet-Myers theorem (See Theorem 1.1 for
a statement in the Riemannian setting).

Theorem 4.3. — Let X be a Polish space and let (mx)x ∈ X be a ran-
dom walk on X. Assume that there exists α > 0 so that R(x, y) ⩾ α for all
x, y ∈ X. Then,

d(x, y) ⩽ J(x) + J(y)
R(x, y)

In particular, diamX ⩽ 2 supx∈X J(x)
α .

Proof. — We have W1(mx, my) ⩽ d(x, y)(1 − R(x, y)), W1(δx, mx) =
J(x) and W1(δy, my) = J(y). Hence, by the triangle inequality, W1(δx, δy) ⩽
J(x) + J(y) + d(x, y)(1 − R(x, y)). Since d(x, y) = W1(δx, δy), we can easily
conclude. □

We now consider the case of Cayley graphs (We follow here the presenta-
tion of [3]). So, let G be a finitely generated group and let S be a symmetric
generating familly of G (That does not contain the identity element e of
G). For any x ∈ G and any r > 0, set Sr(x) = {y ∈ G; |x−1y| = r} and
Br(x) = {y ∈ G; |x−1y| ⩽ r}. Recall that |x−1y| is the word distance be-
tween x and y. In the special case x = e, we write for simplicity Sr = Sr(e)
and Br = Br(e).

If x ∈ G, it is quite natural to consider the random walk mx given by
the uniform law on the neighbours (That is, the probabiliy to jump from x

to one of its neighbours is 1/|S| where |S| denotes the cardinal of S). With
the same notations as above, we have for x, y ∈ G,

W1(x, y) = sup
f1−lip

(
1

|S|
∑
s ∈ S

(f(xs) − f(ys))
)

⩽
1

|S|
∑
s ∈ S

d(xs, ys).

Set for x, y ∈ G and r > 0,

Sr(x, y) = 1
|Sr|

∑
w ∈ Sr

d(xw, yw) and Br(x, y) = 1
|Br|

∑
w ∈ Br

d(xw, yw).

Therefore, by the previous computation, W1(x, y) ⩽ S1(x, y). By analogy
with the definition of Ollivier, define the curvatures by

κS
r (x, y) = 1 − d(x, y)

Sr(x, y) and κB
r (x, y) = 1 − d(x, y)

Br(x, y) .
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By invariance by translation, we get κS
r (x, y) = κS

r (e, x−1y) and κB
r (x, y)

= κB
r (e, x−1y). In the sequel, we will consider only the case r = 1. As in

the approach of Ollivier, it would be interesting to look also to the case
r > 1, in particular when r is big enough to understand the geometry of G

at large scales. But, this study is quite difficult.
We set, for g ∈ G, κ(g) = κS

1 (g) and Geocon(g) = 1
|S|
∑

s ∈ S |s−1gs|.
Therefore, Geocon(g) = S1(e, g). We define the Ricci curvature of G (with
respect to S) by

κ(g) = |g| − Geocon(g)
|g|

= 1 − Geocon(g)
|g|

.

Remark 4.4. — For g ∈ G, set ϕg(x) = |x−1gx| = d(x, gx). So, we have
1

|S|
∑
x ∼ g

ϕg(x) = 1
|S|

∑
x ∼ g

[
x−1gx

∣∣ = 1
|S|

∑
s ∈ S

∣∣(gs)−1g(gs)
∣∣

= 1
|S|

∑
s ∈ S

∣∣s−1gs
∣∣ = Geocon(g).

Since κ(g) = 0 if and only if Geocon(g) = 0, it follows that κ(g) = 0
if and only if ∆ϕg(g) = 0 (That is ϕg is harmonic at g). Note also that
κ(g) = − ∆ϕg(g)

ϕg(g) and that κ(s) ⩽ 0 if s ∈ S.

It is clear that the curvature of an Abelian group G at each g ∈ G is
zero. The converse is almost true.

Theorem 4.5. — If for any x ∈ S, κ(s) = 0, then G is virtually Abelian.

Proof. — We start with some classical notations. If x ∈ G, the stabilizer
of x is given by the equivalent formulas:

Stab(x) =
{

g ∈ G; g−1xg = x
}

=
{

g ∈ G; gxg−1 = x
}

= {g ∈ G; xg = gx}
= Z(x).

Fix s ∈ S and assume that κ(s) = 0. Then, by definition, Geocon(s) =
|s| = 1 and |S| =

∑
a ∈ S |a−1sa|. Therefore, for a ∈ S, |a−1sa| = 1 and so

a−1sa ∈ S. Hence, S is stable as a set under the action of G by conjugation.
This implies that the map x → x−1sx takes a finite set of values. Since x

and y are in the same class of equivalence (With respect to Stab(s)) if and
only if they are conjugate under the action of G, Stab(s) is a subgroup of
G of finite index. Hence, for any s ∈ S, Z(s) is a subgroup of finite index
of G. Since S is a finite generating family of G, it follows that the center
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Z(G) =
⋂

s ∈ S Z(s) is a subgroup of finite index of G and is Abelian. This
completes the proof. □

The main problem of this definition of Ricci curvature for Cayley graphs
is its strong dependance with respect to the set of generators. For instance,
consider the symmetric group. The curvature at one point can vary from
−2 to 1/2 depending on the set of generators (See [3])!

5. The Bochner formula and the Bakry–Emery condition

We start with some formal definitions. Let M be a smooth complete
manifold of dimension n and let L be an operator defined on an algebra A
of functions f : M → R. Then, we define the operator “carré du champs”
for u, v ∈ A by

Γ(u, v) = 1
2 (L(uv) − uLv − vLu) .

Note that Γ(u, v) measures how far the operator L is closed to satisfy the
chain rule. Then, we set

Γ2(u, v) = 1
2 (LΓ(u, v) − Γ(Lu, v) − Γ(u, Lv)) .

To simplify notations, we set Γ(u) = Γ(u, u) and Γ2(u) = Γ2(u, u).
From now on, we consider only elliptic operators of second order L acting

on smooth fonctions on M (We also assume that L has no constant term).
In local coordinates, L can be written as

Lu(x) =
∑
i,j

gi,j(x) ∂2u

∂xi∂xj
+
∑

i

bi(x) ∂u

∂xi
,

where gi,j and bi are smooth functions. The ellipticity assumption on L im-
plies that the matrix (gi,j(x)) is a (positive and definite) quadratic form for
all x on M . Hence, we can introduce the Riemannian metric g = (gi,j(x))
which is the inverse of the matrix (gi,j(x)). We assume that M is equiped
with the Riemannian distance dg and the Riemannian volume V olg associ-
ated to g. Then, Γ(u, v) = ∇u.∇v (where ∇ is the standard gradient with
respect to g). In particular, Γ(u) = |∇u|2.

We say that the elliptic operator L satisfies the curvature-dimension
condition CD(K, N) of Bakry–Emery for some N ⩾ n and a function
K : M → R if, for any smooth function u : M → and all x ∈ M , we have

Γ2(u)(x) ⩾ 1
N

(Lu)(x)2 + K(x)Γ(u)(x).
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Note that if L satisfies CD(K, N), then L satisfies CD(K ′, N ′) for every
N ′ ⩾ N and every K ′ ⩽ K. We now investigate two basic examples. For
all of them, the function K(x) will be a constant function.

Example 5.1. — Assume that M = Rn and that L = ∆ is the usual
Laplacian:

∆u(x) =
n∑

j=1

∂2u

∂x2
j

(x)

for any smooth function u : Rn → R. Then, by elementary computations,
we get for all u, v : Rn → R,

Γ(u, v) = ⟨∇u, ∇v⟩(Where ⟨., .⟩ is the Euclidean scalar product on Rn),

L(Γ(u)) = 2

 n∑
j=1

n∑
i=1

((
∂2u

∂xi∂xj

)2

+ ∂u

∂xj

∂3u

∂2xi∂xj

) ,

Γ(u, Lu) =
n∑

j=1

n∑
i=1

(
∂u

∂xj

∂3u

∂2xi∂xj

)
,

Γ2(u) =
n∑

j=1

n∑
i=1

(
∂2u

∂xi∂xj

)2

.

By definition of the Hessian of u, we get that

Γ2(u) = ∥Hess(u)∥2
2.

By the Cauchy–Schwarz inequality, we have

|∆u|2 =
(

n∑
i=1

∂2u

∂x2
i

)

⩽ n

(
n∑

i=1

(
∂2u

∂x2
i

)2)1/2

.

⩽ nΓ2(u).

Hence, Γ2(u) ⩾
1
n

|∆u|2 and the Laplacian on Rn satisfies the CD(0, n)
condition.

Example 5.2. — We now consider a complete Riemannian manifold (M, g)
of dimension n. There is a natural generalization of the Laplacian, on M

called the Laplace–Beltrami operator that we will also denote by ∆. If we
assume that the Ricci curvature Ric is bounded by K, we get Ric(∇u, ∇u)
⩾ KΓ(u).

We recall a well-known result in Riemannian geometry.
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Theorem 5.3 (Bochner formula). — Let (M, g) be a (smooth complete)
Riemannian manifold. Then, if u : M → R is smooth, then

1
2∆|∇u|2 = g(∇∆u, ∇u) + ∥Hess(u)∥2

2 + Ric(∇u, ∇u),

where ∇u is the gradient of u with respect to g, ∥Hess(u)∥2 is the L2-norm
of the Hessian of u and Ric is the Ricci curvature tensor.

By using the terminology of Bakry–Emery, the Bochner formula can be
rewritten as follows:

(5.1) Γ2(u) = Ric(∇u, ∇u) + ∥Hess(u)∥2
2.

Hence, as in the Euclidean case, we get by the Cauchy–Schwarz inequality
that for all smooth function u : M → R

Γ2(u) ⩾ KΓ(u) + 1
n

(∆u)2,

if the Ricci curvature of M is bounded above by K. Therefore, if M is
a manifold of dimension n so that Ric ⩾ K, then the Laplace–Beltrami
operator ∆ satisfies CD(0, n). It tuns out that the converse is also true
for a manifold of dimension n. Note also that if L is a reasonable operator
(Namely a diffusion operator) on M which satisfies CD(K, n) for some
K ∈ R, then L = ∆. See [1] and [11] for more details.

Remark 5.4. — If we assume that the function u is harmonic (That is
∆u = 0), then the Bochner formula states that

1
2∆|∇u|2 = ∥Hess(u)∥2

2 + Ric(∇u, ∇u),

Remark 5.5. — The Bochner formula (By applying it to the distance
function) provides a very nice proof of the Bishop–Gromov comparison
Theorem for volumes of balls. See [9]. Note also that in the continuous
case, for most of the possible definitions of spaces with nonnegative Ricci
curvature, there exists an analog of the Bishop–Gromov theorem (See [17,
Chapter 4]). In the discrete setting, the situation is not so clear.

Remark 5.6. — If we assume that the manifold M satisfies the condition
CD(0, N) for some elliptic operator L, then M supports a Poincaré type
inequality (Unpublished joint work with Sylvestre Gallot). The proof fol-
lows the Riemannian one as in [18] but uses the comparison volume result
of [2] instead of the proof of the Bishop–Gromov Theorem (Which is based
on the Jacobi fields).

In the two previous examples, the operator ∆ satisfies CD(K, N) where
K is a lower bound for the Ricci curvature on M and N is the dimension of
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M . In general (For instance if L ̸= ∆), there is no geometric interpretation
of the parameters K and N (See below the discussion in the discrete case).

Consider now a discrete graph G equipped with the usual Laplacian ∆.
The key point is to find an analog of (5.1) in this setting. We recall some
basic definitions.

Γ(f, g)(x) = 1
2
(
∆(fg)(x) − f(x)∆g(x) − g(x)∆f(x)

)
and then define by iterating Γ:

Γ2(f, g)(x) = 1
2 (∆Γ(f, g)(x) − Γ(f, ∆g)(x) − Γ(g, ∆f)(x)

We say that the operator ∆ satisifes the curvature-dimension inequality
CD(K, N) (in the sense of Bakry–Emery) if for any function f : G → R
with finite support,

Γ2(f) ⩾ 1
N

(∆f)2 + KΓ(f).

In this case, N ∈ [1, +∞[ is an upper bound of the “dimension” of (G, ∆)
whereas K ∈ R is a lower bound of the Ricci curvature. As in the continuous
setting, it is not so easy to give a geometric interpretation of the parameters
K and N . For instance, Lin and Yau proved in [12] the following general
result (See the comments after the proof).

Theorem 5.7. —
(1) Let G be a uniformly locally graph (with constant D). Then, Γ2(f) ⩾

1
2 (∆f)2 + ( 2

D − 1)Γ(f) for any f : G → R. Hence, the Laplace oper-
ator satisfies CD( 2

D − 1, 2). This is the case when G is the Cayley
graph of a finitely generated group.

(2) Let G be a locally finite graph. Then, for any f : G → R, Γ2(f) ⩾
1
2 (∆f)2 − Γ(f). Hence, the Laplace operator satisfies CD(−1, 2).

Proof. — We will use the notation of Lin and Yau. If f : G → R, we set
∆f(x) = 1

dx

∑
y∼x(f(y) − f(x)) and |∇f |2(x) = 1

dx

∑
y∼x |f(x) − f(y)|2.

Recall that dx is the degree of G at x (See Section 2). This definition of the
Laplace operator ∆ is not the same as above, but this will not change our
discussion. The quantity |∇f |2 should be seen as the square of the length
of the gradient of f (See Section 3). The proof is a little bit technical and
will be divided into several parts. In the first one, we express Γ(f) in terms
of the operators ∆ et |∇f |2 :

Lemma 5.8. — If f : G → R, we have Γ(f) = 1
2 |∇f |2 = ∆f2

2 − f∆f.
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Proof. — Let f : G → R and let x ∈ G. Then, we have

2f∇f(x) = 2f(x) 1
dx

∑
y∼x

(f(y) − f(x))

= −2f(x)2 + 2f(x)
dx

∑
y∼x

f(y).

Hence, we get

∆f2(x) = 1
dx

∑
y∼x

(
f(y)2 − f(x)2)

= 1
dx

∑
y∼x

[
(f(y) − f(x))2 − 2f(x)2 + 2f(x)f(y)

]
= |∇f |2(x) − 2f(x)2 + 2

dx
f(x)

∑
y∼x

f(y)

= |∇f |2(x) + 2f(x)∆f(x).

So we have, Γ(f) = 1
2 ∆f2 − f∆f = 1

2 |∇f |2. □

We now estimate the Laplacian of the length of the gradient.

Lemma 5.9. — For any f : G → R and any x ∈ G, we have

∆|∇f |2(x) = 1
dx

∑
y∼x

1
dy

∑
z∼y(

(f(x) − 2f(y) + f(z))2 − 2(f(x) − 2f(y) + f(z))(f(x) − f(y))
)

.

The proof of this lemma is straightforward and and is left to the reader.
We now can use the two previous lemmas to prove Theorem 5.7. Let f :
G → R and let x ∈ G. We have to compute Γ2(f) = 1

2 (∆Γ(f)−2Γ(f, ∆f)).
We first express the Laplacian of f∆f , and then Γ(f, ∆f) :

∆(f∆f)(x) = 1
dx

∑
y∼x

(
f(y)∆f(y) − f(x)∆f(x)

)
= 1

dx

∑
y∼x

[
f(y)∆f(y) − f(y)∆f(x) + f(y)∆f(x) − f(x)∆f(x)

]
= 1

dx

∑
y∼x

[
f(y)(∆f(y) − ∆f(x)) + (f(y) − f(x))∆f(x)

]
= 1

dx

∑
y∼x

[
(f(y) − f(x))(∆f(y) − ∆f(x)) + f(x)(∆f(y) − ∆f(x))

]
+ (∆f(x))2
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= 1
dx

∑
y∼x

[
(f(y) − f(x))(∆f(y) − ∆f(x))

]
+ f(x)∆∆f(x) + (∆f(x))2

Since Γ(f, ∆f) = 1
2(∆(f∆f) − f∆∆f − (∆f)2), we get

(5.2) Γ(f, ∆f)(x) = 1
2dx

∑
y∼x

(f(y) − f(x))(∆f(y) − ∆f(x)).

We conclude by using (5.2), the definition of Γ2 and the Lemmas 5.8
et 5.9:

Γ2(f)(x) = 1
2 (∆Γ(f))(x) − 2Γ(f, ∆f)(x)))

= 1
2

[
1
2∆|∇f |2(x) − 1

dx

∑
y∼x

(
f(y) − f(x)

)(
∆f(y) − ∆f(x)

)]

= 1
2

1
dx

∑
y∼x

[
1

2dy

[∑
z∼y

(
f(x) − 2f(y) + f(z)

)2

− 2
(
f(x) − f(y)

)(
f(x) − 2f(y) + f(z)

)]
−
(
f(y) − f(x)

)(
∆f(y) − ∆f(x)

)]
= 1

4dx

∑
y∼x

1
dy

∑
z∼y

(
f(x) − 2f(y) + f(z)

)2

+ 1
2dx

∑
y∼x

(
f(y) − f(x)

) 1
dy

∑
z∼y

(
f(z) − f(y) + f(x) − f(y)

)
− 1

2dx

∑
y∼x

(
f(y) − f(x)

) [ 1
dy

∑
z∼y

(
f(z) − f(y)

)
− ∆f(x)

]

= 1
4dx

∑
y∼x

1
dy

∑
z∼y

(
f(x) − 2f(y) + f(z)

)2

− 1
2dx

∑
y∼x

(
f(y) − f(x)

)2 + ∆f(x)
2dx

∑
y∼x

(
f(y) − f(x)

)
⩾

1
4dx

∑
y∼x

(2f(x) − 2f(y))2

dy
(Consider only z = x)

− 1
2dx

∑
y∼x

(
f(y) − f(x)

)2 + 1
2(∆f(x))2

= 1
dx

∑
y∼x

1
dy

(
f(x) − f(y)

)2 − 1
2

1
dx

∑
y∼x

(
f(y) − f(x)

)2 + 1
2(∆f(x))2
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⩾

(
1
D

− 1
2

)
|∇f |2(x) + 1

2(∆f(x))2

⩾

(
2
D

− 1
)

Γ(f)(x) + 1
2(∆f(x))2

At the end, we used the fact that dy ⩽ D. Hence, G satisfies CD
( 2

D − 1, 2
)
.

If dy is not bounded, we showed that G satisfies CD(−1, 2). So, the result
of Lin and Yau means that there exist uniform bounds of the “curvature”
and of the “dimension” in the case of discrete graphs! □

Remark 5.10. — Another approach of Ricci flat graphs appears in [7].
We say that a graph has local k-frame at v ∈ V if there exist mappings
η1, . . . , ηk : N(v) → V (Where N(v) is the set of neighbours of v) so that

(i) G is k-regular.
(ii) v is adjacent to ηi(v) for any v ∈ V and any i = 1, . . . , k.
(iii) ηi(v) ̸= ηj(v) if v ∈ V and i ̸= j in {1, . . . k}.

A graph G is said to be Ricci flat if G has a local k-frame (At each v ∈ V )
so that for any i ∈ {1, . . . , k} and any vertex v ∈ V ,

k⋃
j=1

ηiηj(v) =
k⋃

j=1
ηjηi(v).

In this case, G satisfies CD(0, +∞), that is Γ2(f) ⩾ 0. For instance, the
grid Zn is Ricci flat.

We now move to the case of Cayley graphs. Let G be a finitely generated
group and lest S = {e1, . . . , eN } be a finite generating family (That does
not contain the identity element). For the moment, we do not require that
S is symmetric. Recall that if x, y ∈ G, x ∼ y if and only if there exists
ei ∈ S so that y = xei. For i = 1, . . . , N , we set ∂if(x) = f(xei) − f(x)
whenever x ∈ G and f : G → R is a function. The operators ∆, Γ and Γ2
are defined as above.

Remark 5.11. — The operator ∂i looks like a partial derivative, but is
not a derivation in the usual sense, since it does not satisfy the chain rule.
Indeed, simple computations show

∂i(fg)(x) = ∂if(x)g(x) + f(x)∂ig(x) + ∂if(x)∂ig(x).

This section is based on [16] where a discrete version of the Bochner
formula is given. We start with a simple but useful result (The proof is left
to the reader as an easy exercise).
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Proposition 5.12. — For all x ∈ G, all f , g : G → R, we have
(i) ∆f(x) =

∑N
i=1 ∂if(x).

(ii) ∂i(fg)(x) = ∂if(x)g(xei) + f(x)∂ig(x).
(iii) Γ(f, g)(x) = 1

2
∑N

i=1(∂if(x)∂ig(x)). In particular,

Γ(f) = 1
2

N∑
i=1

(∂if(x))2.

Remark 5.13. — The formula given in (i) suggests that ∂i is a second
partial derivative. (iii) gives an analog of Lemma 5.8 in the setting of Cayley
graphs.

It follows that if the groupe G is Abelian, we have

Γ2(f)(x) = 1
4

N∑
i=1

N∑
j=1

(∂i∂f f(x))2.

Assume now that the generating family S is symmetric (Note that we never
used this assumption previously). We set S = {e+

1 , . . . , e+
N , e−1

1 , . . . , e−
N }

with the convention that e−
i = (e+

i )−1. For any i = 1, . . . , N , we set
∂+

i f(x) = f(xe+
i ) − f(x) and ∂−

i f(x) = f(xe−
i ) − f(x) whenever x ∈ G

and f : G → R. Note that

∂+
i ∂−

i f(x) = f
(
xe+

i e−
i

)
−f
(
xe+

i

)
−f
(
xe−

i

)
+f(x) = −

(
∂+

i f(x) + ∂−
i f(x)

)
.

For the same reasons, ∂−
i ∂+

i f(x) = −(∂+
i f(x) + ∂f−

i f(x)) = ∂+
i ∂−

i f(x).
Hence, we get by the Cauchy-Schwarz inequality

Γ2(f) ⩾ 1
4

N∑
i=1

(
∂+

i ∂−
i f(x)2 + ∂i−∂+

i f(x)2)
⩾

1
2

N∑
i=1

(
∂+

i f(x) + ∂−
i f(x)

)2

⩾
1

2N

(
N∑

i=1
(∂+

i f(x) + ∂−
i f(x))

)2

= 1
2N

∆f(x)2.

Thus, an Abelian group G with 2N generators satisfies CD(0, 2N).

Remark 5.14. — The case of the symmetric group is still open.
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6. What is the conclusion?

We proposed and discussed in these notes several possible notions of
lower Ricci curvature bound for discrete spaces, in particular for Cayley
graphs of finitely generated groups. A natural question is which definition
is more relevant to study for instance geometry of groups (Independently
of the generating family). For the moment, the question is still open and I
expect that these notes can help to solve the problem. . .
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