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Grenoble
Volume 36 (2019-2021) 51-102

EXACT OBSERVABILITY PROPERTIES OF
SUBELLIPTIC WAVE AND SCHRÖDINGER

EQUATIONS

Cyril Letrouit

Abstract. — In this survey paper, we report on recent works concerning exact
observability (and, by duality, exact controllability) properties of subelliptic wave
and Schrödinger-type equations. These results illustrate the slowdown of prop-
agation in directions transverse to the horizontal distribution. The proofs com-
bine sub-Riemannian geometry, semi-classical analysis, spectral theory and non-
commutative harmonic analysis.

1. Introduction

1.1. Controllability and observability

The problem of (exact) controllability of PDEs, which has been inten-
sively studied in the past decades, is the following: given a manifold M , a
subset ω ⊂ M , a time T > 0 and an operator A acting on functions on M ,
the study of exact controllability consists in determining whether, for any
initial state u0 and any final state u1, there exists f such that the solution
of

(1.1) ∂tu = Au+ 1ωf, u|t=0 = u0

in M is equal to u1 at time T . Here, 1ω is the characteristic function of
ω. In other words, exact controllability holds if it is possible, starting from
any initial state, to reach any final state just acting on ω during a time T .
The general answer depends on the time T , the control set ω, the operator
A, and the functional spaces in which u0, u1 and f live. This problem is
relevant in many physical situations: typical examples are the control of
the temperature of a room by a heater, or the acoustic insulation of a room
just by acting on a small part of it.
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By duality (Hilbert Uniqueness Method, see [56]), the exact controllabil-
ity property is equivalent to some inequality of the form

(1.2) ∃ CT,ω > 0, ∀ u0, ∥u0∥2 ⩽ CT,ω

∫ T

0
∥1ωu(t)∥2dt,

where u is the solution of the adjoint equation (∂t + A∗)u = 0 with initial
datum u0 (here again, one should specify functional spaces). This is called
an observability inequality. In other words, controllability holds if and only
if any solution of (∂t+A∗)u = 0 can be detected from ω, in a “quantitative
way” which is measured by the constant CT,ω. This paper is devoted to
the study of observability for equations of wave-type, Schrödinger-type or
heat-type, i.e. we consider the equations(

∂2
tt − L

)
u = 0 (Wave-type),(1.3)

(i∂t − L)u = 0 (Schrödinger-type),(1.4)
(∂t − L)u = 0 (Heat-type)(1.5)

for various time-independent operators L on M .(1) By duality, all the ob-
servability results presented here imply exact controllability results as ex-
plained above, but we won’t state them for the sake of simplicity.

1.2. Observability of classical PDEs

Let us present a first series of results, dating back to the 1990’s, which
concern the observability problem in case M is a compact Riemannian
manifold with a metric g and with boundary ∂M ̸= ∅, L = ∆g is the
Laplace–Beltrami operator on (M, g) and the equation is one of the three
equations (1.3), (1.4) or (1.5), with Dirichlet boundary conditions u|∂M =
0. We deal with these three problems in this order, following the chronology
of the results.

Throughout this section, (M, g) is a fixed manifold with boundary ∂M ̸=
∅ and L = ∆g. In this section, the notation dx stands for the associated
Riemannian volume dx = dvolg(x).

(1) The wave equation involves a ∂2
tt term, and thus does not enter, strictly speaking, the

framework given by equation (1.1). However, it is possible to give a common framework
for all three equations, at the cost of being a bit more abstract. See [22, Section 2.3] for
a general introduction.
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1.2.1. Observability of the Riemannian wave equation

Let us start with the wave equation (1.3) with initial data (ut=0, ∂tu|t=0)
= (u0, u1) ∈ H1(M) × L2(M) and Dirichlet boundary conditions. The
energy of a solution, which is conserved along the flow, is

E(u(t)) =
∥∥∥(−∆g)

1
2u(t, ·)

∥∥∥2

L2(M)
+ ∥∂tu(t, ·)∥2

L2(M)

which is in particular equal to the initial energy ∥∇gu0∥2
L2(M) +∥u1∥2

L2(M).
Let T > 0 and ω be a measurable subset. The observability inequality reads
as follows:

(1.6) E(u(0)) ⩽ C

∫ T

0

∫
ω

|∂tu(t, x)|2 dxdt.

Note that thanks to the conservation of energy, the left hand side of (1.2)
has been replaced by the energy of the initial datum.

We set P = ∂2
tt − ∆g (which is a second-order pseudo-differential opera-

tor), whose principal symbol is

p2(t, τ, x, ξ) = −τ2 + g∗(x, ξ)

with τ the dual variable of t and g∗ the principal symbol of −∆g. In T ∗(R×
M), the Hamiltonian vector field H⃗p2 associated with p2 is given by H⃗p2f =
{p2, f}. Since H⃗p2p2 = 0, we get that p2 is constant along the integral curves
of H⃗p2 . Thus, the characteristic set C(p2) = {p2 = 0} is preserved under the
flow of H⃗p2 . Null-bicharacteristics are then defined as the maximal integral
curves of H⃗p2 which live in C(p2). In other words, the null-bicharacteristics
are the maximal solutions of

ṫ(s) = −2τ(s) ,
ẋ(s) = ∇ξg

∗(x(s), ξ(s)) ,
τ̇(s) = 0 ,
ξ̇(s) = −∇xg

∗(x(s), ξ(s)) ,
τ2(0) = g∗(x(0), ξ(0)).

It is well-known that the projection x(s) of a bicharacteristic ray (x(s), ξ(s))
traveled at speed 1 is a geodesic in M , i.e., a curve which realizes the
minimal distance between any two of its points which are close enough.

Let us also mention the fact that at the boundary of M , the above
definition of null-bicharacteristics has to be completed (yielding the so-
called Melrose–Sjöstrand flow): due to trajectories which “graze” along the
boundary, one cannot always define the null-bicharacteristics which touch
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the boundary by reflexion, and we refer the reader to [59] and [48] for more
on this subject. In these papers, a notion of “generalized bicharacteristics”
is defined, which explains how to define bicharacteristics at the boundary.
For us, this will only be useful to give a precise statement for Theorem 1.2.

Definition 1.1. — Let T > 0 and ω ⊂ M be a measurable subset. We
say that the Geometric Control Condition holds in time T in ω, and we
write (GCC)ω,T , if for any projection γ of a bicharacteristic ray traveled
at speed 1, there exists t ∈ (0, T ) such that γ(t) ∈ ω.

The following result states that the observability of (1.3) is (more or
less) equivalent to the geometric condition (GCC)ω,T . It illustrates the
finite speed of propagation for waves.

Theorem 1.2 ([7, 16, 41]). — Assume that ω ̸= ∅ is open and that
(GCC)ω,T holds. Assume also that no generalized bicharacteristic has a
contact of infinite order with (0, T ) × ∂M . Then (1.6) holds, i.e., the wave
equation (1.3) is observable in time T on ω. Conversely, if the wave equa-
tion (1.3) is observable in time T , then (GCC)T,ω holds, where ω denotes
the closure of ω.

Note that the second statement in the last theorem is not the exact
converse of the first one, since it involves the closure ω and not simply ω.
This is due to the phenomenon of grazing rays: if there exists a ray γ

which does not enter ω but which touches the boundary ∂ω, so that the
geometric control condition is not satisfied, it can however happen (notably
if the flow is “stable” close from the ray) that observability holds, see [49,
Section VI.B] for an example.

Considering solutions of (1.3) of the form eit
√
λφ where φ is an eigen-

function of −∆g corresponding to the eigenvalue λ, the following result
follows from Theorem 1.2:

Corollary 1.3. — Assume that ω ̸= ∅ is open and that there exists
T > 0 such that (GCC)ω,T holds. Then, for any eigenfunction φ of −∆g,
there holds ∫

ω

|φ(x)|2dx ⩾ C

∫
M

|φ(x)|2dx.

In particular, supp(φ) = M .

All the observability inequalities stated in this survey paper yield similar
lower bounds, but we will not state them thereafter.

Remark 1.4 (Gaussian beams). — The fact that (GCC)ω,T is a necessary
condition for observability can be understood as follows. If (GCC)ω,T does
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not hold, then let γ : [0, T ] → M be a geodesic which does not enter
ω. By compactness, there exists ε > 0 such that γ|[0,T ] does not meet
an ε-neighborhood of ω. Then, one can construct a sequence of solutions
(un)n∈ N of the wave equation whose initial energy E(un(0)) is normalized
to 1, and with energy E(u(t)) localized around γ(t) at any time t ∈ [0, T ]:
quantitatively, the energy of un outside a tubular neighborhood of γ of size
ε tends to 0 as n → +∞. This disproves the observability inequality (1.6).
The sequence (un)n∈ N, if taken as a Gaussian profile centered at a point
describing γ, is called a Gaussian beam.

1.2.2. Observability of the Riemannian Schrödinger equation

In case of the Schrödinger equation (1.4), the observability inequality
reads as follows:

(1.7) ∥u0∥2
L2(M) ⩽ C

∫ T

0

∫
ω

|u(t, x)|2dxdt.

Indeed, as for the wave equation (1.3), the L2-norm of the solution is pre-
served along the flow, so that ∥u(T )∥L2 = ∥u0∥L2 . A sufficient condition
for observability is the following:

Theorem 1.5 ([50] and [25, Appendix]). — Assume that ω ̸= ∅ is open
and that (GCC)ω,T ′ holds for some T ′ > 0. Then (1.7) holds, i.e., the
Schrödinger equation (1.4) is observable in any time T > 0 on ω.

The interplay between T ′ and T in the above result is due to the fact that
the Schrödinger equation “propagates at infinite speed” so that no matter
how large T ′ is, observability holds in any time T > 0 if (GCC)ω,T ′ holds.
This contrasts with the finite speed of propagation of the wave equation.

The converse of the above theorem, namely to find necessary conditions
on (ω, T ) for (1.7) to hold, is notoriously a difficult problem. The main
results in this direction are for the torus (see [4, 19, 42]), and in Riemannian
manifolds with negative curvature (see [28]), where (1.7) holds for any non-
empty open subset ω and any time T > 0. Indeed, it is expected that if the
geodesic flow of the background geometry is unstable, solutions of (1.4) are
more “delocalized” than those of (1.3) for example. See also the case of the
disk [3].

VOLUME 36 (2019-2021)



56 CYRIL LETROUIT

1.2.3. Observability of the Riemannian heat equation

Let us end with the heat equation. The observability inequality reads as
follows:

(1.8) ∥u(T )∥2
L2(M) ⩽ C

∫ T

0

∫
ω

|u(t, x)|2dxdt.

Theorem 1.6 ([51]). — Let ω ̸= ∅ be open and T > 0. Then (1.8)
holds, i.e., the heat equation (1.5) is observable in time T on ω.

Note that no geometric condition on ω is required in this case. This result
illustrates the infinite speed of propagation of the heat equation.

The works presented hereafter address that same problem of observability
of linear PDEs, but with focus on subelliptic PDEs, meaning that the
Laplace–Beltrami operator is replaced in these PDEs by a sub-Laplacian,
which is a subelliptic operator. The next subsection is thus devoted to
introduce the main objects of study, namely sub-Laplacians.

1.3. Sub-Riemannian geometry and sub-Laplacians

After the founding work of Lars Hörmander, and with the development
of sub-Riemannian geometry since the 1980’s, subelliptic operators have
been considered as a natural generalization of elliptic operators. In par-
ticular, sub-Laplacians, which we will define soon, are natural general-
izations of the Laplace–Beltrami operator. Therefore, the question of ob-
servability/controllability of evolution PDEs driven by sub-Laplacians has
been investigated since a decade, with a particular focus on parabolic (or
heat-type) equations. In this survey, we mainly focus on wave-type and
Schrödinger-type subelliptic equations, for which the first results appeared
in 2019.

1.3.1. Sub-Laplacians

Instead of defining subelliptic operators in full generality, we prefer here
to focus only on sub-Laplacians. The geometry naturally associated to sub-
Laplacians is called sub-Riemannian geometry. The books [1, 63] are clear
and detailed introductions to this geometry. Readers only interested in the
results of Sections 3 and 4 could skip this part, and focus on Examples 1.9
to 1.12 which are sufficient for these sections.
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Let n ∈ N∗ and let M be a smooth connected compact manifold of
dimension n with a non-empty boundary ∂M . Let µ be a smooth volume
on M .

We consider m ⩾ 1 smooth vector fields X1, . . . , Xm on M which are
not necessarily independent, and we assume that the following Lie bracket
generating (or Hörmander) condition holds (see [38]):

The vector fields X1, . . . , Xm and their iterated brackets
[Xi, Xj ], [Xi, [Xj , Xk]], etc. span the tangent space TqM at
every point q ∈ M .

We consider the sub-Laplacian ∆ defined by

(1.9) ∆ = −
m∑
i=1

X∗
i Xi =

m∑
i=1

X2
i + divµ(Xi)Xi

where the star designates the transpose in L2(M,µ) and the divergence
with respect to µ is defined by LXµ = (divµX)µ, where LX stands for the
Lie derivative. Then ∆ is hypoelliptic (see [38, Theorem 1.1]).

We set
D = Span(X1, . . . , Xm) ⊂ TM

which is called the distribution associated to the vector fields X1, . . . , Xm.
For x ∈ M , we denote by Dx the distribution D taken at point x. Note that
D does not necessarily have constant rank. When D = TM , the operator
∆ is elliptic.

We also introduce the metric g on D defined at any x ∈ M by

gx(v, v) = inf
{

m∑
i=1

u2
i

∣∣∣∣∣ v =
m∑
i=1

uiXi(x)
}
.

This is a Riemannian metric on D. We call (M,D, g) a sub-Riemannian
structure.

In the general case where D ⊊ TM , the set TM \ D can be understood
as the directions where the metric g takes the value +∞. A well-known
theorem, due to Chow and Rashevskii, asserts that any two points can be
joined by a path, i.e., a continuous function γ : [0, 1] → M with derivative
γ̇(t) contained in Dγ(t) for almost any t ∈ [0, 1]. In other words, the sub-
Riemannian distance

dg(x0, x1) = inf
{∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

∣∣∣∣ γ(0) = x0, γ(1) = x1,

γ̇(t) ∈ Dγ(t) a.s. for t ∈ [0, 1]
}

VOLUME 36 (2019-2021)
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is finite for any x0, x1 ∈ M .
When moving in a sub-Riemannian structure, D should be understood

as the “set of allowed directions for the motion”, and, although it is not
possible to move directly in directions of TM \ D, Chow–Rashevskii’s the-
orem asserts that any two points can be joined by a path. This is due to
“indirect motions”, that is, paths which describe spirals turning around a
fixed forbidden direction of TM \ D and thus advancing in this direction
(although indirectly).

Definition 1.7. — The step k is the least integer k ∈ N such that
the Lie brackets of the vector fields X1, . . . , Xm of length ⩽ k (i.e., Xi,
[Xi, Xj ], [Xi, [Xj , Xℓ]], up to length k) span the whole tangent space TM .

Remark 1.8. — More generally, the step kx can be defined at any point
x ∈ M , just by considering the Lie brackets of the vector fields X1, . . . , Xm

at point x.

1.3.2. Examples

We now give a few examples of sub-Laplacians which we shall study in
the sequel.

Example 1.9. — On M = Rx × Ry, we set ∆G = ∂2
x + x2∂2

y . This sub-
Laplacian is the so-called Baouendi–Grushin operator, sometimes unprop-
erly called simply Grushin operator (see [34, Section 11]). In this case,
X1 = ∂x, X2 = x∂y and Span(X1, X2, [X1, X2]) = TM . In particular,
D = TM outside the line {x = 0}. Also, µ is the Lebesgue measure.
The step is 2 on the line {x = 0} and 1 outside this line. Since the sub-
Riemannian structure is “Riemannian” outside this line, the Baouendi–
Grushin operator is sometimes called “almost-Riemannian”.

Example 1.10. — More generally, for γ ⩾ 0 (not necessarily an integer),
one can consider ∆γ = ∂2

x + |x|2γ∂2
y on the same manifold M = (−1, 1)x ×

Ty. For γ ∈ N, the step is k = γ + 1. Note that for γ /∈ N, the Hörmander
condition is not necessarily satisfied, but we include this class of examples
in our study since our computations allow to handle them.

Example 1.11. — Given d ∈ N∗, one can also define a sub-Laplacian
arising from the Heisenberg group Hd of dimension 2d + 1. Recall that
the Heisenberg group Hd is R2d+1 endowed with the group law (x, y, z) ·
(x′, y′, z′) := (x+x′, y+y′, z+z′ + 1

2
∑d
j=1(xjy′

j−x′
jyj)), where x, y, x′, y′ ∈
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Rd and z, z′ ∈ R. Taking the left-quotient of Hd by the discrete subgroup
Γ̃ = (

√
2πZ)2d × πZ, we obtain a compact manifold M = Γ̃\Hd. Let

Xj = ∂xj
− yj

2 ∂z, Yj = ∂yj
+ xj

2 ∂z, for j = 1, . . . , m,

which are left-invariant and can be thus considered as vector fields on the
quotient manifold M . Finally, we define the sub-Lapacian

∆Γ̃\Hd =
d∑
j=1

X2
j + Y 2

j .

Since [Xj , Yj ] = ∂z for any j, the step is 2.

Example 1.12. — Heisenberg-type groups are generalizations of Heisen-
berg groups. They were first introduced in [44], where the fundamental
solution of the associated sub-Laplacians, which is particularly simple, was
computed. These groups give rise to step 2 sub-Riemannian structures,
which center can be of dimension p > 1 (whereas the center of the Heisen-
berg group Hd is of dimension 1). For a precise definition, see [44].

Example 1.13. — Contact sub-Laplacians are associated to sub-Rieman-
nian structures of “contact type”. We assume that the vector fields X1, . . . ,

Xm span a distribution D which is a contact distribution over M , i.e., M
has odd dimension n = 2m + 1 and there exists a 1-form α on M with
D = Ker(α) and α ∧ (dα)m ̸= 0 at any point of M . Then, for any smooth
volume µ, the sub-Laplacian ∆ is called a contact sub-Laplacian. A typical
example is given by the Heisenberg sub-Laplacian ∆Γ̃\Hd defined above.

Example 1.14. — Magnetic Laplacians are also sub-Laplacians, and we
focus here on a simple family of examples. In R3 with coordinates x, y, z,
we consider the two vector fields X1 = ∂x − Ax(x, y)∂z and X2 = ∂y −
Ay(x, y)∂z where Ax, Ay are functions which do not depend on z. The
magnetic Laplacian is then ∆ = X2

1 +X2
2 . The 1-form A = Axdx+Aydy is

called the connection form, and the 2-form B = dA is called the magnetic
field. The modulus |b| of the function b defined by the relation B = b dx∧dy
is called the intensity of the magnetic field. Taking a quotient or assuming
that |b| is bounded away from 0 at infinity, it is possible to assume that the
sub-Laplacian ∆ has a compact resolvent.

Magnetic Laplacians were used by Montgomery to prove the existence of
abnormal minimizers in some sub-Riemannian geometries (see [61]): abnor-
mal minimizers are local minimizers of the sub-Riemannian distance which
are not projections of bicharacteristics, and they show up for example as
zero curves of the intensity b. Subsequently, Montgomery showed that the

VOLUME 36 (2019-2021)



60 CYRIL LETROUIT

spectral asymptotics of ∆ are very different depending on the fact that b
vanishes or not (see [62]).

Remark 1.15. — In all the previous examples, as well as in the general
definition of sub-Laplacians given above, the volume µ is assumed to be
smooth. However, one can also define sub-Laplacians for non-smooth vol-
umes µ. This is natural when the sub-Riemannian distribution is singular,
for example D = Span(∂x, x∂y) in R2 (see Example 1.9), since the Popp
measure, which is an intrinsic measure defined on sub-Riemannian man-
ifolds (see [63, Section 10.6]), “blows up”. The associated sub-Laplacian
is then unitarily equivalent to a sub-Laplacian with smooth volume plus
a singular potential. The essential self-adjointness of some of these sub-
Laplacians has been studied for example in [13, 33, 65]. When they are
essentially self-adjoint, the controllability/observability of the associated
evolution equations can also be studied: this is an open question which we
do not address here.

1.3.3. Hypoellipticity and subellipticity

Two notions are often used to qualify the smoothing properties of sub-
Laplacians: hypoellipticity and subellipticity. Here, we briefly recall their
definitions and explain why they are not exactly equivalent.

Definition 1.16. — A (pseudo-)differential operator A with C∞ co-
efficients in M is hypoelliptic in M if for all u ∈ D′(M) and x ∈ M , if
Au ∈ C∞ near x, then u ∈ C∞ near x.

Hypoellipticity appeared naturally in the work of Kolmogorov [46] on
the motion of colliding particles when he wrote down the equation

∂tu− Lu = f where L = x∂y + ∂2
x.

Indeed, the operator L is hypoelliptic.

Definition 1.17. — A formally selfadjoint (pseudo-)differential opera-
tor A : C∞(M) → C∞(M) of order 2 is said to be subelliptic if there exist
s, C > 0 such that

(1.10) ∥u∥2
Hs(M) ⩽ C

(
(Au, u)L2(M) + ∥u∥2

L2(M)

)
for any u ∈ C∞(M).

Under the Lie bracket condition (Hörmander condition), Hörmander was
able to prove that any sub-Laplacian ∆ is hypoelliptic (see [38] and [37,
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Chapter 2]). His proof relies on the fact that ∆ is subelliptic; indeed,
the optimal s in (1.10) is 1/k, where k is the step of the associated sub-
Riemannian structure, as proved by Rotschild and Stein [67, Theorem 17
and estimate (17.20)].

Conversely, note that an hypoelliptic “sum of squares” (i.e., an operator
of the form (1.9) which is hypoelliptic) does not necessarily satisfy the
Lie bracket assumption : given a smooth function a : R → R vanishing
at infinite order at 0 but with a(s) > 0 for s ̸= 0, the sub-Laplacian
∆ = ∂2

x1
+ a(x1)2∂2

x2
on R2

x1x2
is hypoelliptic although the Lie bracket

condition fails (see [29, 64]).
Let us finally mention that some operators A satisfy the property that if

Au is real-analytic, then u is real-analytic: they are called analytic hypoel-
liptic. The so-called Trèves conjecture describes a possible link between an-
alytic hypoellipticity of an operator and the absence of abnormal geodesics
(see [69] for the conjecture and [2] for more recent results).

We end this section with a remark concerning the compactness of the
manifolds M considered in this survey.

Remark 1.18. — Because of the physical nature of the problems studied
in control/observability theory, most equations are set in compact mani-
folds, and this survey is no exception to the rule. Even in Example 1.11, the
sub-Laplacian is defined on a compact quotient of the Heisenberg group.
Together with the hypoellipticity, the compactness of the underlying man-
ifold implies that all sub-Laplacians have a compact resolvent, and thus a
discrete spectrum, which is of importance for deriving properties of eigen-
functions from observability results.

1.4. Observability of subelliptic PDEs: known results

This section is devoted to stating results which were previously known in
the literature about controllability/observability of subelliptic PDEs. All
PDEs we consider are well-posed in natural energy spaces which we do not
systematically recall.

1.4.1. Subelliptic heat equations

Let us start with the result proved in [9], which concerns the heat equa-
tion (1.5) where L = ∆γ is the Baouendi–Grushin-type operator intro-
duced in Example 1.10 for some γ > 0. The open subset of observation
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ω ⊂ (−1, 1)×T they consider is a vertical strip of the form (a, b)×T where
0 < a < b < 1. The observability inequality is (1.8), with the modification
that u runs over the set of solutions of (1.5) with L = ∆γ . The authors
prove the following result, to be compared with Theorem 1.6:

Theorem 1.19 ([9]). — Let γ > 0 and ω be as above. Then
• If γ ∈ (0, 1), then for any T > 0, (1.8) holds;
• If γ = 1, i.e., ∆γ = ∆G, then there exists T0 > 0 such that (1.8)

holds if T > T0 and does not hold if T < T0;
• If γ > 1, then, for any T > 0, (1.8) fails.

The proof is done by establishing an infinite number of Carleman in-
equalities for operators −∂2

x + n2x2 for n ∈ Z, with bounds uniform in n.
It was proved in [11] that in case γ = 1, the minimal time T0 is equal to
a2/2. The fact that T0 ⩾ a2/2 can be seen by using explicit eigenfunctions
of ∆γ .

Koenig studied the observability of (1.5) with L = ∆G, but for another
geometry of the observation set ω: this time, it is a horizontal band of the
form (−1, 1) × I where I is a proper open subset of T.

Theorem 1.20 ([45]). — Let ω = (−1, 1) × I where I is a proper open
subset of T. Then (1.8) fails for any T > 0.

The proof of this result relies on the non-observability of the 1D half-heat
equation ∂tu+ |∂x|u = 0 and on techniques coming from complex analysis
where the complex variable is z = e−t+iy.

Although the observability properties of the heat equation driven by
general hypoelliptic operators are still mysterious, we list here a few works
addressing this question. The recent works [10, 26, 57] continue and gen-
eralize the analysis of [9, 45] on the control of the Baouendi–Grushin heat
equation. Besides, [8] establishes the existence of a minimal time of ob-
servability, as in the second point of Theorem 1.19, for the heat equation
driven by the Heisenberg sub-Laplacian of Example 1.11. Let us finally
mention the papers [12, 24] which also deal with controllability issues for
hypoelliptic parabolic equations.

The above theorems show that some subelliptic heat equations driven
by simple sub-Laplacians require a larger time to be observable than the
usual Riemannian heat equation, and observability may even fail in any
time T > 0. As we will see, this is a very general phenomenon for subel-
liptic evolution PDEs, at least for subelliptic wave equations and (some)
Schrödinger-type equations. Our results, however, do not shed any new
light on subelliptic heat equations, which remain mysterious due to the
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lack of “general arguments” which would not rely on geometric and ana-
lytic features specific to very particular sub-Laplacians.

1.4.2. Approximate observability of subelliptic wave equations

Recently, Laurent and Léautaud have studied the observability of subel-
liptic PDEs but with focus on a different notion of observability, called
approximate observability. As before, all their results can also be stated
in terms of a dual notion, called approximate controllability, however we
will not even mention these dual statements in order to keep the presenta-
tion as simple as possible. Their results are quantitative, in the sense that
they give explicit bounds on the observability constants involved in their
results. The next paragraphs are devoted to a brief description of their
results (see [47]).

Let us consider a sub-Laplacian ∆ as in (1.9), with associated sub-
Riemannian structure (M,D, g). We assume that the manifold M (assumed
to have no boundary, ∂M = ∅), the smooth volume µ and the vector fields
Xi are all real-analytic. For s ∈ R, the operator (1 − ∆) ℓ

2 is defined thanks
to functional calculus, and we consider the (adapted) Sobolev spaces

Hℓ(M) =
{
u ∈ D′(M), (1 − ∆) ℓ

2u ∈ L2(M)
}

with the associated norm ∥u∥Hℓ(M) = ∥(1 − ∆)ℓu∥L2(M).

Theorem 1.21 ([47]). — Let ω be a non-empty open subset of M and
let T > supx∈M dg(x, ω). We denote by k the step. Then there exist c, C > 0
such that

(1.11) ∥(u0, u1)∥H1×L2 ⩽ CecΛ
k

∥u∥L2((−T,T )×ω),

with Λ = ∥(u0, u1)∥H1×L2

∥(u0, u1)∥L2×H−1

for any solution u of (1.3) on (−T, T ) such that (u, ∂tu)|t=0 = (u0, u1) ∈
H1(M) × L2(M).

The above result in particular implies unique continuation (and quantifies
it): if u = 0 in (−T, T ) × ω, then u ≡ 0. However, the exact observabil-
ity inequality which we shall study (see (1.6)) is a stronger requirement
than (1.11), in particular because of the presence of the “typical frequency
of the datum” Λ in the right-hand side of (1.11). The techniques used for
proving Theorem 1.21 are totally different from those we present in the
sequel.
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1.4.3. Observability of Baouendi–Grushin Schrödinger equation

The recent work [17] is the first one dealing with exact observability of
a subelliptic Schrödinger equation, namely in the context of Example 1.9
with observation set given by a horizontal band as in Theorem 1.20. The
observability inequality is given by (1.7), except that u runs over the solu-
tions of the Schrödinger equation driven by the sub-Laplacian ∆G.

Theorem 1.22 ([17]). — Let M = (−1, 1) × T and ∆G = ∂2
x + x2∂2

y .
Let ω = (−1, 1) × I where I ⊊ T is open. Let T0 = L (ω) be the length
of the maximal sub-interval contained in T \ I. Then, the observability
property (1.7) holds if and only if T > T0.

Again, this result shows the existence of a minimal time of control which
contrasts with the “infinite speed of propagation” illustrated by Theo-
rem 1.5. Its proof relies on fine semi-classical analysis, somehow linked
to that explained in Section 3.

1.4.4. Non-linear subelliptic PDEs

Although this survey is devoted only to linear subelliptic PDEs, let us
say a word about non-linear subelliptic PDEs. To study the cubic Grushin–
Schrödinger equation i∂tu − (∂2

x + x2∂2
y)u = |u|2u, Patrick Gérard and

Sandrine Grellier introduced a toy model, the cubic Szegö equation, which
models the interactions between the nonlinearity and the lack of disper-
sivity of the linear equation (already visible in the above Theorem 1.22).
In [36], they put this equation into a Hamiltonian framework and classify
the traveling waves for this equation, which are related to the traveling
waves resulting from (3.3).

1.5. Main results

Let us now present the main results contained in the papers [32, 54, 55].
All of them illustrate the slowdown of propagation of evolution PDEs in
directions transverse to the distribution: in a nutshell, observability will
require a much longer time to hold for subelliptic PDEs than for elliptic
ones, and this time will be even larger when the step k is larger. All our
results are summarized in Figure 1.5.3 at the end of this section.
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1.5.1. First main result

We start with a general result on subelliptic wave equations. Let ∆ =
−

∑m
i=1 X

∗
i Xi be a sub-Laplacian, where the adjoint denoted by star is

taken with respect to a volume µ on M , which is assumed to have a bound-
ary ∂M ̸= ∅.(2) Consider the wave equation

(1.12)


∂2
ttu− ∆u = 0 in (0, T ) ×M

u = 0 on (0, T ) × ∂M,(
u|t=0, ∂tu|t=0

)
= (u0, u1)

where T > 0, and the initial data (u0, u1) are in an appropriate energy
space. The natural energy of a solution u of the sub-Riemannian wave
equation (1.12) is

E(u(t, ·)) = 1
2

∫
M

|∂tu(t, x)|2 +
m∑
j=1

(Xju(t, x))2

 dµ(x).

Observability holds in time T0 on ω if there exists C > 0 such that for any
solution u of (1.12),

(1.13) E(u(0)) ⩽ C

∫ T0

0

∫
ω

|∂tu(t, x)|2 dµ(x)dt.

Theorem 1.23 ([54]). — Let T0 > 0 and let ω ⊂ M be a measurable
subset. We assume that there exist 1 ⩽ i, j ⩽ m and x in the interior of
M\ω such that [Xi, Xj ](x) /∈ Span(X1(x), . . . , Xm(x)). Then the subellip-
tic wave equation (1.12) is not exactly observable on ω in time T0.

Theorem 1.23 can be reformulated as follows: subelliptic wave equations
are never observable. The condition that there exist 1 ⩽ i, j ⩽ m and x

in the interior of M\ω such that [Xi, Xj ](x) /∈ Span(X1(x), . . . , Xm(x))
means that ∆ is not elliptic at x; this assumption is absolutely necessary
since otherwise, locally, (1.12) would be the usual elliptic wave equation,
and its observability properties would depend on the GCC, as stated in
Theorem 1.2.

The key ingredient in the proof of Theorem 1.23 is that the GCC fails for
any time T0 > 0: in other words, there exist geodesics which spend a time
greater than T0 outside ω. Then, the Gaussian beam construction described
in Remark 1.4 allows to contradict the observability inequality (1.13).

(2) This assumption is not necessary, since Theorem 1.23 also works for manifolds without
boundary, but this would require to introduce a slightly different notion of observability.
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1.5.2. Second main result

Our second main result, obtained in collaboration with Chenmin Sun,
sheds a different light on Theorem 1.23. For this second statement, we
consider the generalized Baouendi–Grushin operator of Example 1.10, i.e,
∆γ = ∂2

x + |x|2γ∂2
y on M = (−1, 1)x × Ty, and we assume that γ ⩾ 1 (not

necessarily an integer). We also consider the Schrödinger-type equation
with Dirichlet boundary conditions

(1.14)


i∂tu− (−∆γ)su = 0
u|t=0 = u0 ∈ L2(M)
u|x=±1 = 0

where s ∈ N is a fixed integer. Given an open subset ω ⊂ M , we say
that (1.14) is observable in time T0 > 0 in ω if there exists C > 0 such that
for any u0 ∈ L2(M),

(1.15) ∥u0∥2
L2(M) ⩽ C

∫ T0

0

∥∥∥e−it(−∆γ )s

u0

∥∥∥2

L2(ω)
dt.

Our second main result, obtained in collaboration with Chenmin Sun,
roughly says that observability holds if and only if the subellipticity (mea-
sured by the step γ + 1 in case γ ∈ N), is not too strong compared to the
strength of propagation s:

Theorem 1.24 ([55]). — Assume that γ ⩾ 1. Let I ⊊ Ty be a strict
open subset, and let ω = (−1, 1)x × I. Then, for s ∈ N, we have:

(1) If 1
2 (γ + 1) < s, (1.14) is observable in ω for any T0 > 0;

(2) If 1
2 (γ + 1) = s, there exists Tinf > 0 such that (1.14) is observable

in ω for T0 if and only if T0 > Tinf ;
(3) If 1

2 (γ + 1) > s, for any T0 > 0, (1.14) is not observable in ω.

The case s = 1/2 corresponds to wave equations. Strictly speaking, it
is not covered by Theorem 1.24 since s is assumed to belong to N in this
theorem, but we see that for any positive γ it is roughly related to Point (3),
and we thus recover the intuition given by Theorem 1.23 that subelliptic
wave equations should not be observable. The case γ = s = 1 allows to
recover Theorem 1.22, except that we do not find with our method the
critical time Tinf . Let us also notice that if γ ∈ N, since γ + 1 is the step
of the sub-Laplacian ∆γ , the number 1

2 (γ + 1) appearing in Theorem 1.24
coincides with the exponent known as the gain of Sobolev derivatives in
subelliptic estimates (see Section 1.3.3).
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1.5.3. Third main result

Finally, our third main result, obtained in collaboration with Clotilde
Fermanian Kammerer, illustrates how tools coming from noncommutative
harmonic analysis can be used to analyze sub-Laplacians and the associ-
ated evolution equations. Our main message is that a pseudodifferential
calculus “adapted to the sub-Laplacian” can be used to prove controlla-
bility and observability results for subelliptic PDEs (instead of the usual
pseudodifferential calculus used for example to prove Theorem 1.24). As
we will see, in the present context, once defined this natural pseudodif-
ferential calculus and the associated semi-classical measures (which relies
essentially on functional analysis arguments), observability results follow
quite directly.

To relate this last result to the previous ones, let us say that it is roughly
linked to the critical case s = γ = 1 of Point (2) of Theorem 1.24, i.e., to
the case where subelliptic effects are exactly balanced by the strength of
propagation of the equation. Indeed, we consider the usual Schrödinger
equation (s = 1) in some particular non-commutative Lie groups, called H-
type groups (see Example 1.12), which have step 2 (corresponding to γ = 1
for Baouendi–Grushin operators). As in Point (2) of Theorem 1.24, we es-
tablish that under some geometric conditions on the set of observation ω,
observability holds if and only if time is sufficiently large. The main differ-
ence with Theorem 1.24 relies in the tools used for the proof, which could
lead to different generalizations. For example, the tools employed in this
section allow to handle the case with analytic potential, see (1.16) below.
Also, with these tools, we could imagine to prove observability results for
higher-step nilpotent Lie groups, but it requires to know explicit formulas
for their representations, since they determine the propagation properties
of the semi-classical measures we construct (see Proposition 4.3).

To keep the presentation as simple as possible, we will present our last
result only for the Heisenberg groups Hd of Example 1.11, and not for
general H-type groups (which are handled in [32]). By doing so, we avoid
defining general H-type groups, while keeping the main message of this
work, namely the use of noncommutative harmonic analysis for proving
observability inequalities.

Using the notations of Example 1.11, we consider M = Γ̃\Hd together
with the equation

(1.16) i∂tu+ 1
2∆Mu+ Vu = 0
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on M , where V is an analytic function defined on M . The factor 1
2 in front

of ∆M plays no role, we put it here just to keep the same conventions as
in [32]. There is a Haar measure naturally carried by Hd, and thus by M ,
which is dxjdyjdz.

The Schrödinger equation (1.16) is observable in time T on the measur-
able set U if there exists a constant CT,U > 0 such that

(1.17) ∀ u0 ∈ L2(M), ∥u0∥2
L2(M) ⩽ CT,U

∫ T

0

∥∥∥eit(
1
2 ∆M +V)u0

∥∥∥2

L2(U)
dt.

Recall that Theorem 1.5 asserts that, in the Riemannian setting and with-
out potential, the observability of the Schrödinger equation is implied by
the Geometric Control Condition (GCC), which says that any trajectory of
the geodesic flow enters U within time T . Using normal geodesics, one can
also define a sub-Riemannian geodesic flow (see Section 2.1) but in some
directions of the phase space (called degenerate directions in the sequel),
its trajectories are stationary. For them, we thus need to replace GCC by
another condition. In the case of the Heisenberg group Hd, there is only
one such direction, thought as “vertical” since it is related to the ∂z vector
field.

The Heisenberg group Hd comes with a Lie algebra g. Via the exponential
map

Exp : g → Hd

which is a diffeomorphism from g to Hd, one identifies Hd and g as a set
and a manifold. Moreover, g is equipped with a vector space decomposition

g = v ⊕ z ,

such that [v, v] = z ̸= {0} and z (of dimension 1) is the center of g. We
define a scalar product on z by saying that ∂z has norm 1, which allows to
identify z to its dual z∗.

We consider the “vertical” flow map (also called “Reeb”, in honor of
Georges Reeb) on M :

Φs0 : x 7→ Exp (sd∂z/2)x, s ∈ R.

We introduce the following H-type geometric control condition.

(H-GCC). The measurable set U satisfies H-type GCC in time T if

∀ x ∈ M, ∃ s ∈ (0, T ), Φs0(x) ∈ U.

The flow Φs0 thus replaces the geodesic flow in the degenerate direction.
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Definition 1.25. — We denote by TGCC(U) the infimum of all T > 0
such that H-type GCC holds in time T (and we set TGCC(U) = +∞ if
H-type GCC does not hold in any time).

We also consider the additional assumption:
(A) The lift in Hd of any geodesic of T2d enters ω in finite time. (3)

Theorem 1.26 ([32]). — Let U ⊂ M be open and denote by U its
closure.

(1) Assume that U satisfies (A) and that T > TGCC(U), then the
observability inequality (1.17) holds, i.e. the Schrödinger equation
(1.16) is observable in time T on U .

(2) Assume T ⩽ TGCC(U), then the observability inequality (1.17) fails.

This statement looks like Theorem 1.2 which holds for elliptic waves. In
some sense, “the Schrödinger equation in Heisenberg groups looks like an
elliptic wave equation”, a phenomenon which was already pointed out by
authors studying Strichartz estimates, see [5, 6] for example.

Let us also say that, as already mentioned, Theorem 1.26 holds more
generally in quotients of H-type groups.

To conclude, let us draw a table summing up most of the results presented
in this introduction:

1.6. Organization of the survey

The goal of this survey is to give an overview of the ideas behind the
three main results (and their proofs), namely Theorems 1.23, 1.24 and 1.26,
to point out their common features, to develop ideas which were not neces-
sarily written in the papers, and to explain how the tools developed along
the proofs could be generalized.

In Sections 2, 3 and 4, we explain respectively the main lines of the proofs
of Theorems 1.23, 1.24 and 1.26. Therefore, Section 2 is quite geometric and
presents for example the notion of nilpotentization of vector fields; Section 3
is more “semi-classical” and illustrates how resolvent estimates can be used
to prove observability inequalities; and Section 4 is also “semi-classical”,

(3) This condition can be more precisely stated as follows. For any (x, ω) ∈ M × v∗ such
that |ω| = 1, there exists s ∈ R such that Exp(sω · V )x ∈ U . Here, ω · V =

∑2d

j=1 ωjVj

where ωj denote the coordinates of ω in the dual basis of V and it is assumed that∑2d

j=1 ω2
j = 1.
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Table 1.1. Observability of subelliptic PDEs depending on the step.
If the results are established only in particular cases, they are in blue.
The first line is covered by Theorems 1.2 and 1.23, the second line by
Theorems 1.5, 1.24 and 1.26, the third line by Theorem 1.24 and the
fourth line by Theorems 1.6, 1.19 and 1.20 (see also Corollary 3.4).
For the last two interrogation marks, see Section 5.1. Note that we
illustrated Theorem 1.24 with the bi-Schrödinger equation, but we
could have done it for a general s.

Elliptic Step 2 Step 4 Step > 4
Waves and half-waves Tinf (under GCC) ∞ ∞ ∞

(s = 1/2)
Schrödinger (s = 1) 0 (under GCC) Tinf ∞ ∞

bi-Schrödinger (s = 2) 0 (under GCC) 0 Tinf ∞
Heat 0 Tinf or ∞ ? ?

but the pseudo-differential operators used in this section are adapted to
the group structure (that is, they come from non-commutative Fourier
analysis). Sections 3 and 4, although proving quite similar results, call for
very different generalizations, which are discussed notably in Remark 4.4.

In Section 5, we finally list a few natural open questions and directions
of research which follow from our work.
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2. Subelliptic wave equations are never observable

In this section, we explain the ideas of proof for Theorem 1.23. Let
T0 > 0 and ω ⊂ M be a measurable subset. We assume that there ex-
ist 1 ⩽ i, j ⩽ m and x in the interior of M\ω such that [Xi, Xj ](x) /∈
Span(X1(x), . . . , Xm(x)). Under these assumptions, Theorem 1.23 will fol-
low from Propositions 2.1 and 2.2. The first of these propositions says that
given any open set of M containing x, there exists a normal geodesic of
the Hamiltonian attached to X1, . . . , Xm traveled at speed 1 which does
not leave this open set on the time-interval [0, T0]: this phenomenon is not
true in Riemannian manifolds but is true in sub-Riemannian manifolds un-
der the above assumptions. Thus, this normal geodesic remains far from
ω on the time-interval [0, T0]. The second proposition tells us that, as in
the elliptic setting, it is possible to construct a sequence of solutions of the
wave equation whose energy concentrates along this geodesic. This last fact
contradicts the observability inequality.

Before stating these propositions, let us mention that, as in the ellip-
tic setting, a normal geodesic is the projection of a null-bicharacteristic
associated to the principal symbol p2 of ∆ (see Definition 2.3).

Proposition 2.1. — For any T0 > 0, any x ∈ M such that [Xi, Xj ](x)
/∈ Span(X1(x), . . . , Xm(x)) and any open neighborhood V of x in M (with
the initial topology on M), there exists a non-stationary normal geodesic
t 7→ x(t) (traveled at speed 1) such that x(t) ∈ V for any t ∈ [0, T0].

Proposition 2.2. — Let [0, T0] ∋ t 7→ x(t) be a non-stationary normal
geodesic (traveled at speed 1) which does not meet ∂M . Then there exists
a sequence (uk)k∈ N∗ of solutions of the wave equation (1.12) such that

• The energy of uk is bounded below with respect to k and t ∈ [0, T0]:

(2.1) ∃ A > 0,∀ t ∈ [0, T0], lim inf
k→ +∞

E(uk(t, ·)) ⩾ A.

• The energy of uk is small off x(t): for any t ∈ [0, T0], we fix Vt an
open subset of M for the initial topology of M , containing x(t),
so that the mapping t 7→ Vt is continuous (Vt is chosen sufficiently
small so that this makes sense in a chart). Then

(2.2) sup
t∈ [0,T0]

∫
M\Vt

|∂tuk(t, x)|2 +
m∑
j=1

(Xjuk(t, x))2

 dµ(x) →
k→+∞

0.
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The “easy part” is Proposition 2.2, while the proof of Proposition 2.1 is
more complicated. Therefore, we start with a sketch of proof for Proposi-
tion 2.2 in Section 2.1, and we give ideas for the proof of Proposition 2.1
in Section 2.2.

2.1. Gaussian beams in sub-Riemannian geometry

We set P = ∂2
tt − ∆ and we consider the associated Hamiltonian

p2(t, τ, x, ξ) = −τ2 + g∗(x, ξ)

with τ the dual variable of t and g∗ the Hamiltonian (or principal symbol)
associated to −∆. For (x, ξ) ∈ T ∗M , we have

g∗(x, ξ) =
m∑
i=1

hXi(x, ξ)2.

Here, given any smooth vector field X on M , we denoted by hX the Hamil-
tonian function (momentum map) on T ∗M associated with X defined in
local (x, ξ)-coordinates by hX(x, ξ) = ξ(X(x)). Then g∗ is both the princi-
pal symbol of −∆, and also the cometric associated with g.

In T ∗(R × M), the Hamiltonian vector field H⃗p2 associated with p2 is
given by H⃗p2f = {p2, f}. Since H⃗p2p2 = 0, we get that p2 is constant along
the integral curves of H⃗p2 . Thus, the characteristic set C(p2) = {p2 = 0} is
preserved under the flow of H⃗p2 . Null-bicharacteristics are then defined as
the maximal integral curves of H⃗p2 which live in C(p2). In other words, the
null-bicharacteristics are the maximal solutions of

(2.3)



ṫ(s) = −2τ(s) ,
ẋ(s) = ∇ξg

∗(x(s), ξ(s)) ,
τ̇(s) = 0 ,
ξ̇(s) = −∇xg

∗(x(s), ξ(s)) ,
τ2(0) = g∗(x(0), ξ(0)).

This definition needs to be adapted when the null-bicharacteristic meets
the boundary ∂M , but in the sequel, we only consider solutions of (2.3) on
time intervals where x(t) does not reach ∂M .

In the sequel, we take τ = −1/2, which gives g∗(x(s), ξ(s)) = 1/4. This
also implies that t(s) = s + t0 and, taking t as a time parameter, we are
led to solve
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(2.4)


ẋ(t) = ∇ξg

∗(x(t), ξ(t)) ,
ξ̇(t) = −∇xg

∗(x(t), ξ(t)) ,
g∗(x(0), ξ(0)) = 1

4 .

In other words, the t-variable parametrizes null-bicharacteristics in a way
that they are traveled at speed 1.

Definition 2.3. — A normal geodesic is the projection t 7→ x(t) of a
null-bicharacteristic, (i.e., a solution of (2.4)).

Normal geodesics live in the “elliptic part” of g∗, i.e., where g∗ ̸= 0;
this is the key point in the proof of Proposition 2.2. Indeed, this result is
well-known in the elliptic context, it is due to Ralston [66], and already
Hörmander noted that his argument extended to non-elliptic operators,
as long as we were working in the elliptic part of the symbol (see [40,
Chapter 24.2]).

Let us start the proof of Proposition 2.2. Taking charts of M , we can
assume M ⊂ Rn. In the sequel, we change a bit the notations: we use
x = (x0, x1, . . . , xn) where x0 = t in the earlier notations, and we set
x′ = (x1, . . . , xn). Similarly, we take the notation ξ = (ξ0, ξ1, . . . , ξn)
where ξ0 = τ previously, and ξ′ = (ξ1, . . . , ξn). The bicharacteristics are
parametrized by s as in (2.3), and without loss of generality, we only con-
sider bicharacteristics with x(0) = 0 at s = 0, which implies in particular
x0(s) = s because of our choice τ2(s) = g∗(x(s), ξ(s)) = 1/4. In the sequel,
a null-bicharacteristic s 7→ (x(s), ξ(s)) is fixed, with x(0) = 0.

We take

(2.5) vk(x) = k
n
4 −1a0(x)eikψ(x).

where the phase ψ(x) is quadratic,

ψ(x) = ξ′(s) · (x′ − x′(s)) + 1
2 (x′ − x′(s)) ·M(s) (x′ − x′(s)) ,

for x = (t, x′) ∈ R × Rn and s such that t = t(s). This choice of vk is
the so-called WKB ansatz, and it only yields approximate solutions of the
wave equation (1.3). Indeed, there holds

(2.6) ∂2
ttvk − ∆vk =

(
k

n
4 +1A1 + k

n
4 A2 + k

n
4 −1A3

)
eikψ

with
A1(x) = p2 (x,∇ψ(x)) a0(x)
A2(x) = La0(x) (L is a linear transport operator)

A3(x) = ∂2
tta0(x) − ∆a0(x).

(2.7)
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If we take ψ to be complex-valued (by choosing a complex-valued matrix
M(s)), then eikψ looks like a Gaussian centered at x′(s), for any s. Hence,
for large k, we see on (2.6) is naturally small outside the geodesic s 7→ x′(s),
and the only place where it may be large is precisely on the geodesic. In
order for vk to be an approximate solution of the wave equation, it is
thus sufficient to have A1, A2, A3 vanish at sufficiently high order on the
geodesic curve, and this is achieved by choosing adequately M(s) (which
is a complex-valued matrix varying continuously with s) and a0(x).

More precisely, in order to achieve the quantitative bound ∥∂2
ttvk −

∆vk∥L1((0,T );L2(M)) ⩽ Ck− 1
2 , one has to

• take M as a solution of the Riccati equation
dM

ds
+MCM +BTM +MB +A = 0

where A,B,C are explicit functions of s which can be expressed in
terms of the second derivatives of p2 along s 7→ (x(s), ξ(s));

• take a0 so that a0(x(0)) ̸= 0 and La0 vanishes along s 7→ x(s),
i.e., La0(x(s)) = 0. This is possible since L is a linear transport
operator.

The first point yields that A1 together with its first and second derivatives
vanish along the geodesic curve s 7→ x(s), and the second point implies
that A2 vanishes along this same curve. Beside implying that vk is an
approximate solution of the wave equation, these choices guarantee that
the energy of vk concentrates (uniformly in s) along the geodesic:

sup
t∈ [0,T ]

∫
M\Vt

|∂tvk(t, x)|2 +
m∑
j=1

(Xjvk(t, x))2

 dµ(x) →
k→+∞

0

where Vt is defined in Proposition 2.2. Note also that the bound

∃ A > 0,∀ t ∈ [0, T0], lim inf
k→+∞

E(vk(t, ·)) ⩾ A

is satisfied thanks to the normalizing constant k n
4 −1 in the definition of

vk (2.5).
In order to pass from approximate to exact solutions of the wave equa-

tion, one chooses uk to have the same initial data as vk and to be an exact
solution of the wave equation (1.3). Then, the Gronwall lemma ensures
that (2.1) and (2.2) are satisfied, and Proposition 2.2 is proved.

Let us end this section with two other possible points of view on Propo-
sition 2.2 and its above proof. First, it can be reformulated in terms of
propagation of Lagrangian spaces, as written in [54]. This point of view
was developed for example by Hörmander in [40, Chapter 24]. Another
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reformulation is that microlocal defect measures propagate in the elliptic
part of the symbol as for the usual elliptic wave equation: in other words,
one could take a sequence of initial data concentrating microlocally on the
starting point (x(0), ξ(0)) of the geodesic and prove that the microlocal de-
fect measure associated to the solutions propagates following the geodesic
flow (see [35]). But the Gaussian beam construction is interesting in its
own and particularly simple, this is why we presented this point of view
here.

2.2. Spiraling geodesics

Proposition 2.1 can be easily seen to hold in the Heisenberg group, as
shown in Section 2.2.1; the proof then consists in extending its validity
to larger classes of sub-Laplacians, until reaching the level of generality of
Theorem 1.23.

2.2.1. Spiraling geodesics in the 3D flat Heisenberg case.

We consider the three-dimensional manifold with boundary

M1 = (−1, 1)x1 × Tx2 × Tx3 , where T = R/Z ≈ (−1, 1)

is the 1D torus. We endow M1 with the vector fields X1 = ∂x1 and X2 =
∂x2 − x1∂x3 and we consider the associated sub-Laplacian ∆ = X2

1 + X2
2 .

This sub-Riemannian structure is called the “Heisenberg manifold with
boundary”, it is a variant of Example 1.11 which has no boundary. We
endow M with an arbitrary smooth volume µ and we denote by

(2.8) g∗
Heis = ξ2

1 + (ξ2 − x1ξ3)2

the 3D flat Heisenberg Hamiltonian.
The geodesics we consider are given by

x1(t) = ε sin(t/ε)
x2(t) = ε cos(t/ε) − ε

x3(t) = ε(t/2 − ε sin(2t/ε)/4).
They spiral around the x3 axis x1 = x2 = 0.

Here, one should think of ε as a small parameter. In the sequel, we denote
by xε the geodesic with parameter ε. The associated momenta are

(2.9) ξ1 = 1
2 cos(t/ε), ξ2 = 0 and ξ3 = 1

2ε ,
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and we can check that that g∗
Heis ≡ 1/4. The constant ξ3 is a kind of

winding number reflecting the fact that the geodesic spirals at a certain
speed around the x3 axis. To obtain a geodesic which makes smaller spirals,
we choose a larger covector very close to D⊥.

To prove Proposition 2.1 in the case of the Heisenberg manifold, we
can assume without loss of generality that V contains 0. Then, given any
T0 > 0, for ε sufficiently small, we have xε(t) ∈ V for every t ∈ (0, T0).
This proves Proposition 2.1 in this case.

2.2.2. Spiraling when length ⩾ 3 brackets vanish

We now explain how to prove Proposition 2.1 in a slightly more general
case: in this paragraph, we assume that [Xi, [Xj , Xk]] = 0 for any 1 ⩽
i, j, k ⩽ m.

More precisely, we assume that M ⊂ Rn (with coordinates x1, . . . , xn),
and that for any 1 ⩽ j ⩽ m,

(2.10) Xj =
n∑
j=1

aij∂xi

where aij is a constant when i ⩽ m, and aij = cxℓ + d when i ⩾ m +
1, for some ℓ ⩽ m that may depend on i and j. One can verify that
[Xi, [Xj , Xk]] = 0 for any 1 ⩽ i, j, k ⩽ m.

Our goal is to isolate a direction which will play the role of the direction
ξ3 of large covectors in (2.9). A similar spiraling as in the above Heisenberg
case happens when we take covectors in an invariant plane of the Goh
matrix (thus the associated control describes circles in this invariant plane).
Let us explain this phenomenon in detail.

In its “control” form, the equation of normal geodesics can be written as
follows (we refer the reader to [1, Chapter 4]):

(2.11) ẋ(t) =
m∑
i=1

ui(t)Xi(x(t)),

where the ui are the controls, explicitly given by

(2.12) ui(t) = 2hXi
(x(t), ξ(t)).

Thanks to (2.10), we rewrite (2.11) as

(2.13) ẋ(t) = F (x(t))u(t),
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where F = (aij), which has size n × m, and u = t(u1, . . . , um). Differen-
tiating (2.12), we have the complementary equation

u̇(t) = G(x(t), ξ(t))u(t)

where G is the Goh matrix

G =
(
2

{
hXj

, hXi

})
1 ⩽ i, j⩽m

(it differs from the usual Goh matrix by a factor −2 due to the absence
of factor 1

2 in the Hamiltonian g∗ in our notations). One can check thanks
to (2.10) that G(t) is constant in t.

We know that G ̸= 0 and that G is antisymmetric. The whole control
space Rm is the direct sum of the image of G and the kernel of G, and G

is nondegenerate on its image. We take u0 in an invariant plane of G; in
other words its projection on the kernel of G vanishes (see Remark 2.4). We
denote by G̃ the restriction of G to this invariant plane. We also assume
that u0, decomposed as u0 = (u01, . . . , u0m) ∈ Rm, satisfies

∑m
i=1 u

2
0i =

1/4. Then u(t) = etG̃u0 and since etG̃ is an orthogonal matrix, we have
∥etG̃u0∥ = ∥u0∥. We have by integration by parts

(2.14) x(t) =
∫ t

0
F (x(s))esG̃u0 ds

= F (x(t))G̃−1(etG̃ − I)u0 −
∫ t

0

d

ds
(F (x(s))G̃−1

(
esG̃ − I

)
u0 ds.

Let us now choose the initial data of our family of normal geodesics
(indexed by ε). The starting point xε(0) = 0 is the same for any ε, we
only have to specify the initial covectors ξε = ξε(0) ∈ T ∗

0 Rn. For any
i = 1, . . . , m, we impose that

(2.15) ⟨ξε, Xi⟩ = u0i.

It follows that g∗(x(0), ξε(0)) =
∑m
i=1 u

2
0i = 1/4 for any ε > 0. Now, we

notice that Span(X1, . . . , Xm) is in direct sum with the Span of the [Xi, Xj ]
for i, j running over 1, . . . , m (this follows from (2.10)). Fixing G0 ̸= 0 an
antisymmetric matrix and G̃0 its restriction to an invariant plane, we can
specify, simultaneously to (2.15), that

⟨ξε, 2 [Xj , Xi]⟩ = ε−1G0
ij .

Then xε(t) is given by (2.14) applied with G̃ = ε−1G̃0, which brings a
factor ε in front of (2.14).

Recall finally that the coefficients aij which compose F are degree 1 (or
constant) homogeneous polynomials in x1, . . . , xm. Thus d

ds (F (x(s)) is a
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linear combination of ẋi(s) which we can rewrite thanks to (2.13) as a
combination with bounded coefficients (since

∑m
i=1 u

2
i = 1/4) of the xi(s).

Hence, applying the Gronwall lemma in (2.14), we get ∥xε(t)∥ ⩽ Cε, which
concludes the proof of Proposition 2.1 in this case.

Remark 2.4. — Let us explain why we choose u0 to be in an invariant
plane of G. If the projection of u0 to the kernel of G is nonzero then the
primitive of the exponential of e t

εG0u0 contains a linear term that does not
depend on ε. Then the corresponding trajectory follows a singular curve
(see [1, Chapter 4] for a definition). This means, we find normal geodesics
which spiral around a singular curve and do not remain close to their initial
point over (0, T0), although their initial covector is “high in the cylinder
bundle U∗M”. For example, for the Hamiltonian ξ2

1 +(ξ2+x2
1ξ3)2 associated

to the “Martinet” vector fields X1 = ∂x1 , X2 = ∂x2 + x2
1∂x3 in R3, there

exist normal geodesics which spiral around the singular curve (t, 0, 0).

2.2.3. Spiraling in the general case

The reduction of the general case to the case of Section 2.2.2 where all
length ⩾ 3 brackets vanish is done through the nilpotentization procedure
which dates back to [67]. The reader can refer to [1, Chapter 10] and [43,
Chapter 2] for recent introductions to the subject.

Essentially, the nilpotentization procedure consists in a truncation in
the Taylor series of the vector fields X1, . . . , Xm which define the sub-
Laplacian. We will not describe the nilpotentization procedure in details
here, but just give an example.

Example 2.5. — We reproduce here the example [43, Example 2.8]. We
consider the vector fields on R2 × T given by X1 = cos(θ)∂x + sin(θ)∂y
and X2 = ∂θ. We have [X1, X2] = sin(θ)∂x − cos(θ)∂y. At q = 0, we have
X1(0) = ∂x, X2(0) = ∂θ and [X1, X2](0) = −∂y. Thus, we say that x and θ
have “weight 1”, while y has “weight 2”, because the coordinate y “needs
a bracket to be generated”. And we also attribute weights to vector fields:
∂x and ∂θ have weight −1 while ∂y has weight −2. The rule is that the
weight of a product is the sum of the weights: for example, x∂θ has weight
1 + (−1) = 0.

Now we write the Taylor expansion of X1 and X2 in the coordinates
(x, θ, y) in the form X1 = X

(−1)
1 + X

(0)
1 + X

(1)
1 + . . . where each X

(k)
1 has

weight k (and similarly for X2). This Taylor expansion of X1 and X2 at
q = 0 yields the homogeneous components

X
(−1)
1 = ∂x + θ∂y, X

(0)
1 = 0, X

(1)
1 = −θ2

2 ∂x − θ3

6 ∂y, . . .
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and X
(−1)
2 = X2 = ∂θ. We define the nilpotent approximation of (X1, X2)

at q = 0 in coordinates (x, θ, y) to be the vector fields X̂1 and X̂2 given by
the “main order terms”, namely

X̂1 = X
(−1)
1 = ∂x + θ∂y, X̂2 = X

(−1)
2 = ∂θ.

These vector fields generate a nilpotent Lie algebra of step 2 since all brack-
ets of length ⩾ 3 between X̂1 and X̂2 vanish.

Let us explain how finish the proof of Proposition 2.1 in the general
case. We fix q ∈ M . Thanks to Section 2.2.2 we can find a normal geodesic
associated to the nilpotentized (at q) Hamiltonian

(2.16) ĝ∗ =
m∑
i=1

h2
X̂i

which stays very close to q. Then, the key argument is that since we work
locally near q and since the vector field X̂i is a very good approximation of
Xi near q for any i, the normal geodesics associated to the initial Hamil-
tonian g∗ cannot be far from those of ĝ∗ when working near q. In other
words, there exists a normal geodesic associated to the initial Hamiltonian
g∗ which stays very close to q.

One should however take care that the situation is not always as favorable
as in Example 2.5, for two reasons:

• To obtain good properties of the “truncated” vector fields, one needs
to do the Taylor expansion in a good system of coordinates. In the
above example, it was quite “natural” to take (x, θ, y) coordinates,
but in general one should work in so-called “privileged coordinates”
to guarantee that the geodesics of the nilpotentized Hamiltonian are
not too far from those of the initial Hamiltonian.

• The nilpotentized vector fields always form a nilpotent system,
meaning that there exists k ∈ N such that all length ⩾ k brackets
between X̂1, . . . , X̂m vanish. But in general, k is not necessarily
equal to 3 (as was assumed in Section 2.2.2). To reduce to the case
k = 3, one has again to “compare” the geodesics of the nilpotentized
Hamiltonian with a simpler Hamiltonian, defined with a system of
vector fields such that all their length ⩾ 3 brackets vanish.

To sum up, the proof of Proposition 2.1 goes by successive simplifications
of the vector fields, until we arrive at the situation of Section 2.2.2 which
can be handled “by hand” (i.e., we can find explicitly the initial covectors
of the geodesics).
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3. Subellipticity and strength of propagation:
Baouendi–Grushin Schrödinger equations

3.1. Motivation.

It is well-known that the Riemannian wave equation propagates at finite
speed and that the Riemannian Schrödinger equation propagates at infi-
nite speed. For subelliptic equations, the propagation “at null speed” of the
wave equation (shown to be a general phenomenon in Section 2), and the
existence of travelling waves solutions of the Heisenberg Schrödinger equa-
tion (see [6]) motivated us to undertake a general study of the propagation
speed of subelliptic equations depending on two parameters: the step k and
the strength of propagation s. This last parameter, which will be defined
below, is equal to 1/2 for the wave equation and to 1 for the Schrödinger
equation.

As a first step in this study, we took the model family of operators given
by Example 1.10, i.e., we consider for γ ⩾ 0 (not necessarily an integer)
the sub-Laplacian ∆γ = ∂2

x + |x|2γ∂2
y on the manifold M = (−1, 1)x × Ty.

In case γ ∈ N, the step is given by k = γ + 1. Then, for s ∈ N, we
consider the equation (1.14). The strength of propagation is the parameter
s appearing in this equation; this terminology seemed natural to us since
equations with large s tend to propagate more quickly. The domain of
observation is a strip ω = (−1, 1) × I where I ⊂ T as mentioned in the
introduction. Depending on γ and s, Theorem 1.24 says if the observability
inequality (1.15) holds or not: in particular, it makes appear a threshold
s = γ+1

2 at which subellipticity effects and propagation effects balance each
other.

The proof of Theorem 1.24 splits into two parts:
(1) To disprove observability when s < 1

2 (γ + 1) or when s = 1
2 (γ + 1)

and time is small (i.e., for Point (3) and part of Point (2)), we
construct solutions of (1.14) which propagate along the vertical
line {x = 0}. This is different from what was done in Section 2: in
Section 2, we were working in the elliptic part of the symbol of the
sub-Laplacian, whereas here the constructed solutions propagate in
the characteristic manifold (where the sub-Laplacian is not elliptic).
Thus, the present construction is more involved and less general
than that of Section 2, but these difficulties are unavoidable since we
are dealing with Schrödinger equations whose speed of propagation
in the elliptic part of the symbol is infinite. This Gaussian beam
construction is described in Section 3.2
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(2) To prove observability when s > 1
2 (γ+1) or when s = 1

2 (γ+1) and
time is large (i.e., for Point (1) and part of Point (2)), we establish a
sharp resolvent estimate, i.e., a time-independent inequality which
describes the maximal concentration outside ω of an approximate
eigenfunction of ∆γ . By a classical argument due to Nicolas Burq
and Maciej Zworski (see [18]), this implies observability. Indeed, this
method of proof gives as corollaries an observability result for the
heat equation and a decay estimate for the damped wave equation,
both driven by the sub-Laplacian ∆γ . The resolvent estimate is
presented and commented in Section 3.3, and (sketchly) proved in
Section 3.4.

3.2. Vertical Gaussian beams for contradicting observability.

For proving Point (3) and Point (2) for small times, it is indeed sufficient
to deal with the “critical” case s = 1

2 (γ + 1). Point (3) then follows imme-
diately from the abstract result [60, Corollary 3.9]: if (1.14) was observable
for some T > 0 and some s < γ+1

2 , then it would be observable in any time
for s = 1

2 (γ + 1), which would be a contradiction. Hence, in the sequel, we
assume s = 1

2 (γ + 1). Moreover, we also assume that γ > 1; for the case
s = γ = 1, the argument is slightly different, see [17].

The non-observability part of Point (2) immediately follows from the
following proposition:

Proposition 3.1. — There exist T0 > 0 and a sequence of solutions
(vn)n∈ N of (1.14) with initial data (v0

n)n∈ N such that ∥v0
n∥L2(M) = 1 and

(3.1)
∫ T0

0

∫
ω

|vn(t, x, y)|2dxdydt −→
n→+∞

0.

Let us explain the intuition behind this result on the simpler example of
the Grushin–Schrödinger equation

(3.2) i∂tu+ ∆Gu = 0

where ∆G = ∂2
x + x2∂2

y has been introduced in Example 1.9. We consider
this equation in Rt×Rx×Ry instead of Rt×(−1, 1)x×Ty since computations
become simpler in this (non-compact) setting. Making a Fourier expansion
in the y variable, we see that we obtain from −∆G a family of harmonic
oscillators −∂2

x+x2η2 whose associated eigenvalues are (2m+1)|η|, m ∈ N.
In other words,

(3.3) L2 (
R2)

= ⊕
±

⊕
m∈ N

V ±
m , ∆G|V ±

m
= ±i(2m+ 1)∂y,
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and thus the solution of (3.2) is obtained by solving an infinite number of
transport equations along the y-axis, traveling at speed 2m+ 1 for m ∈ N.
More explicitly, the solution of (3.2) in Rt × Rx × Ry is

u(t, x, y) = 1√
2π

∞∑
m=0

∫
R
e−it(2m+1)|η|+iyηû0,m(η)hm

(√
|η|x

)
dη

where hm is the mth eigenfunction of the harmonic oscillator −∂2
x + x2 on

R (Hermite function). Our goal is to find solutions whose energy is con-
centrated in M \ ω during a long time, therefore these solutions should
travel slowly along the y-axis. It will be the case if we manage to construct
solutions corresponding to low values of m; indeed Burq and Sun [17, Sec-
tion 9] showed how to construct such solutions whose only non-vanishing
component is the “mode” m = 0 (but η takes different values).

The case of the equation i∂tu− (−∆γ)su = 0 (or, more precisely, (1.14))
is more involved but it is based on the same idea. The computations are less
explicit since the eigenfunctions of ∆γ are less explicit than those of ∆G,
but the knowledge of the behaviour at infinity of the first eigenfunction of
the harmonic oscillator is indeed sufficient to do the computations. This
(positive) normalized ground state of the operator Qγ = −∂2

z + |z|2γ on Rz
is denoted by ϕγ and it satisfies

Qγϕγ = µ0ϕγ .

The normalized ground state of the operator Pγ,w = −∂2
x + |x|2γw2 on Rx

is then
pγ(w, x) = |w|

1
2(γ+1)ϕγ

(
|w|

1
γ+1x

)
.

and the associated eigenvalue is λγ(w) = µ0|w|
2

γ+1 . The relation between
the different variables is z = |w|

1
γ+1x, and w will be taken to equal to η,

the Fourier dual variable of y.
We assume without loss of generality that ω = Rx× Iy, where I = (a, b),

with 0 < a < b ⩽ +∞. Let us fix T0 < a/µs0.
We take ψ ∈ C∞

c ( 1
2 ⩽ |η| ⩽ 1), a sequence hn → 0, and we consider

vn(t, x, y) = h
1
2
n

∫
R
ψ(hnη) eiyη−itµs

0|η|pγ(η, x) dη,

which is a solution of (1.14) (recall that s = (γ + 1)/2). It has only high
η-modes thanks to the cutoff ψ(hnη), and each of these modes travels at
speed µs0 along the y-axis since 2s/(γ+ 1) = 1. By the Plancherel theorem,
we can see that ∥vn,0∥L2 ≳ 1, so that we just have to prove (3.1).
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The key intuition is that, for any t ∈ R+, the mass of vn(t, ·, ·) is con-
centrated near (x, y) = (0, µs0t), and thus outside ω for t ⩽ T0. To prove it,
one uses the Poisson formula, which yields

vn(t, x, y) =
∑
m∈ Z

K̂
(n)
t,x,y(2πm)

where Φm(t, y, w) = yw − 2πmw − tµs0w and

K̂
(n)
t,x,y(2πm) = h

1
2
n

∫
R
ψ(hnw)pγ(w, x)eiΦm(t,y,w)dw.

Then, (3.1) follows from the fact that for |y| ⩾ a and t ⩽ T0, each

K̂
(n)
t,x,y(2πm) is small.

3.3. Resolvent estimate.

This subsection is devoted to explaining how time-independent estimates
can be relevant for proving observability inequalities (which inherently in-
volve a time variable), and to apply it to our particular goal of proving
Point (1) and part of Point (2) of Theorem 1.24. The starting point of the
analysis is the following theorem due to Nicolas Burq and Maciej Zworski,
which will be commented after its statement:

Theorem 3.2 ([18]). — Let P (h) be self-adjoint on some Hilbert space
H with densely defined domain D and A(h) : D → H be bounded. Assume
that uniformly for τ ∈ I = [−b,−a] ⊂ R, we have the following resolvent
inequality

(3.4) ∥u∥H ⩽
G(h)
h

∥(P (h) + τ)u∥H + g(h)∥A(h)u∥H

for some 1 ⩽ G(h) ⩽ O(h−N0). Then there exist constants C0, c0, h0 > 0,
such that for every T (h) satisfying

G(h)
T (h) < c0,

we have, for all 0 < h < h0

∥ψ(P (h))u∥2
H ⩽ C0

g(h)2

T (h)

∫ T (h)

0

∥∥∥A(h)e− itP (h)
h ψ(P (h))u

∥∥∥2

H
dt,

where ψ ∈ C∞
c ((a, b)).

This statement, proved in [18, Section 3], calls for several comments:
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• Typically, P (h) = −h2∆, or, in our case P (h) = −h2∆γ with do-
main

D(∆γ) =
{
u ∈ D′(M) : ∂2

xu, |x|2γ∂2
yu ∈ L2(M) and u|∂M = 0

}
.

Therefore, the term (P (h) + τ)u gives an estimate on how far
from a true eigenfunction u is. The small parameter h is called
semi-classical parameter, and it naturally shows up when studying
Schrödinger equations.

• The operator A(h) is the observation operator, and in our case it
does not depend on h: it is equal to the characteristic function 1ω
of ω.

• The expression ψ(P (h)) is defined thanks to functional calculus,
and T (h) has to be understood as the time-scale at which the ob-
servability inequality is valid. The parameter τ shows up naturally
when taking the Fourier transform in time of the equation: it is the
dual variable of t.

In our case, the resolvent estimate (or quasimode estimate) (3.4) takes
the following form:

Theorem 3.3. — Let γ ⩾ 1 and let ω contain a horizontal strip (−1, 1)×
I. There exist C, h0 > 0 such that for any v ∈ D(∆γ) and any 0 < h ⩽ h0,
there holds

∥v∥L2(M) ⩽ C
(
h−(γ+1) ∥∥(

h2∆γ + 1
)
v
∥∥
L2(M) + ∥v∥L2(ω)

)
.

The exponent h−(γ+1) is optimal. It may seem strange that the parameter
s does not appear in the above resolvent inequality. However, we can deduce
directly from Theorem 3.3 another resolvent inequality where s appears:

∥u∥L2(M) ⩽ C

(
h−(γ+1)

∥∥∥((
−h2∆γ

)s − 1
)
u

∥∥∥
L2(M)

+ ∥u∥L2(ω)

)
.

From this and Theorem 3.2, one obtains the following spectrally localized
observability inequality:

(3.5) ∥uh∥2
L2(M) ⩽ C

∫ T

0

∥∥∥e−it′(−∆γ )s

uh

∥∥∥2

L2(ω)
dt′

where uh = ψ((−h2∆γ)s)u with ψ ∈ C∞
c ((1/2, 2)). This is not totally

immediate, the precise argument is written in [55, Section 3.1]. From (3.5),
we can conclude thanks to a standard unique continuation argument the
proof of Theorem 1.24, that is, we transform this inequality for uh (which
is spectrally localized) to the inequality (1.15) which holds for any initial
datum u0. This unique continuation argument is based on the fact that if
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u∗ is an eigenfunction of (−∆γ)s which vanishes on ω, then it vanishes on
the whole manifold M . We refer to [55, Section 3.2] for full details.

3.4. Proof of Theorem 3.3.

The proof of Theorem 3.3 is quite long, and we will only describe here
its main lines. It consists in decomposing solutions according to the joint
eigenspaces of |Dy| and −∆γ (it has already been done in Section 3.2); then
we distinguish between several “regimes” depending on the value of |Dy|
compared to the value of −∆γ , and this corresponds to different geometric
propagations of solutions. This strategy is inspired by that of [17], but here
we work in a time-independent setting since we seek to prove a resolvent
estimate. This fine analysis of the different microlocal regimes should be
compared with the non-commutative approach of Section 4, see Remark 4.4.

The proof is by contradiction. Assume that there exists a sequence
(vh)h>0 such that

(3.6) ∥vh∥L2(M) = 1, ∥vh∥L2(ω) = o(1), ∥fh∥L2(M) = o
(
hγ+1)

where fh = (h2∆γ + 1)vh, and we seek for a contradiction, which would
prove Theorem 3.3. A short argument shows that we can furthermore
assume that vh = ψ(h2∆γ)vh where ψ ∈ C∞

c ((−∞, 0)) verifies: ψ ≡ 1
near −1 and ψ = 0 outside (−2,− 1

2 ). Here and in all the sequel, we use
functional calculus to define expressions such as ψ(h2∆γ). The equality
vh = ψ(h2∆γ)vh means that all frequencies (computed with respect to
∆γ) of vh are comparable to −h−2.

We use a decomposition of vh as vh = v1
h + v2

h + v3
h + v4

h where

v1
h = (1 − χ0(b0hDy)) vh, v2

h =
(
χ0(b0hDy) − χ0

(
b−1

0 hDy

))
vh

v3
h =

(
χ0

(
b−1

0 hDy

)
− χ0 (hϵDy)

)
vh, v4

h = χ0 (hϵDy) vh,

that is, a decomposition according to the dual Fourier variable of y. Here,
b0 ≪ 1 and ϵ will be fixed later. Choosing a good cut-off χ0 ∈ C∞

c (R), the
proof consists in showing that ∥vjh∥L2(M) = o(1) for j = 1, 2, 3, 4, which
contradicts (3.6). The methods used for each j are quite different, and
roughly correspond to the different behaviours of geodesics according to
their momentum η ∼ Dy. More precisely:

• v1
h corresponds to large |Dy| (i.e., large η-momenta). For example,

the initial data of the vertical Gaussian beams constructed in Sec-
tion 3.2 satisfy vh = v1

h. To prove that ∥v1
h∥L2(M) = o(1), we use

the positive commutator method. This method dates back at least
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to [39, Section 3.5] and has been widely used, for example for prov-
ing propagation of singularities for the wave equation. Here, it is
based on the relation

[∆γ , x∂x + (γ + 1)y∂y] = 2∆γ .

Using this relation and computed in two different ways the expres-
sion([

h2∆γ + 1, χϵ(x)ϕ(y) (x∂x + (γ + 1)y∂y)
]
v1
h, v

1
h

)
L2(M)

for some well-chosen cut-offs χϵ and ϕ, it is possible to deduce that
∥v1
h∥L2(M) = o(1).

• v2
h, v3

h and v4
h are “microlocalized” in the elliptic part of the symbol

of −∆γ . In some sense, this implies that if we restrict to functions vh
such that v1

h = 0, a better resolvent estimate should hold, showing
observability of the Schrödinger equation in any time, as in the
Riemannian case.

• To prove that ∥v2
h∥L2(M) = o(1), we consider a defect measure as-

sociated to (vh2 )h> 0. The key point is that it is invariant along
geodesics of the sub-Riemannian metric which reach ω in finite
time (it gives no mass to other geodesics), thus it is null since
∥v2
h∥L2(ω) = o(1). This argument is similar in spirit to the con-

struction done in [50] for the Riemannian Schrödinger equation: vh2
corresponds to the truly elliptic (or semi-classical) regime.

• The defect measures associated to v3
h and v4

h are more complicated
to handle since they are invariant along the horizontal geodesics y =
const (which do not enter ω). In some sense, being an approximate
solution of (h2∆γ + 1)v = 0 excludes the possibility of “scarring”
along a single horizontal geodesic; equivalently, for such quasimodes,
the mass of v3

h and v4
h in M is controlled by their mass in ω. To

establish such properties, several tools are available: for example,
the papers [4, 19] deal with similar issues for the elliptic Schrödinger
equation in tori, using either normal form arguments or 2-microlocal
techniques. The argument we present in [55] relies on the positive
commutator method and a similar normal form argument as in [19].

3.5. Further comments and open questions

Together with [27, Corollary 2], the resolvent estimate proved in Theo-
rem 3.3 implies an observability result for heat-type equations:
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Corollary 3.4. — Assume that γ ⩾ 1 and that ω contains a horizontal
strip (−1, 1)x × I. For any s > 1

2 (γ + 1) and any T0 > 0, observability for
the heat equation with Dirichlet boundary conditions

(3.7)


∂tu+ (−∆γ)su = 0
u|t=0 = u0 ∈ L2(M)
u|x=±1 = 0

holds in time T0. In other words, there exists C > 0 such that for any
u0 ∈ L2(M), there holds∥∥∥e−T0(−∆γ )s

u0

∥∥∥2

L2(M)
⩽

∫ T0

0

∥∥∥e−t(−∆γ )s

u0

∥∥∥2

L2(ω)
dt.

Let us finally mention a few open questions raised by our study:
• What happens if 0 < γ < 1, a case which is not covered by Theo-

rem 1.24? Indeed, the sub-Laplacian ∆γ on R×T is not essentially
self-adjoint (see [14]), which means that the Schrödinger evolution
is not well defined if we do not impose any additional boundary
condition on {x = 0}.

• Is it possible to generalize Theorem 1.24 to other sub-Laplacians?
It seems so that Point (3) might be the easiest one to generalize:
very roughly, as seen in Sections 2 and 3.2, some kind of “normal
form” or “approximation” argument for the sub-Laplacian could
be relevant since s < 1

2 (γ + 1) leaves some space for perturbative
arguments.

• Is it possible to construct in a more robust way solutions of subellip-
tic Schrödinger-type equations which are microlocally concentrated
in the cone where the principal symbol of the sub-Laplacian van-
ishes?

4. Subelliptic Schrödinger equation via non-commutative
harmonic analysis

The last result we present in this survey, namely Theorem 1.26, may
seem difficult to approach because of the massive use of noncommutative
Fourier analysis all along the statement and proofs. Our goal here is to give
some keys which could facilitate reading, and to explain why this theory is
adapted to analyze subelliptic PDEs.
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The plan of this section is as follows: according to the theory of non-
commutative harmonic analysis, we define in Section 4.1 the (operator-
valued) Fourier transform (4.1), based on the unitary irreducible repre-
sentations of the group, recalled in (4.4), which form an analog to the
usual frequency space. Then, in Section 4.2, we follow the same path as for
the usual Fourier transform: we use the Fourier inversion formula (4.5) to
define in (4.6) a class of symbols and the associated semi-classical pseudo-
differential operators in (4.7). From this, we deduce the existence of semi-
classical measures, which have additional invariance properties when they
are associated to solutions of the Schrödinger equation. This allows to prove
the first part of Theorem 1.26. The second part of this theorem is proved
using solutions of the Schrödinger equation which propagate along the ver-
tical direction: although this is very close in spirit to the vertical Gauss-
ian beam construction of Section 3.2, we have developed in [32] a more
robust framework for these “wave-packet solutions”, based on the same
non-commutative harmonic analysis tools as before.

The material of Sections 4.1 and 4.2 borrows many ideas from [31] (and
of course from [32]). In the sequel we use the notations of Section 1.5.3.

Additionally, note that the element (p, q, z) = (p1, . . . , pd, q1, . . . , qd, z)
of Hd can be written

(p, q, z) = expHd (p1X1 + . . .+ pdXd + q1Y1 + . . .+ qdYd + zZ)

and with the Baker–Campbell–Hausdorff formula we recover the group law
given in Example 1.11.

4.1. Noncommutative Fourier analysis

We aim at defining a Fourier transform adapted to M , and at proving
the associated Fourier inversion formula. This is standard, and the main
references are [23, 68] (see also [32, Appendix A]).

The usual Fourier transform f̂(λ) =
∫
Rd f(x)e−ixλdx is replaced in this

non-commutative setting by the formula

(4.1) Ff(λ) :=
∫

Hd

f(x)
(
πλx

)∗
dx.

Here, dx is the Haar measure on Hd and on its quotient M .
In formula (4.1),

(
πλx

)∗ is an operator. In particular, Ff(λ) is operator-
valued. The operator

(
πλx

)∗ is the adjoint of the irreducible representations
πλx of Hd.
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Definition 4.1. — The (strongly continuous) unitary representations
of a locally compact topological group G are the homomorphisms π : G →
U(Hπ) where U(Hπ) is the group of unitary operators on a Hilbert space
Hπ, which satisfy that g 7→ π(g)ξ is a norm continuous function for every
ξ ∈ Hπ.
A unitary representation is called irreducible if the only closed linear sub-
spaces of Hπ invariant under π(g) for all g ∈ G are 0 and Hπ. The set
of all unitary irreducible representations (modulo unitary equivalence) is
denoted by Ĝ.

A specificity of Heisenberg groups, and more generally of H-type groups,
is that their irreducible representations can be explicitly computed, thanks
to Kirillov’s theory. We will neither enter the details of Kirillov’s theory nor
show the computations specific to H-type groups (see [32, Appendix A]),
but only give the explicit expression of irreducible representations:

• For λ ∈ z∗ \ {0} ∼ R \ {0} and x = (p, q, z) ∈ Hd, we consider the
operator πλx defined by

(4.2) πλxΦ(ξ) = ei
(
λ(z)+ 1

2 |λ|p·q+sgn(λ)
√

|λ|ξ·q
)

Φ
(
ξ +

√
|λ|p

)
,

which acts on functions Φ ∈ L2(Rd) (in (4.2), sgn is the sign func-
tion). Then, πλ(·) = πλ· defines a unitary representation of Hd

which is infinite dimensional (since the Hilbert space L2(Rd) has
infinite dimension) and which can be proved to be irreducible.

• For ω ∈ v∗ and x = Exp(V + Z) ∈ Hd with V ∈ v and Z ∈ z, we
set

(4.3) π0,ω
x = eiω(V )

and π0,ω(·) = π0,ω
· can thus be seen as a 1-dimensional representa-

tion over the Hilbert space H(0,ω) = C.

Then, the set Ĥd of all unitary irreducible representations modulo uni-
tary equivalence is parametrized by (z∗ \ {0}) ⊔ v∗ (see [68, Proposition 2.4
and Theorem 2.5 in Chapter 1]):

(4.4) Ĥd =
{

class of πλ : λ ∈ z∗ \ {0}
}

⊔
{

class of π0,ω : ω ∈ v∗}
.

The formula (4.1) defines the Fourier transform for λ ∈ z∗ \ {0}, but we
need to complete it with a formula for ω ∈ v∗:

f̂(0, ω) = Ff(0, ω) :=
∫

Hd

f(x)
(
π(0,ω)
x

)∗
dx.
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With these definitions at hand, one can prove an inversion formula for f ∈
S(Hd) and x ∈ Hd:

(4.5) f(x) = c0

∫
z∗\{0}

Tr
(
πλxFf(λ)

)
|λ|d dλ ,

where Tr denotes the trace of operators of L(L2(Rd)) (see [68, Theorem 2.7
in Chapter 1]). Note that in this inversion formula, the finite dimensional
irreducible representations given by (4.3) are absent.

4.2. Symbols and semi-classical measures

Starting from the Fourier inversion formula (4.5), we define symbols (of
pseudo-differential operators) on M as a class of functions on M×Ĥd. The
set M × Ĥd is interpreted as the phase space of M , in analogy with the
fact that Td × Rd is the phase space of the torus Td.

To start, we note that the set of functions on the quotient M = Γ̃\Hd is
in one-to-one relation with the set of Γ̃-left periodic functions on Hd, i.e.,
functions on Hd such that

∀ x ∈ Hd, ∀ γ ∈ Γ̃, f(γx) = f(x).

We consider the class of symbols A0 of fields of operators defined on
M × Ĥd by

σ(x, λ) ∈ L
(
L2 (

Rd
))
, (x, λ) ∈ M × Ĥd,

that are smooth in the variable x and Fourier transforms of functions of
the set S(Hd) of Schwartz functions on Hd in the variable λ: for all (x, λ) ∈
M × Ĥd,

(4.6) σ(x, λ) = Fκx(λ)

where κ·(·) ∈ C∞(M,S(Hd)). One can easily check that these symbols
form an algebra (which is a motivation for introducing them as Fourier
transforms of functions κx).

There is a natural family of dilations on Hd defined as

δε(x, y, z) =
(
εx, εy, ε2z

)
, (x, y, z) ∈ Hd, ε > 0.

If ε > 0, we associate with κx (and thus with σ(x, λ)) the function κεx
defined on Hd by

κεx(·) = ε−Qκx (δε−1(·)) ,
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We then define the semi-classical pseudo-differential operator Opε(σ) via
the identification of functions f on M with Γ̃-left periodic functions on Hd

recalled above:

(4.7) Opε(σ)f(x) =
∫

Hd

κεx
(
y−1x

)
f(y)dy.

The operator Opε(σ) is well-defined as an operator on M . Indeed,

Opε(σ)f(γx) = Opε(σ)f(x).

It is not difficult to check that these definitions yield a “good sym-
bolic calculus”: for example, the family of operators (Opε(σ))ε>0 is uni-
formly bounded in L(L2(M)). This allows to define semi-classical measures
(see [15, 35] and for similar propositions in the Euclidean framework):

Proposition 4.2. — Let (uε)ε> 0 be a bounded family in L∞(R, L2(M)).
There exist a sequence (εk) ∈ (R∗

+)N with εk −→
k→+∞

0 and a map t 7→ Γtdγt

in L∞(R,M̃+
ov(M × Ĥd)) such that we have for all θ ∈ L1(R) and σ ∈ A,

(4.8)
∫
R
θ(t)

(
Opεk

(σ)uεk (t), uεk (t)
)
L2(M) dt

−→
k→ +∞

∫
R×M×Ĥd

θ(t)Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt.

Here A is the “closure” of A0 in some sense made precise in [31].

Here are a few comments on this statement:
• We denote by M̃ov(M × Ĥd) the set of pairs (γ,Γ) where γ is a

positive Radon measure on M×Ĥd and Γ = {Γ(x, λ) ∈ L(L2(Rd)) :
λ ∈ Ĥd} is a measurable field of trace-class operators such that

∥Γdγ∥M :=
∫
M×Ĥd

Tr(|Γ(x, λ)|)dγ(x, λ) < ∞.

Here, as usual, |Γ| :=
√

ΓΓ∗. Finally, we say that a pair (γ,Γ)
in M̃ov(M × Ĥd) is positive when Γ(x, λ) ⩾ 0 for γ-almost all
(x, λ) ∈ M × Ĥd. In this case, we write (γ,Γ) ∈ M̃+

ov(M × Ĥd).
• This set M̃ov(M × Ĥd) can be identified to the topological dual

of the algebra of symbols A (to be rigorous, it requires to take the
quotient by a relation of equivalence on the pairs (γ,Γ)). This is
why it naturally appears as a limit of the left-hand side of (4.8).

• Hence, the semi-classical measures that we consider here are opera-
tor-valued, whereas semi-classical measures are mostly scalar in the
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literature, see for example [50]. This operator-valued feature is fun-
damental since it is due to non-commutativity of nilmanifolds, and
it is a consequence of the original features of Fourier analysis on
nilpotent groups seen in Section 4.1.

• The integral in the time variable in (4.8) may seem weird at first
sight, and indeed it is possible to define semi-classical measures
of functions on M (thus, time-independent). However, our goal
here is to study semi-classical measures associated to solutions of
the non-semi-classical Schrödinger equation (1.16) (a semi-classical
Schrödinger equation would have the form iε∂tu+ ε2∆u = 0). For
such equations, it is difficult to derive results for the semi-classical
measures at each time t (see also [4]). However, one can prove re-
sults for the time-averaged semi-classical measures, and this is why
we define these time-averaged measures in Proposition 4.2.

• Sections 4.1 and 4.2 up to Proposition 4.2 could be generalized to
all graded Lie groups through the generalization of the tools we
use (see [30, Remarks 3.3 and 4.4]). However, the next proposition,
namely Proposition 4.3, is specific to H-type groups (in particular,
Heisenberg groups) since its proof uses the explicit expressions of
irreducible representations seen in Section 4.1.

The semi-classical measures associated (by Proposition 4.2) to families
of solutions to the Schrödinger equation (1.16) have special features, which
are the subject of Proposition 4.3 below. To state it properly, we need some
definitions.

In the (non compact) group Hd, the operator

H(λ) = |λ|
d∑
j=1

(
−∂2

ξj
+ ξ2

j

)
is the Fourier resolution of the sub-Laplacian −∆Hd above λ ∈ z∗ \ {0},
meaning that

∀ f ∈ S
(
Hd

)
, F(−∆Hdf)(λ) = H(λ)F(f)(λ).

Up to a constant, this is a quantum harmonic oscillator with discrete spec-
trum {|λ|(2n + d), n ∈ N} and finite dimensional eigenspaces. For each
eigenvalue |λ|(2n+d), we denote by Π(λ)

n and V(λ)
n the corresponding spec-

tral orthogonal projection and eigenspace.

Proposition 4.3. — Assume Γtdγt is associated with a family of solu-
tions to (1.16).
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(1) For (x, λ) ∈ M × z∗

(4.9) Γt(x, λ) =
∑
n∈ N

Γn,t(x, λ) with Γn,t(x, λ) := Π(λ)
n Γt(x, λ)Π(λ)

n .

Moreover, the map (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) defines a continu-
ous function from R into the set of distributions on M × (z∗ \ {0})
valued in the finite dimensional space L(V(λ)

n ) which satisfies

(4.10)
(
∂t −

(
n+ d

2

)
∂z

)
(Γn,t(x, λ)dγt(x, λ)) = 0

(2) For (x, (0, ω)) ∈ M×v∗, the scalar measure Γtdγt is invariant under
the flow

Ξs : (x, ω) 7→ (xExp(sω · V ), ω) .
Here, ω · V =

∑2d
j=1 ωjVj where ωj denote the coordinates of ω in

the dual basis of V .

The relations (4.9) and (4.10) describe the same phenomenon as (3.3):
the Schrödinger equation behaves as a superposition of waves traveling at
different speeds along the vertical axis.

4.3. Proof of Theorem 1.26

We finally explain how Theorem 1.26 follows from Proposition 4.3.

4.3.1. Proof of Point (1) of Theorem 1.26

As in Section 3.3, to prove Point (1) of Theorem 1.26, it is sufficient to
prove a spectrally localized observability inequality. Let h > 0 and ψ ∈
C∞
c ((1/2, 2), [0, 1]). Using functional calculus, we set

(4.11) Phf = ψ

(
−h2

(
1
2∆M + V

))
f, f ∈ L2(M).

We seek to prove

(4.12) ∥Phu0∥2
L2(M) ⩽ C0

∫ T

0

∥∥∥eit(
1
2 ∆M +V)Phu0

∥∥∥2

L2(U)
dt.

We argue by contradiction. If (4.12) is false, then there exist (uk0)k∈ N
and (hk)k∈ N such that uk0 = Phk

uk0 ,

(4.13)
∥∥uk0∥∥

L2(M) = 1 and
∫ T

0
∥uk(t)∥2

L2(U) dt −→
k→ +∞

0.
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where
uk(t) = eit(

1
2 ∆M +V)Phk

uk0 .

We consider (after extraction of a subsequence if necessary), the semi-
classical measure Γtdγt of uk(t) given by Proposition 4.2 and satisfying the
properties listed in Proposition 4.3. The goal is to prove that γt ≡ 0.

Using the second part of (4.13), one obtains∫ T

0

∫
U×Ĥd

Tr(Γt(x, λ))dγt(x, λ)dt = 0

i.e., γt ≡ 0 above U . Setting γn,t(x, λ) = Tr (Γn,t(x, λ)) γt(x, λ), and using
the positivity of Γt, one can deduce that

(4.14)
∫
U×z∗

dγn,t(x, λ) = 0, for almost every t ∈ [0, T ], ∀ n ∈ N.

The transport equation (4.10) tells us that γn,t travels at speed n+ d
2 along

the z-axis, hence not slower than γ0,t. Using (H-GCC) together with (4.14),
we get that γn,t ≡ 0 for any n ∈ N, hence γt ≡ 0. This contradicts the
conservation of energy (i.e., the first part of (4.13)). Thus, (4.12) is proved.

Remark 4.4. — It is tempting to compare the approaches developed in
Sections 3 and 4, which share the common goal of proving observability
inequalities for subelliptic Schrödinger equations. On one side, the semi-
classical measures of Section 4 seem particularly adapted: once defined the
operator-valued Fourier transform, the definitions of symbols and semi-
classical measures are natural since they are modeled on the Euclidean case.
But this approach has the drawback to require the knowledge of global ob-
jects on the manifold (the representations), and for the moment their local
and geometric aspects are not sufficiently well understood to handle more
general geometric situations. On the contrary, the proof of Section 3, which
uses usual pseudo-differential tools (i.e., Euclidean or Riemannian ones), is
directly linked with the underlying geometry (see Section 3.4) but we see
the limits of these tools in the fact that already for the simple Baouendi–
Grushin models, the computations are sophisticated and sometimes heavy.

4.3.2. Proof of Point (2) of Theorem 1.26

As for Point (3) of Theorem 1.24, to disprove the observability inequal-
ity (1.17), we construct a particular family of solutions of the Schrödinger
equation (1.16), called wave packets (and which are somehow related to
the vertical Gaussian beams of Section 3.2).
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In the Euclidean context, given (x0, ξ0) ∈ Rd × Rd and a ∈ S(Rd), the
associated wave packet is the family (indexed by ε) of functions

(4.15) uεeucl(x) = ε−d/4a

(
x− x0√

ε

)
e i

ε ξ0·(x−x0), x ∈ Rd.

The oscillation along ξ0 is forced by the term e i
ε ξ0·(x−x0) and the concentra-

tion on x0 is performed via a(·/
√
ε) at the scale

√
ε for symmetry reasons:

the ε-Fourier transform of uεeucl, ε−d/2ûεeucl(ξ/ε) presents a concentration
on ξ0 at the scale

√
ε. Taking a compactly supported in the interior of a

unit cell for the torus, one can generalize their definition to the case of the
torus by extending them by periodicity.

To perform a similar construction in the non-commutative setting, more
precisely in Hd, we replace a(·/

√
ε) by

aε(x) = a (δε−1/2(x))

for some a ∈ C∞
c (G), and the oscillations e i

ε ξ0·(x−x0) by

eε(x) =
(
πλε
x Φ1,Φ2

)
, λε = λ0

ε2

where λ0 ∈ z∗ and Φ1, Φ2 ∈ S(Rd).
Using the multiplication on the left by elements of Γ̃, one can define a

periodization operator P which associates to functions on Hd whose support
is contained in a unit cell of M the Γ̃-left periodic function obtained by
periodization. We restrict to ε ∈ (0, 1) We consider a unit cell of M , i.e., a
subset B of Hd which is a neighborhood of 1Hd and such that ∪

γ ∈ Γ̃(γB) =
Hd and we choose functions a that are in C∞

c (B).

Proposition 4.5. — Let Φ1,Φ2 ∈ S(Rd), a ∈ C∞
c (B), x0 ∈ M , λ0 ∈

z∗\{0}. Then, there exists ε0 > 0 such that the family (vε)ε∈(0,ε0) defined by

vε(x) = |λε|d/2 ε−p/2 P(eεaε)
(
x−1

0 x
)
,

has only one semi-classical measure Γdγ where

(4.16) γ = ca δ(x− x0) ⊗ δ(λ− λ0), ca = ∥Φ2∥2
∫
Gz

|a(xz)|2dxz,

and Γ is the operator defined by

ΓΦ = (Φ,Φ1)
∥Φ1∥2 Φ1, ∀ Φ ∈ L2 (

Rd
)
.

What is really important in the above proposition is that γ is concen-
trated on a single point of the phase space.
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In the rest of the proof, we say that the family vε is a wave packet on M
with cores (x0, λ0), profile a and harmonics (Φ1,Φ2), and we write

vε = WP εx0,λ0
(a,Φ1,Φ2) = |λε|d/2 ε−p/2 P(eεaε)

(
x−1

0 x
)
.

Remark 4.6. — In [32] (see Section 4 and Appendix C), we develop a
more general theory of wave packets, notably showing that the structure
of wave packets is preserved by the evolution under the Schrödinger flow.

We take as initial data in (1.16) a wave packet uε0 in M with harmonics
given by the first Hermite function h0:

uε0 = WP εx0,λ0
(a, h0, h0).

We denote by uε(t) the associated solution, uε(t) = eit( 1
2 ∆M +V)uε0. Our

choice of harmonics for uε0 guarantees that the semi-classical measure Γtdγt
associated to these solutions, when decomposed according to Proposition
4.3, has only one non-vanishing component, which corresponds to n = 0.
In other words,

(4.17) γt(x, λ) = c δ

(
x− Exp

(
t
d

2∂z
)
x0

)
⊗ δ(λ− λ0)

and Γ0,t is the orthogonal projector on h0.
Now, using the assumptions made in Point (2) of Theorem 1.26, there

exists a continuous function ϕ : M → [0, 1] such that ϕ(Φs0(x0, λ0)) = 0 for
any s ∈ [0, T ] and ϕ = 1 on U × z∗. From this, we deduce

0 ⩽
∫ T

0

∫
U

|uε(t, x)|2 dxdt

⩽
∫ T

0

∫
M

ϕ(x) |uε(t, x)|2 dxdt −→
ε→0

∫ T

0

∫
M×z∗

ϕ(x)dγt(x, λ)dt = 0.

Therefore, the observability inequality (1.17) cannot hold.

5. Perspectives and open problems

In the field of subelliptic PDEs, and notably concerning controllabil-
ity/observability, several interesting questions remain unanswered, and this
concluding section lists a few of them.
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5.1. Observability of the heat equation for other sub-Laplacians.

As explained in Section 1.4.1, the observability properties of subelliptic
heat equations are known only in particular geometries. More general re-
sults would require a deeper understanding of the geometric meaning of
the solutions constructed in [9] or [45]. Let us formulate two conjectures:

(1) For any sub-Laplacian of step 2, if M \ ω has non-empty interior,
observability of the associated heat equation fails for sufficiently
small times T > 0;

(2) For any sub-Laplacian of step ⩾ 3, if M \ω has non-empty interior,
observability of the associated heat equation fails for any time
T > 0.

These conjectures are inspired by the results mentioned in Section 1.4.1
and by the paper [47] (see notably Section 1.4).

5.2. Observability of Schrödinger for other sub-Laplacians.

Even in the Riemannian case, the observability properties of the Schröd-
inger equation remain mysterious: although (GCC) is known to be a suf-
ficient condition for observability, it is not a necessary condition (see Sec-
tion 1.2.2). In the sub-Riemannian case, the problem is even “more open”,
since no general sufficient condition is known for the moment, except triv-
ial ones: only very particular geometries have been explored (see Theo-
rems 1.22, 1.24 and 1.26), and they rely on tools which are not robust
enough to cover general (in particular non-flat) sub-Riemannian geome-
tries.

5.3. Propagation of singularities for subelliptic PDEs

Observability properties of the wave and Schrödinger equations are re-
lated to propagation of singularities of their solutions (see for example [7]).
The propagation of singularities for sub-Riemannian wave equations has
been addressed in a series of papers by Melrose, R. Lascar and B. Lascar,
culminating with the general result of [58], which we revisited in [52, 21].

Besides, the understanding of propagation of singularities for sub-Rieman-
nian Schrödinger equations surely requires the introduction of a notion of
singularity “adapted to the sub-Riemannian geometry”, i.e., taking into
account the number of brackets needed to generate each direction.
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5.4. Trace formulas

For most (sub-)Laplacians ∆, we do not have access to the knowledge of
the full spectrum, i.e., to all eigenvalues. But it is sometimes possible to
compute quantities of the form ∑

n∈ N
f(λn)

where f is a (possibly complex-valued) function and λn describes the spec-
trum (with multiplicities) of −∆, i.e., −∆φn = λnφn for smooth functions
φn. Classical choices for f are the following: f(x) = e−tx (heat equa-
tion), f(x) = |x|−s (zeta functions), f(x) = cos(t

√
x) (wave equation),

f(x) = e−itx/h (semi-classical Schrödinger equation).
The literature on trace formulas in Riemannian manifolds is vast. But in

the sub-Rzhak iemannian case, only few trace formulas have been estab-
lished, and most of them are formulated with the heat kernel. It would be
of interest to prove trace formulas for other kernels.

5.5. Eigenfunctions and quasimodes of sub-Laplacians

The properties of eigenfunctions and quasimodes of sub-Laplacians re-
main widely unknown. Beside the concentration results given by observ-
ability properties (see for example Corollary 1.3), one could expect to char-
acterize the weak limits of high-frequency eigenfunctions (or of the square
of their modulus) in the limit where the eigenvalue tends to +∞: these
weak limits are known as Quantum Limits and they were widely stud-
ied in the Riemannian case. In [20], the authors undertook their study
in the sub-Riemannian case, proving that they concentrate (except for a
null-density subsequence) on the characteristic cone Σ, and also showing
a Quantum Ergodicity result valid for 3D contact sub-Laplacians with er-
godic Reeb flow. Their study was pursued in [53], in the case where a
commutativity assumption on the vector fields involved in the definition of
the sub-Laplacian is satisfied: then, techniques coming from joint spectral
calculus can be applied. In particular, we characterized all Quantum Limits
of a family of sub-Laplacians obtained as a product of flat 3D Heisenberg
sub-Laplacians. But, for example, the higher-dimensional (non-flat) contact
case remains open.
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