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A GENERALISATION OF TEICHMULLER SPACE IN
THE HERMITIAN CONTEXT

Anna WIENHARD

Abstract

The Teichmiiller space is a prominent object of mathematical studies. In this
short survey we describe some geometric results about representations of surface
groups into semisimple Lie groups of Hermitian type and explain how these can be
interpreted as a generalisation of Teichmiiller space.

Introduction

The Teichmiiller space can be described as moduli space of different geometric
structures (hyperbolic, complex, conformal) on a closed Riemann surface of genus g >
2. It also has a description as the moduli space of faithful representations p : m(Zg) —
PSL(2, R) with discrete and cocompact image. There are several attempts to generalise
Teichmiiller space, i.e. to find moduli spaces of other geometric structures on Riemann
surfaces which carry a nice topology, and to relate them to representations of 17, (Z;) into
higher dimensional semisimple Lie groups.

This short survey explains how results of a joint work with Marc Burger and Alessan-
dra Iozzi [3] can be interpreted as a generalisation of Teichmuiiller space.

In the first section we describe the embedding of Teichmiiller space of a Riemann
surface Z, into the space of representations of 711 () in PSL(2, R).

The second section reviews an approach of singling out a special connected com-
ponent of the variety of representations of 1 (Z,) into a semisimple split real Lie group
G as ameaningful generalisation of Teichmiiller space.

Another way of describing the Teichmiiller space as subset of the representation va-
riety is presented in the third section. This serves as starting point for our generalisation
of Teichmiiller space.
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The fourth section summarizes several properties of Hermitian symmetric spaces of
noncompact type and gives the definition of a numerical invariant, the Toledo invariant,
playing a fundamental role for our generalisation.

In the fifth section we recall the results of [3] and explain how theylead toreasonable
generalisations of Teichmiiller spaces.

The sixth section is devoted to a discussion of the relation of the generalised Teich-
miiller spaces we consider and the ones described in section 2 in the case G = Sp(2n, R).

The purpose of this survey is to put the results from [3] in the context of generalised
Teichmiiller spaces. We do not give any proofs, they will appear elsewhere in a joint
work [2].

1. Teichmiiller space and representation variety

1.1. The Teichmiiller space

Let 2, be an oriented closed Riemann surface of genus g > 2.

DEFINITION 1.1. — A hyperbolic structure on 2 is a tuple (M, f) where M is a hy-
perbolic surface, i.e. a Riemann surface with a metric of constant curvature K = —1, and
: 2z — M an orientation preserving homeomorphism.
g p g P

Two hyperbolic structures (M, f) and (M’, f') on 2, are said to be equivalent,
(M, f) = (M', f’), if there exists an isometry i : M — M’ such thati o f is isotopic
to f':

The Teichmiiller space (%) is the space of all hyperbolic structures on 3, up to equiv-
alence:

I (Zg) = {(M, f) hyperbolic structureon 2.}/ ~ .

Besides hyperbolic structures there are several other geometric structures on the
surface, e.g. conformal or complex structures, which are parametrised by Teichmiiller
space.
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1.2. From hyperbolic structures to representations

A hyperbolic structure (M, f) on Z, gives rise to a homomorphism
p : Iy — PSL(2, R) of the fundamental group I'; = m (Z;) of Z; into the isometry group
of the hyperbolic plane PSL(2, R) = Isom(H?)°.

This representation can be defined as follows. The homeomorphism f : 2, - M
induces an isomorphism of the fundamental groups p = fi : Iy — m(M). Since ™ (M)
acts as group of decktransformations on M = H? by orientation preserving isometries,
11 (M) embeds into PSL(2, R) as a discrete cocompact subgroup. Thus a hyperbolic
structure on X, defines an injective representation p : Iy — PSL(2, R) with discrete
and cocompact image. This representation is called holonomy representation of the hy-
perbolic structure. The action of [; on H via p is properly discontinuous and free, and
M=W?/p(Ty).

Representations associated to two equivalent hyperbolic structures differ by con-
jugation with an element g € PSL(2, R). Conversely, conjugating a representation ob-
tained from a hyperbolic structure by an element g € PSL(2, R) leads to the represen-
tation associated to the equivalent hyperbolic structure given by composing f with the
isometry g.

This correspondence between hyperbolic structures and representations defines an
embedding
I (Zg) € Hom(Ty, PSL(2,R))/PSL(2, R)

of the Teichmiillerspace of Z; into the space of representations of I, = () into
PSL(2, R) = Isom(H?)".

1.3. The representation variety

Let G be the adjoint group of a real semisimple Lie group. We consider the space
of all homomorphisms hom(I, G) equipped with the compact open topology. Then a
sequence of homomorphism p; € hom(Iy, G) converges to pif and onlyif p;(¥) — p(¥)
for all y € I. In particular, convergence can be checked on a set of generators of I
Choosing a set of generators ay, by, .. ., ag, bg 0f I'; the space hom(Ig, G) may be realized
as a quotient of G?8. Thus the algebraic structure of G induces an algebraic structure
on hom(Tg, G). The space hom(I,, G) endowed with this algebraic structure is denoted
by # (I, G) and called the representation variety. The group G acts by conjugation on
R(Tg, G): (gp)(y) := g7 p(¥)g. The quotient

% (T, G) = R(I;, G)/ G

is called character variety.

The Teichmiiller space is embedded into (I, PSL(2, R)) as one connected com-
ponent which is homeomorphic to a (6g — 6)-dimensional ball. There is another con-
nected component of # (I, PSL(2, R)) which is homeomeorphic to Teichmdiller space,
namely the Teichmiiller space of X, which is the Riemann surface X, with the reversed
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orientation. The two Teichmiiller components are the unique connected components
containing injective representations with discrete image.

2. Generalisations of Teichmiiller space- the deformation approach

The Teichmiiller space is a special connected component (or a union of two special
connected components) of the character variety % (I, PSL(2, R)) which is in various
ways related to geometric and dynamical structures on the surface.

2.1. Why looking for generalisations?

Since the character variety Z (I, G) is defined for any semisimple Lie group it is
natural to ask whether there are special connected components of % (I, G) consisting
of nice (e.g. discrete and injective) representations, which might be related to geometric
and/or dynamical structures on the Riemann surface Z,. An example of geometric struc-
tures related to representation from I, into SL(3, R) was given by Goldman [9]. Recall
that a convex projective structureon X is a tuple (M, f), where M is a convex projective
manifold, i.e. M = Q/T, where Q ¢ RP?is a convex domain and I' ¢ SL(3, R) is a dis-
crete subgroup, and f : ¥, — M a diffeomorphism. Two convex projective structures
are equivalent if they differ up to isotopy by a projective equivalence between M and M’.
The holonomy representations p : I, - I' < SL(3, R) of convex projective structures on
. are discrete and injective representation in (I, PSL(3, R)). The set of holonomy
representations of convex projective structures on Z; form a subset #(Ig, PSL(3, R)).
Goldman showed [9] that this subset is open in Z (I, PSL(3, R)). Later Goldman and
Choi [4] showed that this set is also closed, hence forms a connected component of
(T, PSL(3,R))

2.2. Deformations

One approach to search for connected components of the character variety Z (I, G)
with “nice” properties which might lead to a generalisation of Teichmiiller space is to
start with a particular nice reference representation pg : Iy — G and to consider the
connected component containing this reference representation. Since this is the same
as considering all continuous deformations of the reference representation py, we call
this the deformation approach.

Let G be a-simple Eie group G and i : PSL(2, R) — G an injective homomorphism.
The precomposition of i with any representation pp : I[; — PSL(2, R) obtained from a
hyperbolic structure on Z; defines a reference representation io po : [ — Gin Z(I, G).
LetDef(po) C #(Ig, G) denote the connected component of (T, G) containing i o po.
This connected component Def(pg) contains a copy of Teichmiiller space.

It is quite hard to control how representations behave under deformations. So a
priori this approach does not lead to reasonable generalisations of Teichmiiller space,
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but in certain cases and for specific reference representations it does.

2.3. The Hitchin component

For example, when G is the adjoint group of a split real simple Lie group, i.e. G =
PSL(n,R), PSp(2n,R), PSO(n, n), PSO(n, n+1) or certain exceptional groups, Hitchin
[12] used this approach to define a component of the character variety (T, G), the
“Hitchin component” #(Ig, G) C %(I,, G). Let i : PSL(2,R) — G be the homomor-
phism associated to a principal three-dimensional simple subalgebra in g¢ := Lie(Gc),
where G is the complexification of G. ! When G = PSL(n, R), PSp(2n, R), PSO(n, n+
1) thehomomorphism i : PSL(2, R) - Gisjust the homomorphism given by the unique
irreducible representation of PSL(2, R) of the appropriate dimension. Precomposing
the homomorphism i : PSL(2,R) — G with a representation py : Iy — PSL(2,R)
associated to a hyperbolic structure gives a reference representation pg in (I, G).

DEeFINITION 2.1. — TheHitchin component # (I, G) of # (I, G) is the deformation
space Def(pz) = Def(i o po), wherepy : Ty = PSL(2, R) is the holonomy representation
of a hyperbolic structure on Z.

Using Higgs bundle methods Hitchin proved in [12] that the connected component
# (g, G) obtained by deformations is homeomorphic to a ball of dimension
R2Ix(Zg)1 dim(G) I particular, this connected component has no singularities. Further-
more he gave an explicit parametrisation of 5#(I'g, G) by holomorphic differentials.
These are two properties which allow to regard 5# (T, G) as a reasonable generalisation
of Teichmiiller space.

2.4. Geometric structures?

The existence of the particularly nice smooth structure of #(I, G) suggests that
representations in Hitchin’s component actually arise as holonomy representations of
geometric structures on the Riemann surface. The first difficulty to establish a corre-
spondence between representations in Hitchin’s component and geometric structures
arises from the fact that discreteness and faithfulness of the representation are not stable
under deformations. But even if this were true, the question which geometric structures
on the surface X, should be parametrised by 5# (I, G) is even harder to answer.

For the case G = PSL(3, R) the results of Goldman and Choi [9, 4] gave a complete
answer te this question. Here the Hitchin component is precisely the set of holonomy
representations of convex projective structures on 2.

Quite recently Labourie (in [13]) studied 5# (I, G) in the case when G = PSL(n, R).
He proves discreteness and injectivity of representations in the Hitchin component
# (Tg, PSL(n, R)) by interpreting them as “Anosov representations”, i.e. as holonomy
representations of certain dynamical structures on the Riemann surface Z,.

IFor the definition and characterisation of principal three-dimensional simple subalgebras see (7, 17].
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2.4.1. Anosov representations.

We give the general definition of an Anosov structure on Z;. Let M be a manifold
with two continuous folitations &* such that the corresponding tangential distributions
E* satisfy TM = E* ® E~. Let G be a Lie group of diffeomorphisms of M preserving the
foliations &*. Denote by T', the unit tangent bundle of the Riemann surface Zgand
let ¢, denote the geodesic flow on T'! 2, with respect to some hyperbolic metric on Z,.

DEFINITION 2.2. — An (M, G)-Anosov structure on Z; is a tuple (F, p), where p :
Iy — G is a representation and F : Tlgg — M a continuous p-equivariant map, such
that F is constant along the flow lines of the lift ¢, of the geodesic flow on Tlig. Fur-
thermore the lift of ¢ to the bundle F* T M is supposed to act contracting on F*E* and
expanding on F*E~. The representation p is called the holonomy representation of the
(M, G)-Anosov structure.

DEFINITION 2.3. — A representation p : Iy — G is said to be an (M, G)-Anosov rep-
resentation if it is the holonomy representation of an (M, G)-Anosov strucutre on Z.

Letnow G = PSL(n, R). Let P* C G be two opposite minimal parabolic subgroups
of G. Then G/P* is isomorphic to the space of full flags in R”. The space of transverse
flags & can be identified with a subset of G/P* x G/P~. Let &* be the corresponding
product foliations on &.

DEFINITION 2.4. — A representation p : Iy — PSL(n,R) is an Anosov representa-
tion if it is the holonomy representation of a (¥, PSL(n, R))-Anosov structureon %.

REMARK 2.5. — Anosov structures can be also defined by equivalent'properties of
the flat bundle or the vector bundle (see [13]) associated to the representation.

Labourie showed [13] that all representations in &#(Iz, PSL(n, R)) are Anosov rep-
resentations. The converse statement holds under an additional assumption. Besides
the injectivity and discreteness of the representation, the property of being an Anosov
representation also gives some information about the limit set of p(Ig) in G/ P.

3. Finding Teichmiiller space in the representation variety

Inside the character variety % (I, PSL(2, R)) the Teichmiiller space can be char-
acterised as level set of a numerical invariant which is associated to any representation
p : Tz — PSL(2,R).
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3.1. The Euler number

Given a representation p : I, — PSL(2, R) consider the associated flat bundle over
2, namely
E, =5y x, H? = (Sg x H2)/ ~),
where (x,y) ~, (x',y") iff X' = yxandy" = p(y)yforsomey e I, = m(5,). Since
this bundle is flat and H? is contractible, there exists a smooth section f :Zg — E,. This
section lifts to a smooth p-equivariant map f : fg - H2.

Thus we obtain the following diagram:

ig_L [H]2

J

g

Let w denote the PSL(2, R)-invariant volume form on H? given by the metric of
constant sectional curvature sec = —1. The pull back of w via f is a two-form f*w on
:V_g which is invarjant under the action of I; by decktransformations. We may thus view
f*w as atwo-form on the closed surface Z,. Integration defines a real number:

T(f) :=/ f*o.
Zg

The section chosen above is not unique, but any two smooth section of E, are homo-
topic. Therefore the number 7( f) does not depend on the specific choice of f but only
on the representation p. Thus we may define

DEFINITION 3.1. — TheEuler number 7(p) of a representation p : T, — PSL(2,R) is

T(p) = f*w.
Zg

REMARK 3.2. — This is the Euler number of the vectorbundle V, := 5, x,, R2.

If p : Ty — PSL(2,R) is the holonomy representation of a hyperbolic structure
(M, f) wehave the following diagram

ig—f—>[H]2.

]

Zg—£—>
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In particular, we may use f , the lift of the orientation preserving homeomorphism
f : g — M given as part of the hyperbolic structure, as a smooth equivariant map
fg — H? to pull back the volume form w. Thus

T(p) = f*w=/ w=/w.
% £(Zg) M

But since w is the volume form of the hyperbolic metric, the theorem of GauR-Bonnet
implies:

T(p) =/ w = -2x(M) = 4m(g - 1).
M

For an arbitrary representation p : Iy — PSL(2, R) the Milnor-Wood inequality
gives an upper bound for T(p) independent of p, namely:

IT(p)| < 4m(g-1).

ReMARK 3.3. — The Euler number is defined on the character variety. It is constant
on connected components of % (T, PSL(2, R)).

3.2. Goldman’s theorem

For any holonomy representation of a hyperbolic structure we have t(p) = 417(g -
1). A theorem of Goldman [8] says that the converse is also true, given a representation
p : Tz — PSL(2, R) with T(p) = 41(g — 1) then p arises as holonomy representation of a
hyperbolic structure on Z,. Thisis the starting point for the generalisation of Teichmiiller
space we are going to describe.

THEOREM 3.4. — Let Ty = 1m1(Z,) be the fundamental group of a closed Riemann
surface of genus g > 2 and p : Tz — PSL(2, R) a representation with |T(p)| = 41 (g —1).
ThenTg acts on H? via p properly discontinuously and cocompactly without fixed points.
In particular, W2 | p(Ty) is a hyperbolic surface, and if T(p) = A1r(g — 1), there is an orien-
tation preserving homeomorphism f : 2, — M.

Goldman'’s theorem states that the Teichmiiller space can be singled out as the con-
nected component of Z (I, PSL(2, R)), where T attains its maximal value, i.e. 7(Z;) =
T l4m(g - 1)).

REMARK 3.5. — Given a standard presentation of [
rg ={(ay, by, .., ag, bg | Hi][ai) bl] =1)
and a representation p : I; — PSL(2, R) in terms of the generators. The Euler number is

explicitely computable by elementary matrix multiplications as explained in [14]. Thus
itis very easy to check whether p lies in the Teichmdiller space or not.
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4. Hermitian symmetric spaces

To define the Euler number we did not make use of any special properties of
PSL(2, R) except of the existence of a PSL(2, R)-invariant two-form on the contractible
space H?, which is the symmetric space associated to PSL(2, R). There is a larger class
of symmetric spaces of noncompact type carrying differential two-forms which are in-
variant under the group of isometries, these are Hermitian symmetric space.

4.1. An example: Complex hyperbolic space

Before we give the general definition of a Hermitian symmetric space we discuss an
example which might be more familiar to the reader. Let C” denote the vector space
C™! endowed with the Hermitian form % of signature (1, n), i.e. h(z,w) = z;W; -
27:21 zi; where z = (21,...,Zp41), W = (W1, ..., Wpe) € C*'L. The complex hyper-
bolic space CH" is the space of all positive lines in C'*™:

CH" .= {1l c C*! | h(v,v) > Oforall v € I}.

The complex hyperbolic space CH” is naturally embedded into the projective space
CP™. The complex structure induced from this embedding is invariant under the isome-
try group of CH”, Isom(CH")° = PU(1, n), and gives CH” the structure of a Hermitian
symmetric space. The Kdhler form w on CP” restricts to an invariant two-form w on
CH™

REMARK 4.1. — Similar to the Poincaré disc model of the real hyperbolic space, the
complex hyperbolic space admits a ball model:

CH"=B":={veC”|lv]| <1} cC"”

The upper half space model of the real hyperbolic space does not generalise to the com-
plex hyperbolic space, except for n = 1 when CH! = H2.

4.2. The Toledo invariant

Given a representation p : [ — PU(1, n) we may as above consider the flat bundle
E, = ig X, CH™. Since CH" is contractible there exists a smooth section and hence
a p-equivariant map f : Eg -~ CH". Pulling back the K&hler form w via f defines a
two-form on the Riemann surface .

The Toledo invariantis defined by

T(p) :=/ f*w.
ZE
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As the Euler number, the Toledo invariant satisfies a generalised Milnor-Wood-
inequality.
IT(p)l < 4m(g-1),

where the metric on CH” is normalized to have constant holomorphic sectional curva-
ture sec;, = —1.

Following Goldman'’s theorem we are interested in the connected components of
Z (T, PU(1, n)) consisting of representations p with T(p) = 4m(g - 1). We will call such
representations maximal representations.

ExampLE 4.2. — Representations obtained from the precomposition of the natu-
ral embedding of PSL(2,R) = PU(1,1) ¢ PU(1, n) with a representation pg : Iy —
PSL(2, R) associated to a hyperbolic structure on X, give examples of maximal repre-
sentations. The action of Iy via p on CH" preserves a complex geodesic CH! in CH” on
which it is properly discontinuous and free. Since T is locally constant, the whole con-
nected component Def (pg) consists of maximal representations.

Indeed, the subset of maximal representations in % (I, PU(1,n)) is one connected
component [19]. The structure of the representations in this component is essentially
given by the above “trivial” example.

THEOREM 4.3. — [16] Suppose p : Iy — PU(1, n) is a maximal representation (i.e.
T(p) = 41t (g — 1)). Then p(I) preserves a complex geodesic in CH™ on which the action
is properly discontinuous and free. In particular, the representation p decomposes as p =
(p1, p2), where py : Iy — PU(1,1) is discrete, injective and cocompact and p; : Ty —
U(n - 1) is arbitrary.

4.3. Hermitian symmetric spaces

DEFINITION 4.4. — A Hermitian symmetric space X is a symmetric space admitting
a complex structure ] € End(TX) which is invariant under the group of isometries
Isom(X)° of X.

Let g denote the Isom(X)-invariant metric on X. The two-form w(X,Y) :=
g(JX,Y)isa G = Isom(X)°-invariant (and hence closed) differential two-form on X.

From now on we will consider only Hermitian symmetric spaces which are of non-
compact type without writing always “of noncompact type”. We will normalize the metric
on X such that the minimal holomorphic sectional curvature equals min(secp) = —1.

Recall the notion of the rank of a symmetric space.
DEFINITION 4.5. — Therank of a symmetric space X is the maximal dimension of a
totally geodesically and isometrically embedded Euclidean space in X.

The image of such a totally geodesically and isometrically embedded Euclidean space
of maximal dimension is called aflat in X. Maximal flats areIsom(X)° -conjugate.
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Making use of the complex structure on the Hermitian symmetric space X, maximal flats
give rise - by complexification - to maximal polydiscs in X which are defined as follows.

DEFINITION 4.6. — Let r be the rank of X. A holomorphically embedded Hermitian
symmetric subspace P C X isomorphic to D" is called a maximal polydisc in X.

4.3.1. The Toledo invariant.

Let G = Isom(X)° be the connected component of the isometry group of a Her-
mitian symmetric space. The Toledo invariant T is a locally constant function on the
character variety Z ([, G).

Let p : I; — G be a representation. Since X is contractible, the associated flat
bundle E, = Eg X, X admits a smooth section which lifts to a smooth equivariant map
f: ig — X. Thus the pull-back of the G-invariant two-form w via f descends to a
two-form on 2. The Toledo invariantis defined by integrating f* w over the surface Z;:

T(p) :=/ .
Zg

The Toledo invariant satisfies a generalised Milnor-Wood inequality (due to Domic-
Toledo [6] and Clerc-@rsted [5]):

IT(p)| < 4m(g - Dryx,

where rx is the rank of X.

Motivated by Goldman’s theorem we are interested in representations with T(p) =
4arr(g — 1)rx.

DEFINITION 4.7. — A representation p : T, — G is called a maximal representation if
T(p) = 4m(g - 1)rx.

ReEMARK 4.8. — Since T is locally constant, the set of maximal representations is a
union of connected components of % (I, G). This union of connected components will
be the generalisation of Teichmidiller space in the Hermitian context.

4.3.2. Examples of maximal representations.

We give some examples of maximal representations:

ExaMpPLE 4.9. — 1) Let hpa : PU(1,1) — G be ahomomorphism associated with the
diagonal embedding of a disc D into a maximal polydisc D" = P ¢ X. Then precompo-
sition of k4 with a representation po : I, - PU(1, 1) associated to ahyperbolic structure
in X, gives rise to a maximal representation p = ha ¢ pp : Iz — G. The image of I,
preserves the disc.
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2) The precomposition of a homomorphism hkp : PU(1,1)" — G, corresponding to
a maximal polydisc P c X, with a product p° = (py,...,p;) : Tz — PSU(1,1)" of
r = rankx representations associated to different hyperbolic structures on Z, gives rise
to a maximal representation. The image of [, does not preserve a disc in X, but the max-
imal polydisc P C X.

We want to exhibit geometric properties of maximal representations. In the com-
plex hyperbolic space they all preserve a complex geodesic. Complex geodesics in the
complex hyperbolic space are nothing else then maximal polydiscs. Thus one may sus-
pect that any maximal representation stabilizes a polydisc, meaning that the “trivial”
examples above already give essentially all examples of maximal representations. This
turns out to be wrong. Not all maximal representations stabilize a maximal polydisc in
X. To obtain a characterisation of maximal representations, we will need some more
background on the geometry of Hermitian symmetric spaces.

4.3.3. Bounded symmetric domains and polydiscs.

Hermitian symmetric spaces admit a generalised ball model, called the Harish-
Chandra realization @ of X. There is a biholomorphic map from X to a bounded sym-
metric domain & ¢ C” inducing an isomorphism of the connected component of the
isometry group of X with the connected component of the group biholomorphic auto-
morphisms of &, Isom(X)° = Aut(%)°, which links the Riemannian structure of X with
the complex structure of &. The Harish-Chandra realization & of X is a very convenient
model with arich structure.

DEFINITION 4.10. — The Shilov boundary § of a bounded domain @ c CV is the
unique minimal subset of @ with the property that all functions f, continuous on' @ and
holomorphic on @, satisfy | f (x)| < max s | f(y)| forallx € @.

There exists a maximal parabolic subgroup Q C G such that the Shilov boundary
is isomorphic to G/ Q, which - in the classical cases - is a generalised flag manifold. Let
Q°PP denote a maximal parabolic subgroup which is opposite to Q.

If the Hermitian symmetric space X is of rank 1, then § = 2@ is the whole boundary
and for any two distinct points in § there exists a unique geodesic in & joining these two
points. If the Hermitian symmetric space X is of higher rank, then $ is only a small part
of the boundary 4. Given two distinct points on S there might be either no geodesic at
all in & joining these two points or there are several geodesics joining them. The set of
pairs of points on § whiich can be joint by a geodesic in & can be identified with a subset
F C G/Q x G/Q°PP, being the set of transverse tuples of flags in the classical cases.

4.3.4. Tube type and not.

While all Hermitian symmetric spaces have a realization as bounded symmetric do-
main @ in CV, generalising the Poincaré disc model of the complex hyperbolic line (or
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the hyperbolic plane), the upper half plane model 54 = R + iR>° of the complex hy-
perbolic line can only be generalised for a specific class of Hermitian symmetric spaces.
This class is called “tube type”.

DEFINITION 4.11. — A Hermitian symmetric space X is said to be of tube type ifit is
biholomorphically equivalent to a tube type domain

Th={v+iwlveV,weQcV}

whereV is a real vector space and () is an open cone in V.

The map, called the Cayley transform which identifies & to its tube model Ty can be
explicitely described.

Irreducible classical domains of tube type are those associated to Sp(2n, R), i.e.
the Siegel upper half spaces 5%, furthermore those associated to the groups SO*(2n)
(neven), SU(n, n), SO(2, n). The exceptional bounded symmetric domain of rank 3 is
of tube type. The classical domains associated to SO* (2n) (n odd), SU(n, m) (n = m),
and the exceptional domain of rank 2 are not of tube type.

There are various criteria to distinguish tube type Hermitian symmetric space from
non tube type ones. Many of them are formulated in terms of the Shilov boundary. A
new characterisation using the geometry of the space of triples on the Shilov boundary
has been given in [18].

Bvery Hermitian symmetric space contains sub-Hermitian symmetric spaces of
tube type of the same rank. While two distinct points on the boundary of CH" determine
aunique geodesic and hence a unique complex geodesic (which is amaximal subdomain
of tube type in CH"), two points on the Shilov boundary of X lying in general position
determine a unique maximal subdomain of tube type.

PROPOSITION 4.12 ([18]). — Let X be a Hermitian symmetric space and let€,n € .
Assume that there exists one (hence many) geodesic in X joining € ton. Then thereis a
unique maximal sub-Hermitian symmetric space T of tube type in X containing € andn
on its boundary.

Thus, maximal sub-Hermitian symmetric spaces of tube type are a generalisation
of complex geodesics in complex hyperbolic space.

With this we obtain the generalisation of Toledo’s theorem

TuEOREM 4.13 ([3]). — Let X be a Hermitian symmetric space of noncompact type,
G = Isom(X)° the connected component of its isometry group. Suppose thatp : Ty - G
is a maximal representation. Then p(Iy) preserves a (maximal) sub-Hermitian symmetric
space T of tube typein X .

REMARK 4.14. — The theorem is not stated like this in [3], but this statment follows
from [3] and a property of a special class of totally geodesic embeddings, called tight
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embeddings, which are defined and studied in [18]. This result has been proven in {11]
for G = SU(2, g) and in [1] for G = SU(p.q).

4.4. Two other examples: Complex Grassmanians and Siegel space

The reader not familiar with (Hermitian) symmetric spaces might consider the fol-
lowing two examples as illustration of the above definitions.

4.4.1. Complex Grassmannijan.

Let V bea n = p+ g-dimensional complex vector space, endowed with a Hermitian
form & of signature (p, g). Assume without loss of generality that p < g. Denote by
(e1,...,€p, ept1,. .., €y) abasis of V, then we may assume that % is defined as

P q
h(z, w) = Z zZw; — Z ZptiWpti.
i=1

i=1
Let W, be the span of (ey, ..., ep) and W_ the span of (ep+1,...,€,) in V. Then hlw, is
positive definite, and the restriction of 4 to W_ = (W, )1# is negative definite.

Define

Xpq = {WP C V |hlwr > 0},

where WP C V is a p-dimensional subspace. The flats are the p-dimensional subspaces
W c V, which are spanned by (e; + A;te,.;) with (A;2)2 < 1,i = 1,... p. The rank of
Xp.qis p.

REMARK 4.15. — These examples include the real hyperbolic plane for p = g = 1
and the complex hyperbolic n-spacefor p=1,g9 = n.

To realize X) , as homogeneous space Gp4/K, choose %o = Wy € X, as base
point. Let G, ; = Aut(V, h), i.e.

Gpq=SU(p,q) == {ge SL(n,C) | g*Jg=T},

Id 0
* — ot = r
whereg* =g ?nd] ‘( 0 _qu).

Since SL(n, C) acts transitively on the p-dimensional subspaces of V, the group
Gp,q acts transitively on the p-dimensional subspaces of V' on which the restriction of
is positive definite.

A B\ .
(C D with AeMat(p, p, C),

B € Mat(p, g,C), C € Mat(g, p,C), D € Mat(g, g, C) we obtain the following condi-

Writing an element g€ SL(n, C) as block matrix g =
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tions:

A*A-C*C=1d,

B*B-D*D=-14,

B*A-D*C=0

det(g) = 1.

B 4 . .

c p € Gp,q preserves W™ iff C = 0, hence with the above condi-
tions B=0,A*A=1d,, D*D = 1d,, i.e.

An element g = (A

Stabg,,(W™) = K(p, q) = S(U(p) x U(g))
and X,, 4 = SU(p, 9)/S(U(p) x U(g)).

The flats are the p-dimensional subspaces W c V, which are spanned by a basis
e+ A,-te,,.,.,- with (Ait)z <li=1,...p

Next, we describe the Harish-Chandra embedding ® : X, ; — Mat(qg, p,C) ¢ CP7in
geometrical terms. The base point W™ induces a direct decompositionof V = Wrew ™.
Given any other point W € X, ;, we may decompose a vector w € W into its parts with
respect to the decomposition V = W+ e W~,

w = prly+(w) + prlw- (w) = v+ priw- o pr lw+(v),
with v = pr|y+(w). Thus we can write W as graph of the linear map
T = priw- o pr ly+ : WH - w~.

With respect to our specific choice of basis we identify the space of linear maps
L(W*,W~) = Mat(g, p, C). The condition that k|w > 0 translatestold,— Ty o Tiy > 0,
thus the Harish-Chandra embedding @ : X, , — Mat(g, p,C), W ~ Ty realizes X, , as

D,,q = {Z € Mat(q, p,C) | 1d, - Z*Z > 0}.

The action of Gp,4 on D, 4 is given by

g(2) = (é 1';) (2) = (AZ + B)(CZ + D)™,

and the topological compactification of 9y, 4 is
Dpq=1{Z € Mat(q, p,C) |1d, - Z*Z > 0}
The Shilov boundary is
Spq=1{Z € Mat(q, p,C) |1d, = Z*Z}.

If p = g, then §,,, = U(p).
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An example of a maximal polydisc in &), 4 is given by
P = {(Diag(z,...,2p),0) ||z < 1foralli}.

The Hermitian symmetric space X, 4 is of tube type if and only if p = q.

The two points Id, —Id on S",,,q determine uniquely the maximal subdomain of tube

type

Tpp=1{Z=(24,0) € Dpq| Zy € Mat(p, p,C)}.

In the tube type case, i.e. for &), , we have

Dy = To=Herm(p, C)+iHerm™(p,C)
1
V2

where Herm™ ( p, C) denotes the Hermitian ( px p) matrices, whose associated quadratic
form is positive definite. Furthermore Z € S, , with (iZ +1d) invertible is mapped to a
Hermitian p X p matrix.

Z - (Z + 1d)(iZ +1d) 7},

4.4.2. Moduli space of complex structures.

(A detailed description can be found in Satake’s book [15, Chapter I1,7].) Let V be a
real vector space with a nondegenerate skew-symmetric bilinearform 4. Then V is even
dimensional and with respect to a symplectic basis (e, . .., e;,), the form h is given by

_( 0 Idp
h= (-m,, 0 ) ’
ans Sp(2n, R) = Aut(V, h) c SL(2n,R). Denote by Z(V) the set of all complex struc-
tures on V. The symmetric space associated to Sp(2n, R) can be defined as the set

X ={I € g(V)| h(-, I-) is symmetric and positive definite}.

A basepoint, with respect to the chosen basis of V, is given by

— 0 _Idn
b= (Id,, 0 ) '
Let V¢ be the cbmplexfﬁcaﬁon of V. Extend h to a C-bilinear form on V¢. ForI € X
define V. (I) to be the (+1)-eigenspaces of the action of I on V¢. Then V¢ = V. ® V_, and
Vi = V_. Furthermore V. are isotropic subspaces for the extension of k. The restriction

of ih to V4 x V_ is nondegenerate and gives an identification V. = V;* of V_ with the
dual space of V,. Define a Hermitian form Ay, on V¢ by

Ap(v, w) = ih(v, w).
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The restriction of Ay, to V; is positive definite, the restriction to V_ is negative definite
and the restriction to Vi x V_ is zero. Thus the Hermitian form Ay, is a nondegenerate
Hermitian form on V¢ of signature (n, n).

Every complex structure I € X defines a subspace V.. ¢ V¢. This map identi-
fies X with the subset X;,, of the complex Grassmannian of n-dimensional subspaces in
cc2n):

Xon = {Va C Vc | hly, =0, Aplv, > 0}.

This also gives an embedding
X2n - Xn,n:

where X;, , is the symmetric space associated to SU(n, n) described above. This embed-
ding is holomorphic.

Similar to the case of X, ,, we obtain a bounded domain model:

Don ={Z € Sym(n, Q) |1d, - Z*Z > 0} C Dy

The Shilovboundary is

§:={Z e Sym(n,C) |1d, - Z*Z = 0}.

In the model X;,, the Shilov boundary consists of all subspaces V; C V¢ such that
hly, = 0 = Aplv,. Thus V, is the complexification of a Lagrangian subspace of V, hence
the Shilov boundary is isomorphic to the space of Lagrangian subspacesof V':

S=A(WV):={LcV|dm(L) =n, ki, =0}

Since D, is of tube type it admits a generalised upper half space model:
Tn = Sym(n, R) @ iSym(n, R)*,

where Sym(n, R)* are the positive definite symmetric matrices. In particular Ty, is the set
of all complex valued symmetric (z X n)-matrices with positive definite imaginary part.

5. Generalised Teichmiiller spaces in the Hermitian context

The Teichmiiller space may be considered as the set of all maximal representa-
tions in #(I'g, PSL(2, R)) as explained above. As a generalisation of Teichmiiller space
in the Hermitian context we propose to consider the set of all maximal representations
in Z (I, G) where G is the connected component of the isometry group of a Hermitian
symmetric space of tube type. (The case where X is not of tube type reduces to the tube
type case by Theorem 4.13.)
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5.1. Geometric characterisation of maximal representations
We recall the precise statement of the results announced in [3]:

THEOREM 5.1. — Let X be a Hermitian symmetric space of tube type and
G = Isom(X)® the connected component of its isometry group Let p : Ty — G be a maxi-
mal representation. Then:

(1) The Zariskiclosure L of p(Iy) is reductive.

(2) The symmetric subspaceY associated to L is a Hermitian symmetric space of tube
type and the inclusionY — T is a tight totally geodesic embedding (but not neces-
sarily holomorphic).

(3) Theaction of Iy onY via p is properly discontinuous without fixed points.

ReMARK 5.2. — 1) Tight totally geodesic embeddings are defined and studied in [18].
Results obtained there imply that there is a sub-Hermitian (i.e. holomorphically embed-
ded) symmetric space of tube type T C X containing ¥ on which the action of T gonY
via p is properly discontinuous without fixed points.

2) In the case where X is a Hermitian symmetric space of tube type, using Theo-
rem 5.1, one can explicitely construct maximal representations which do not preserve
any proper subspace in X (see [3]).

5.2. Interpretation of the results

Let G be a connected component of the isometry group of a Hermitian symmetric
space X of tube type and I;; = m,(Z;) the fundamental group of a closed oriented Rie-
mann surface. Let (I, G) be the character variety. The Toledo invariant is a locally
constant function

T: X[, G) — L.
Therefore the set of maximal representations is a union of connected components
Finax(Tg, G) = T‘l(4Tr(g— 1)r) c Z(I, G).

All representation in Z.x (I, G) are faithful, but unfortunately they do not have to be
discrete. Namely, the representation might factor as p = (py, p2) into a discrete and
injective representation p; : I'y — Land arepresentation p; : [y — Kpinto the centralizer
Ky of Lin G is-not necessarily discrete. Since at simple, i.e. rion singular points of the
character variety the centralizer K of Lin G is always discrete, these representations are
all discrete and faithful. Unless G = PSL(2, R) the image p(Iy) will not be cocompact.
But the quotients X/p(Iy) are nice open manifolds which are homotopy equivalent to
the Riemann surface Z,.

Except for G = PSL(2, R) the set % (I, G) always contains connected compo-
nents with singularities, since the centralizer of a diagonally embedded disc is not finite.
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Gothen showed in [10] that Zmax(Ig, PU(2,2)) is one connected component, whereas
the number of connected components of Zax (I, PSp(4, R)) grows exponentially in the
genus of the surface (see [10]). Furthermore, also the number of connected components
of Znax(Tg, PSP(4,R)) consisting entirely of simple points grows exponentially in the
genus.

6. Relations with Hitchin’s component

How are the maximal components Zmax(Ig, G) of the representation variety related
to Hitchin’s component 5# (I, G)? The case where G = Sp(n, R) is of special inter-
est since this is the only isometry group of a Hermitian symmetric space for which the
Hitchin componentis defined, but there are also some interesting relations in the general
case.

6.1. Anosov representations

Recall that for G = SL(n, R) Labourie characterised the representations contained
in the Hitchin component as Anosov representations. The concept of Anosov represen-
tation was however defined in a much wider sense for representation p : I; - G, where
G is any semisimple Lie group.

Let X = & be a Hermitian symmetric space of tube type and G = Isom(X)° the
connected component of the isometry group. Recall that the space of pairs of points
in the Shilov boundary § = G/Q = G/Q°PP of & which can be joined by geodesics is
identified with a subset & C G/Q X G/Q°PP. In particular & inherits two continuous
foliations &* from this product strucutre which are preserved under G. Thus we may
consider (&, G)-Anosov structures on Zg.

THEOREM 6.1 ([2], [18]). — All maximal representations are (¥, G)-Anosov represen-
tations.

REMARK 6.2. — A consequence of Theorem 6.1 is that maximal representations
have nice rectifiable limit curvesin S = G/Q.

6.2. The symplectic group

We may compare the distinguished connected components Znax(Tg, PSp(2n, R))
with #(Ig, PSp(2n, R)).

Computing the Toledo invariant of the reference representation p used to define
the Hitchin component we can show that this representation is maximal (see [3]), hence
the whole Hitchin component is contained in %nax(Ig, PSp(2n, R)). Thus we get an in-
clusion

H (T, PSp(2n, R)) € Fnax(Tg, PSp(2n, R)).
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Since Zmax(Tg, PSp(2n, R)) has singularities, whereas 5#(I'g, PSp(27, R)) is smooth, the
the space Znax(Ig, PSp(2n, R)) contains more connected components than just 5#(T,
PSp(2n,R)). Indeed, by [10] even the union of all nonsingular smooth connected com-
ponents in Znax (T, PSp(4, R)) consists of more connected components than just (T,
PSp(4, R)). Theorem 5.1 implies that the union of all nonsingular smooth connencted
compoents in Zyax (I, PSp(2n, R)) consist entirely of discrete and injective representa-
tions. In particular, one consequence of Theorem 5.1 is

THEOREM 6.3. — All representations in # (I, PSp(2n, R)) are discrete and injective.

6.2.1. The Anosov structure explicitly.

The Anosov structure given by a maximal representation p : Iy — Sp(2n,R) can
be described more explicitly in vector bundle terms. Let V be a (2r)-dimensional real
vector space endowed with a symplectic form A, then Aut(V, h) = Sp(2n,R). Recall
that a point in the Shilov boundary of the symmetric space X associated to Sp(2n, R)
corresponds to a Lagrangian subspace L ¢ V. Two points X, x; € S can be joined by a
geodesic if and only if the corresponding Lagrangian subspaces Ly and L; are transverse,
ie. Lo ® Ly = V. Since Ly and L, are Lagrangian subspaces of V, they are n-dimensional
and we have that I @ L; = V. Any point p C & thus defines a splitting of V' as direct
sum of two Lagrangian subspaces.

Letnow V, .=V X, T‘ig be the vector bundle associated to p : [ — Sp(2n,R) =
Aut(V, h). Then pis an (&, Sp(2n, R))-Anosov representation if and only if the bundle
V, admits a continuous equivariant splitting into two subbundles V, = V;j’ ® V,” such
that the lift of the geodesic flow ¢, to V,, is contracting on Vp+ and expandingon V.

It can be shown that for a maximal representation p : I[; — Sp(2n, R) there exists
such a splitting corresponding fibrewise to a splitting of V' as direct sum of Lagrangian
subspaces described above.

References

[1] ST. B. BrRabLOW, O. GaRrcfa-PraDA, and P B. GoTHEN, Surface group representations and U(p, q) -Higgs
bundles, ]. Differential Geom. 64-1 (2003), 111-170.

[2] M. BURGER, A. Iozzl, and A. WIENHARD, Maximal representations, in preparation.

[3] ,» Surface group representations with maximal Toledo invariant, C. R. Acad. Sci. Paris, Sér. 1 336

(2003), 387-390.

[4] S. Caor and W. M. GorLpmaN, Convex real projective structures on closed surfaces are closed, Proc. Amer.
Math. Soc. 118-2 (1993), 657-661.

[5] ). L. CLErc and B. @RsTED, The Gromov norm of the Kihler class and the Maslov index, Asian J. Math 7
(2003), 269-296.

[6] A.Dowmic and D. ToLepo, The Gromov norm of the Kéhler class of symmetric domains, Math. Ann. 276-3
(1987), 425-432.



(7]

(8]

19]

A generalisation of Teichmdiller space in the Hermitian context 123

E.B. DYNKIN, Semisimple subalgebras of semisimple lie algebras, Am. Math. Soc,, Transl, IL. Ser, vol. 6,
AMS, 1957, pp. 111-243.

‘W. M. GoLDMAN, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley,
1980.

W. M. GorpMaN, Convex real projective structures on compact surfaces, J. Differential Geom. 31-3 (1990),
791-845.

[10] P.B. GoTHEN, Components of spaces of representations and stable triples, Topology 40-4 (2001), 823-850.
[11] L. HERNANDEZ LAMONEDA, Maximal representations of surface groups in bounded symmetric domains,
Trans. Amer. Math. Soc. 324 (1991), 405-420.
[12] N.]J. HiTcHIN, Lie groups and Teichmiiller space, Topology 31-3 (1992), 449-473.
[13) E LABOURIE, Anosov flows, surface groups and curves in projective space, math.DG/0401230, 2003.
[14] J. MILNOR, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-
223.
[15) 1. SATAKE, Algebraic structures of symmetric domains, Kané Memorial Lectures, vol. 4, Iwanami Shoten,
Tokyo, 1980.
[16] D.ToLEDO, Representations of surfacegroups in complex hyperbolic space, J. Diff. Geom. 29-1 (1989), 125-
133.
{17] E.B. ViNBERG (ed.), Lie groups and Lie algebras, IIl, Encyclopaedia of Mathematical Sciences, vol. 41,
Springer-Verlag, Berlin, 1994, Structure of Lie groups and Lie algebras, A translation of Current problems
in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i
Tekhn. Inform., Moscow, 1990 [MR 91b:22001], Translation by V. Minachin [V. V. Minakhin], Translation
edited by A. L. Onishchik and E. B. Vinberg.
[18] A.WIENHARD, Bounded cohomology and geometry, Ph.D. thesis, University Bonn, 2004.
[19] E.Z.Xia, The moduli of flat U (p, 1) structures on Riemann surfaces, preprint, 2001.
Anna WIENHARD
Universitdt Basel
Mathematisches Institut
Am Rheinsprung 21

CH-4051 BASEL (Switzerland)
anna.wienhard@unibas.ch



