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THE HODGE LAPLACIAN ON MANIFOLDS
WITH BOUNDARY

Pierre GUERINI and Alessandro SAVO

Abstract

This survey paper is an expanded version of seminars given by the authors at the
Institut Fourier. Its main scope is to discuss the first positive eigenvalue 1, of the
Hodge Laplacian acting on differential p-forms on a manifold with boundary.

In section 2 we review the Gallot-Meyer and Chanillo-Treves estimates valid for
closed manifolds.

In section 3 we give the two general inequalities of [G-S] which will imply some new
estimates for manifolds with boundary.

These are given in section 4. More precisely, we first give a lower bound of y,, for
manifolds whose boundary have some degree of convexity, and then we show that on
convex Euclidean domains the first eigenvalue for the absolute conditions is nonde-
creasing with respect to the degree: py,, > Hj,p-1. We then discuss explicit geomet-
ric bounds from [G-S] and [G1].

In section 5 we first show that the classical isoperimetric inequalities which are valid
for functions do not extend to forms; then we show that the inequality p11,p > H1,p-1
does not in general, thus justifying the convexity assumptions in section 4.

Finally in section 6 we expose a theorem in [G2] which shows that the Hodge spec-
trum can be prescribed on Euclidean domains.

1. General facts

Even if we are mostly interested in the case of manifolds with boundary, we start by
recalling the main facts on the Hodge Laplacian of closed manifolds. So, let (M", g) be a
compact Riemannian manifold without boundary, of dimension #n. For p € {0,..., n},
the Hodge Laplacian A, which acts on smooth differential p-forms w € AP(M), is de-
fined by:

Aw = (dé+déd)w
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where d is the exterior derivative and 6 = d* is its formal adjoint with respect to the
L? inner product on forms. One has § := (~1)™P*D+*1 & dx where « is the Hodge star
operator.

The Hodge decomposition theorem states that we have an orthogonal direct surn:
AP(M) = P (M) ® d(AP~H(M)) @ 5(AP (M),

where 5# 7 (M) is the space of harmonic p-forms, solutions of the equation Aw = 0. The
importance of harmonic forms is given by the Hodge-de Rham Theorem, which follows
immediately from the above decomposition:

THEOREM 1.1. — Thespace# P(M) is isomorphic to thereal p-th de Rham cohomol-
ogy spaceof M; in particular, each de Rham cohomology class of M has a unique harmonic
representative.

More generally, one is interested in the spectrum of the Hodge Laplacian, which is
a discrete sequence of nonnegative real numbers tending to +c, and in particular to the
first positive eigenvalue of A, which we denote by y,,. Note that the Hodge x operator
is an isometry commuting with the Laplacian and therefore we have the Hodge duality
between the eigenvalues:

Hi,p = H1,n-p-

As the Laplacian on p-forms is associated to the quadratic form

Qw, w) =/ ldewl? + 5w,
M
we have the following variational characterization of y;, p (min-max principle):

uy,p(M) = inf {2 (w), w = 0, w € P (M)*}

where
_ fM ldwl? + |swll?

[ Tl

Z(w)
is the Rayleigh quotient of w.
IfoM = @, we need to specify the boundary conditions.

Let ¥ be the inner unit vector normal to M, and consider the eigenvalue problem
defined by the absolute boundary conditions :

Aw = uw
JYizw = J*igdw =0

where iy is the interior multiplication and J : oM — M is the canonical inclusion.
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Let us say that the form w is tangentialif it vanishes whenever one of its arguments
is a vector normal to the boundary. Hence w satisfies the absolute boundary conditions
iff both w and dw are tangential.

The dual boundary conditions are the relative ones:
Aw = Aw
Jfw=J"6w=0

The above boundary conditions are justified by the following generalization of the Hodge - .
theorem when oM = Q.

THEOREM 1.2. — The space of harmonic p-forms satisfying the absolute (resp. rela-
tive) conditions is isomorphic to the real p-th absolute (resp. relative) cohomology space
of (M, oM).

The proof is based on a suitable Hodge decomposition of A?(M) (see for example
[Sch.

It should be noted that, when the boundary is not empty, the equation Aw = 0
does not imply that dw = §dw = 0 without suitable boundary conditions; moreover,
the vector space of all forms which are at the same time closed and co-closed is infinite
dimensional. By Stokes formula, one verifies that

{Aw=0 . {dw=6w=0

T iyw = J*igdw =0 J*izewo =0

We shall adopt the following notation for the eigenvalues:

oM = @ or
oM = @ for the absolute conditions

,p(M) = first positive eigenvalue of A if {
and,ifoM = &:
Ay, p(M) = first positive eigenvalue of A ,, for the relative conditions.
The Hodge * isomorphism exchanges the two boundary conditions and implies that

M1, p(M) = Ay p- p(M);

in particular p;,0 (M) is the first positive eigenvalue of the Laplacian on functions, for the
Neumann conditions, and

Ao(M) = py,n(M)

is the first (positive) eigenvalue for the Dirichlet conditions.
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The above Hodge eigenvalues verify the min-max principle:
p,p(M) = inf{22(w), w = 0, isw =0, w € 3] (M)*}

where JJX’ (M) is, as remarked above, finite dimensional and isomorphic to the p-th ab-
solute cohomology space of M. The first relative eigenvalue A, ,, verifies a similar varia-
tional principle.

By the Hodge decomposition:

where y , (resp. uy ) is the first eigenvalue of the Hodge Laplacian restricted to the
exact (resp. co-exact) forms.

2. Two known estimates for closed manifolds

2.1. The Gallot-Meyer estimate

The first estimate for u,,, was given by Gallot-Meyer [G-M1]. It is nontrivial only
in positive curvature, more precisely, when all eigenvalues of the curvature operator are
bounded below by a positive constant y. It uses the Bochner formula for p-forms:

1
(Aw, w) = [|[Vw|I® + 5A<nwnz> + Wpy(w, w).

where the curvature term W,(w, w) can be written in terms of the Riemann tensor. In
particular W; = Ric.

THEOREM 2.1. — Let M™ be a compact manifold without boundary having curvature
operator bounded below byy > 0. Then:
Hip 2 c(n, p) -y

where
c(n, p) =min{p(n- p+1),(p+1)(n- p)}.
Equality holds for the canonical sphere.

Proof. The main points of the proof are the following estimates:
Wy(w, w) > p(n— p)yllwl?

| 6w]|? + ldw]|*
n-p+1 p+1°

IVl >

Then, one integrates the Bochner formula applied to an eigenform w associated, respec- .
tively, to yj , and py ,, and observes that, by the Stokes formula:

! 2y =
/MEA(IIMI )=0

because oM = <. B
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REMARK 2.2. — The same estimate holds if M has a convex boundary (more gener-
ally p-convex boundary, see section 4 for the definition). In fact in that case:

/ LaGiw?) >0
M 2 :

provided that w satisfies the absolute boundary conditions.

2.2. The Chanillo-Treves estimate

Chanillo and Treves have a given in [C-T] a lower bound which is valid for any ori-
entable compact manifold. Their inequality involves the cardinality of a finite covering
of the manifold with geodesically convex balls, their radii as well as positive upper and
lower bounds on the norm of the differential of the exponential map. Their result can be
stated as follows:

THEOREM 2.3. — For any compact orientable manifold of dimension n
“],p 2 C(‘xl Dr 1o, n)

‘where c(a, D, ry, n) is an explicit positive constant depending on an upper bound « for
the absolute value of the sectional curvatures, the diameter D and the injectivity radius ry.

Sketch of proof. Consider a finite covering {U;},¢ign of M such that for any i,
U; is the image by the exponential map of a ball B(#;,rp), 70 < 1. One assumes that
there exists a positive constant A such that for any i, A™! < ||d exp, |l < A. The crucial
estimate of the proof is then the following lemma:

LeMMA 2.4. — Thereexists a positive constant C which only depends on A and n such
that, for any exact p-form w = dp with B co-exact, one has:

1Bll2 < CroN*Pllw]| 2.

It immediately follows that

1
Hi,p 2 C2RANT D

The constants C and N may then be controlled by the constants «, D and rp. B

The theorem shows in particular that in the class of manifolds-whose sectional cur-
vatures and diameter are uniformly bounded one can get small eigenvalues for the
Hodge Laplacian only under collapsing, that is, under the assumption that the injectivity
radius tends to zero.

Note that Colbois and Courtois have obtained in [C-C] a similar result; however their
constant is not explicit, as the method relies on Gromov’s compactness theorems.
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3. Two new estimates

We give here two estimates which will imply the main results of [G-S]. The firstis a
general estimate of the ratio [, ¢/ f;, ¢ for a non negative function ¢ on M satisfying
suitable conditions; applied to the squared norm of an eigenform, it will be used to geta
lower bound for y;, , (M) for manifolds with boundary having some degree of convexity.

The second is an extrinsic lower bound for the L2-energy of co-closed forms on a
manifold which is isometrically immersed in Euclidean space. It will imply some bounds
for the eigenvalues of forms, in particular on Euclidean and spherical domains.

3.1. First estimate

Let M be a manifold with boundary and

(n — 1)K = lower bound of the Ricci curvature of M
H = lower bound of the mean curvature of oM
R = inner radius of M

-We assume for simplicity the curvature condition:
max{K, H — /|K|[} > 0. 3.1
Then one has:

TueoreM 3.1 ([G-S], Thm 3.1). — Let M be a Riemannian manifold with smooth

boundary, and assume that the non-negative function ¢ satisfies A¢p < u¢ on M, for

(n—1)?

somep € R. Fixanyt € (0, 2—1;). Then, ifu < H? + t2, one has:

/ ¢2[n—1H+tcot(Rt)]-/ . (3.2)
oM 2 M

RemaARrk 3.2. — The proof uses the distance function p from the boundary of the
manifold. The theorem holds without the curvature assumption (3.1); in that case the
constant (n—1) H must bereplaced by the infimum A of the regular part of Ap, which can
be estimated by Heintze-Karcher type theorems (see Def. 4.11 in [G-S)). Indeed, under
the assumptions (3.1), the infimum is attained on oM, and its valueis A = (n - 1) H.

Sketch of proof of Theorem 3.1. Let F(r) = f M) ¢, where M (r) is the set of points
whose distance from the boundary is larger than . Then, by the mean-value lemma ({S],
Thm 2.5) F (r) satisfies the differential inequality in the sense of distributions:

F'(r)+(n-1)HF' (r)+ u,F(r) >0
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( n-1 )2 2 2 . . . s
where y;, = ———— H* + t*. Let y(r) be the solution of the corresponding differential
equation with the same initial conditions, which is explicitly given by

y(r) = elZ__lH’(dl costr — dpsintr),

wheredy = [}, ¢andd, = 1 [, ¢ — %' H [,, ¢. By standard comparison arguments,
F(r) > y(r) hence the first zero of F(r), which is R, is larger than or equal to the first
zero of y(r). This implies the result. ®

~ The bound is somewhat sharp; in fact, observe that a positive eigenfunction as-
sociated to Ao satisfies faM ¢ = 0, hence if H > 0 the inequality (3.2) can't hold for

1
t € (0,T/(2R)), s0 A1 0(M) > Z(n - 1)2H? + ¢? and by letting ¢ tend to 77/(2R), one
gets:

CoroLLARY 3.3. — Let M be a Riemannian manifold with smooth boundary satisfy-
ing the curvature condition (3.1). If H > 0, then:

AoM) > L(n 1)2HZ+-Ti
VORI 2y 4R?’

The bound is sharp in the following two cases. First, if M = Bj is a geodesic ball in
H", then H = coth R > 1 = +/|K]| for all R; hence:

Mo(M) > L(n 1)2cotth+—Tr2
1,0 =z 4 4R2
1
> =(n-1)>
4( )

which is well-known, and is sharp as R — o by a result of McKean [McK]. If K = H = 0,

the bound becomes

.n.Z

4R?

which is originally due to Li and Yau [L-Y], and is sharp for flat cylinders, that is for any
manifold which is the Riemannian cartesian product of a closed manifold and the inter-
val [0, 2R].

A o(M) 2

3.2. Second estimate

Let M" — R? be an isometric immersion. For any vector v normal to M, consider
the shape operator S, relative to v; it is the self-adjoint endomorphism of TM defined
by the identity

(Sv(X),Y) =(L(X,Y),v),

forall X,Y € TM,where L(X,Y) is the second fundamental form of the immersion. We
extend S, by derivation to a seif-adjoint operator S\[,” ] actingon AP(M). If (vy,...,Vm)
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is an orthonormal basis of the normal bundle of M (m = d — n being the codimension
of the immersion), and w is a p-form, then we let

m
ISt wl? =3 " istPwl?.

o=1

The second main estimate gives a lower bound for the energy of co-closed forms on M.

THEOREM 3.4 ([G-S] Thm 2.1). — Let M™ — R? be an isometric immersion and w a
co-closed p-formon M, with p € {1,...,n}. IfoM * O, we assume in addition that w is
tangential to oM. Then:

/{IIVwIIZ+IIS[’”]wl|2+(p—1)|Ide2> pu{,p(M)/ ol
M M

The inequality is sharp for any eigenform associated to p;’ p(S"), where S™ — R™ is the
standard immersion of the canonical sphere.

We give a rough idea of the proof. We take the inner product of the co-closed p-
form w with a suitable family of vector fields on M; this family, parametrized by $¢71, is
given by the projection on M of parallel vector fields on R of unitlength. If V is any such
field, the (p—1)-form iy w will be co-exact and so it will be a test-form for the eigenvalue
HY p-1(M) = M, »(M). By the min-max principle, we obtain the following inequalities,
indexed by V e s4°1:

1, (M) / livewl® < / | diy wll®.
M M
The final result is obtained after integration on $4-!.

7

When w is an eigenform associated to 1y,

bound of py P~ My p (see Theorem 4.8).

the theorem will give an extrinsic lower

The above theorem may be viewed as a generalization of the following inequality,
valid for closed manifolds M, and obtained by Reilly, see [R]:

Vol(M
/ nEp2 > LM o (3.3)
M n

where H is the mean curvature vector of the immersion. In fact, (3.3) follows by applying
the Theorem to the volume form of M.

4. Estimates of the eigenvalues for manifolds with boundary

The estimates here are based on-the theorems of the previous section, and on the
Bochner formula. They involve what we call the p-curvatures of the boundary. Let S be
the shape operator of the immersion 0M — M relative to the inner unit normal v.
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Let us list the principal curvatures of oM, at any of its points, in a non-decreasing
order:
ms<ms - <M

The (";l) numbers:

Ny + - +n;,

where i) < - - - < ip, are called the p-curvatures of 0M. Let us denote by
Op:=m+---+np
the smallest p-curvature of 9M at x, and let

op(0M) = xlergd Op(x).

Note that
01(0M) = lower bound of the principal curvatures of oM
:"_11 = H = lower bound of the mean curvature of oM

Oneseesthat H > 0,/ p > o, forall p. We will say that 9M is p-convex if o, > 0. Hence
the condition of p-convexity is intermediate between the usual condition of convexity
and that of having non-negative mean curvature. Note that "convex" implies " p-convex"
forall p.

The p-curvatures show up because they are the eigenvalues of S[?!, the self-adjoint
extension of the shape operator acting on p-forms on 9M, defined by

)
S w(Xy,..., Xp) =Y w(Xy,...,8(X), ..., Xp).
i=1

In fact, the term in Bochner formula:

1 2
ZAA(Ilel )

is simply zero when M is closed. When M *= @& and w satisfies the absolute boundary
conditions one has (see Lemma 4.101in {G-S]):

1
-~ ] Allw|?) = / (Vyw, w)
2 /m “Joam

= / (S'P (7* w), T* w) @.1)
M

> a,,/ lwll?.
oM

In particular, if the boundary is p-convex:

1
—/ A(llwll®) > 0.
2 /M
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4.1. Applications of Theorem 3.1: manifolds with p-convex boundary

The scope of the following estimate is to generalize the Gallot-Meyer estimate when
oM + @. Recall that we defined:
(n — 1)K = lower bound of the Ricci curvature of M
H = lower bound of the mean curvature of oM

We assume the curvature condition as in (3.1): max{K, H — /|K|} > 0.

THEOREM 4.1 ([G-S], Thm 3.3). — Let M be a manifold with boundary with curva- -
ture operator bounded below by y € R and p- curvatures of oM bounded below by op, > 0.
Then:
H,p = pln—p)-y+c(np)- ol

min{ n R p}. In particular:

-1
where: ¢'(n, p) = n

2p?

—1)2
Hip-1=A > (n-1)K+ (n—g—)H2

Sketch of proof. Integrating the Bochner formula applied to an eigenform associ-
ated to uy, p, one gets (taking into account (4.1)):

H,p2 p(n—p) -y+0op,- M
[y w2
The improvement over the (z}allot-Meyer estimate consists in finding a positive lower
bound for theratio: %—lsl:lz' For thatwe apply Theorem 3.1 to ¢ = ||w||?; this will lead

to the term ¢’(n, p) - oﬁ involving the lower bound of the p-curvatures of the boundary.
COROLLARY 4.2. — If the Euclidean domain M satisfies o), > 0, then:
1>
Hi,p > §U P
In particular, if the mean curvature of oM is positive:

(n-1)>?
8

Hipn-1=A11 > H?.
We will use the corollary to show in section 5, that the classical Weinberger inequal-

ity does not extend to p-forms, when p > 2. For other bounds of u,,, for convex Eu-
clidean domains, see the next section.

The theorem sometimes gives a positive lower bound also when the inner curvature
(that is, y) is negative, provided that the p-curvatures are positive enough. For example,
we see what happens for a domain M in the hyperbolic space.
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The next corollary shows that, if the principal curvatures of the boundary are not
less than 1, and the degree is sufficiently small with respect to the dimension, then A, , is
bounded below by a positive constant depending only on the degree and the dimension.

CoROLLARY 4.3. — Let M be a (convex) domain in H" with principal curvatures
bounded below by 1. Then:
ALp = cp(n— 1)2
7P +2p

. 1
forall p < (n - 2)/8, withcp, = 3 ml_)z-

positive and depending only on p. In
particular, forn > 10:

1
Al,l > —7-5(?'1 - 1)2

REMARK 4.4. — It is well-known that any hyperbolic domain (not necessarily con-
vex) satisfies the inequality:

1
Aro(M) > Z(n -1)% (4.2)
The above corollary generalizes this property under the given conditions. In fact, without

further assumptions, (4.2) can't hold for A,,,, p > 1: there exists a family of hyperbolic
domains M, (even with uniformly bounded diameters) such that:

lel_r.% )\l, p(Mp,s) =0
(see Remark 5.6).

REMARK 4.5. — Note that there exist domains with arbitrarily large diameter satis-
fying the condition in Corollary 4.3 (for example, geodesic balls).

Moreover, the second author has verified that:
; n
lim A,,p(B"(R)) =0 for p>-——,

thus showing that a condition on the degree p is necessary, although our condition p <
(n — 2)/8is not sharp.

4.2. Applications of Theorem 3.4: Gap estimates

In this section we apply Theorem 3.4 to study the gap of the first eigenvalue on forms
for different values of the degree of the form; typically, we examine what we call the p-gap
of the manifold:

Hi,p — H1,p-1-

Knowing that the gap has a certain sign, one can deduce bounds for the eigenvalues
themselves (see Theorem 4.7 below). We note that the 1-gap is always non positive:

H1,1 < Hip-
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To see that, take a first eigenfunction (with Neumann conditions if oM = &) and differ-
entiate it.

Takahashi proved in [T] the following result on the 1-gap:

THEOREM 4.6. — Any closed differentiable manifold of dimension n > 3 admits a
metric with )1 < Hy,0 and one with (1 = Hj 0.

This shows that topology has no influence on the 1-gap of closed manifolds.

Let us come to manifolds with boundary, in particular, Euclidean domains. In that
case, we always have in fact the inequality:

Hio < Hi,n,

which is just a restatement of the well-known inequality between the first Neumann and
Dirichlet eigenvalues:

1,0 < Arp,

and which can be proved by the classical Weinberger and Faber-Krahn inequalities:
H1,0(M) < p1,0(M*) < A10(M™*) < A10(M).

Here M * is the ball having the same volume of M. The middle inequality comes from an
explicit estimate.

So, therigidity of the Euclidean metric might a priori imply some rigidity for the sign
of 4y, ,— 1, p-1- Theorem 5.7 in Section 5 shows that this is in fact not true, for most values
of p at least. It also actually shows that on any compact differentiable manifold with
boundary, of dimension n > 3, one can find metrics for which the p-gap may assume

any sign.

So, in order for the gap to have a definite sign, we need to impose some geometric
condition on oM. The main application of Theorem 3.4 shows that p-convexity is one
such sufficient condition for Euclidean domains.

TueoreMm 4.7 ([G-S], Thm 2.6). — Let M be a Euclidean domain.

@) Ifo,(0M) > 0, then py,p > My, p-1.

b) If M is actually convex, then:

Mo =H1,1 S M2 < - < Hyne

and, forall p < n/2:
H1,p < Ayp.

In particular, the first eigenvalue of p-forms, for either the absolute or relative condi-
tions, lies in the interval [ o, A1 0]
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If M is convex Theorem 4.7, together with the Payne-Weiberger inequality on ;o
and the domain monotonicity for A; o, implies the estimate:

2
w Jn

Gamn)? SHPS R
where j, = first Dirichlet eigenvalue of the unit ball.
For example, for vector fields on a convex domain in R® one gets:

o Julcurl XI2 + 11 divX | j2
diam(M)? = S 1X112 SR

provided that X is everywhere tangential or everywhere normal to the boundary.
For convex Euclidean domains, the lJower bound:

max{p(n - p),n— 1} . 1
ned diam (M )?

Hi,p =
was obtained by Guerini ([G1]), by using a totally geodesic projection on the sphere and
the theorem of quasi-isometry of Dodziuk (see [D], Prop. 3.3).

Let us now give a more general result on the gaps of an isometric immersion, which
follows from Theorem 3.4. By T!?! we denote the endomorphism of A?(M) which is
associated to the quadratic form || Sw||? (see Theorem 3.4 ).

By Hodge decomposition, inequalities for uy’ p -y, p Willimply inequalities for p;, ,—
Hi,p-1-

TuEOREM 4.8 ([G-S], Thm 2.3). — Let M™ — R? be an isometric immersion with M
either closed or with a p-convex boundary. Forallp=1,...,n — 1, one has

rr (4 1 .
(M) = H,p(M) > = inf(W, = Ty).

The notation on the right-hand side refers to the infimum over x € M of the lowest eigen-
value of W), — T, acting on p-forms at x.

The inequality is sharp if M = S", or M is a hemisphere of S™, in which case u;' P
Hip=n-2p.

For the proof, just apply Theorem 3.4 to an eigenform associated to py’ p» and use
the Bochner formula.

For Euclidean domains, one has T!?! = W, = 0 and Theorem 4.7 follows; for spher-
ical domains W, = p(n — p) - Id, TP = p? . Id, and one gets:
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THEOREM 4.9. — Let M be a convex domain of S*, and S’ the hemisphere. Then:

Hi,p(M) — iy, p1(M) 2 n—2p
= U1, p(ST) — p1,p-1(SH).

Moreover, the spectrum of the Laplacian on p-forms, for either the absolute or rela-
tive conditions, is bounded below by p, 0, that is, by the first Neumann eigenvalue of the
Laplacian on functions. Finally, forall p < n/2:

Hi,p < App-

For closed manifolds, the condition Ric > 0 implies that py o > 702/ D? (see [L-Y]),
hence when the diameter is bounded the eigenvalue 0 = p; ; cannot be small. On the
other hand it might happen that ', is arbitrarily small (for example, for suitable Berger
spheres, see [C-C]), so that in particular y;,; < .

The next corollary gives a somewhat stronger extrinsic condition on the Ricci cur-
vature of an immersion for having u; ; = p;,0; here the immersed manifold M is either
closed or with a convex boundary.

COROLLARY 4.10. — (@) Let M™ — R? be an isometric immersion. IfRic > T atall
points of M, then iy 1 (M) = py,0(M).

() Let M™ be a convex hypersurface of R™"!, and assume that, at any point of M,
any fixed principal curvature of M is not greater than the sum of all the others. Then
11 (M) = pyo(M)

In (b) we assume that the principal curvatures of M are all nonnegative: this is pos-
sible by choosing appropriately the unit normal field v on M. Note also that T js a
nonnegative operator.

Using bounds on pu; o the corollary implies bounds for p;,;. Note that the first author
proved in [G1] the inequality

max{l, p} 1
> .
Hip 2e3 diam(M)2

which is valid for any convex hypersurface of Euclidean space.
5. Construction of gaps; counterexamples

5.1. Isoperimetric inequalities: functions vs. differential forms

The first positive eigenvalues of the Laplacian acting on functions on a Euclidean
domain satisfy strong isoperimetric inequalities which only involve the volumes of the
domains (and no other geometric invariants), independently of their topology.
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FABER-KRAHN INEQUALITY. — Let Q be a domain in R” and Q* the Euclidean r-
dimensional ball having the same volume as Q. Then, in the case of the Dirichlet prob-
lem, the first eigenvalue of the Laplacian cannot be small if V 0/(Q) is not large. More
precisely, the Faber and Krahn inequality (see [Ch]) asserts that

AL0(Q) = A10(Q%) (5.1)

with equality iff Q and Q* are isometric. Note that this is the spectral viewpoint of the
isoperimetric inequalityin R".

We prove that this inequality does not extend to the eigenvalues A, ,, p > 0, even
for convex domains. The construction is quite simple. Consider, for R >> 1, the domain -
inR™

Qr=B"1(R) x (0,¢)
which can be smoothened and can be made of volume 1 for a suitable choice of € = €(R).
Note that Qp is convex. We show that

lim Ay,p(Qg) = 0 (5.2)

forall p > 1.

We construct the test-form as follows. Let ¢z : (0, R) — (0, 1) be a smooth function
such that:
0 on [R-1,R]

¢R(r)={1 on [0,R-2]

and with first derivative bounded independently of R. We consider the p-form:
wr(x) = (dp(x))dxy A= -+ ANdXpy A dxp,

where d,,(x) is the distance from the axis of the cylinder, that is, the x,-axis. One verifies
that wp, restricts to the zero form on the boundary, hence is a test-form for the relative
boundary conditions, and that the Rayleigh quotient of wp tends to zero as R — oo, thus
showing the assertion.

REMARK 5.1. — As Qp is convezx, it is enough to show (5.2) only for p = 1, because
by Theorem 4.7 onehas Ay, < Ay forall p > 1.

WEINBERGER INEQUALITY. — In the case of the Neumann problem, the first non-
zero eigenvalue satisfies an opposite property: it cannot be large if the volume-of the
- domain is not small. One has namely the Weinberger inequality-(see [W])

H1,0(Q) < p1,0(Q%) (5.3)

with again equality iff Q and Q* are isometric.
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It has been proved in [G2] that (5.3) does not extend to uy,, for p > 2 (for p =1 (5.3)
is actually true, see the Remark 5.3 below).

In fact take, for R >> 1 a "thin cigar” Q(e, R) whose boundary is the cylinder
$™1(e) x (0, R) at the ends of which we glue two hemispheres of radius €, and choose
€ = €(R) so that the domain has volume 1. Note that Q(e, R) is convex.

It follows from a lemma due to McGowan (see [G-P] and [McG]) that for any p > 2:
}%im My, p(Q(R, €)) = +oo.
REMARK 5.2. — We now give also a direct proof of the above fact, which uses Corol- -

lary 4.2. Infact, at any point of the boundary of Q(R, €), atleast n— 1 principal curvatures
are equal to 1/¢, so that 02 (2Q2(€, R)) > 1/€. Therefore, if p > 2:

op(0Q(€, R)) 2> 02(0Q(€, R)) — oo

as R — oo (so that e — 0 because the domain has volume 1). By Corollary 4.2
1
1,p(Q(e, R) > 207,(00(€, R)) — o
as R — oo.

ReMARK 5.3. — For any domain Q one has, using the Weinberger inequality as well
as Theorem 4.7 applied to balls:

H1,1(Q2) < H1,0(Q) < Hyo(Q%F) = 1 1(Q%).

Hence 11,1(Q) < 1,1(Q*), i.e. the Weinberger estimate extends to 1-forms with the
absolute boundary conditions. '

5.2. Construction of gaps

We now give constructions which show that p-gap

Hi,p — Hi,p—1

of suitable Euclidean domains may assume any sign without geometric assumptions;
hence, the monotonicity of the finite sequence (1, p) o< p<» Which is satisfied in the case
of convex Euclidean domains (see section 4) does not hold in general: much liberty re-
mains in the construction of gaps, even if we impose a strong rigidity on the metric (i.e.
Euclidean os spherical).

The results of this section are essentially based on the existence of small eigenval-
ues on some Euclidean domains diffeomorphic to balls, with uniformly bounded diam-
eters. These domains are natural generalizations to p-forms of the well known "Cheeger
dumbbell balls".
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THEOREM 5.4 ([G2]). — Foranyintegersn > 2andp € {1,...,n—1} andanys > 0
there exists a domain Qp . C R" diffeomorphic to an n-dimensional ball and of diameter
not larger than 2 such that

1 py,(Qpe) ~ 0ase — 0,

2. Uy ,(Qps) 2 Cand H14(Qpe) > C foreach q + p where C is a positive constant
independent of ¢.

REMARK 5.5. — Using homotheties, one may.actually assume that the diameters of
-our domains are smaller than any positive constant fixed in advance. In particular, the
monotonicity with respect to inclusion is only satisfied by A o.

REMARK 5.6. — By the quasi-isometry theorem of Dodziuk, one obtains domains in
hyperbolic space with the same properties.

Let us sketch the constructions of the domains. The Q; ,’s are the classical dumbbell
balls; the construction consists in linking two balls (i.e. a tubular neighborhood of a 0-
dimensional sphere) by a cylinder of given length and small radius . This may be done
keeping the diameters of the domains smaller than or equal to 2. As ¢ tends to zero, the
domain, which is topologically a ball, "tends" to the union of these two balls and one
easily shows that the harmonic function whose value is 1 on the first ball and —-1 on the
second leads to a test function on the dumbbell, of mean value 0 and whose Rayleigh
quotient tends to zero. Hence the eigenvalue 1 o also tends to zero and, consequently,
so does py ;.

This idea can be extended to differential p-forms. Indeed, instead of taking a tubu-
lar neighborhood of a 0-sphere one takes, for 2 < p < n — 1, a tubular neighborhood
of $P71 < R”. Thisis the "thick" part of the domain we are constructing. Then one gets
a topological ball Q,, . by glueing to the thick part a small tubular neighborhood B(¢)
of the p-dimensional ball whose boundary is the sphere SP~! we started with (this is the
"thin" part). See Figure 1 where we represented s cross-section of the thick and thin parts
of Q. in R3.

A non zero harmonic (p — 1)-form on $?~! then yields a test form on Q,,. whose
Rayleigh quotient tends to zero as ¢ tends to zero. This explains why py,,1(Qp,¢) tends
to zero with &.

To get the more precise result on the exact eigevalues, one then needs some more
work, using the lemma of Mc Gowan (note that the case of classical Cheeger dumbbell
balls follows from the study of Colette Anné in [A]).

This construction may be used to construct gap metrics on manifolds with bound-
ary. Indeed, by Theorem 5.4, one obtains for n > 2, if € is small enough,

e The p-gapon Q. iszero,ifl< p<n-1
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Y \.—.—Thick part

‘~ == - Thin part

Figure 1: Cross section of Q; . in R3.

e The p-gap on Qp_ ¢ is positive, if 2 <

p <
e The p-gap on Qp+),c isnegative, if1 < p<n—-2

The following theorem shows that on any compact manifold we can choose metrics
so that the p-gap may assume basically any sign. It is obtained by attaching to a given
manifold the domains Q.

THEOREM 5.7 ([G-S], Thm 1.1). — Let M be a smooth compact manifold with bound-
ary of dimension n > 3 and let p be an integer in {1,..., n}. Then there exist metrics
81,p» &2,p» 83,p ON M such that:

1. for any p the p-gap on (M, g1,p) is zero;
2. if p # 1, then the p-gap on (M, g, p) is positive;

3. if p # n, then the p-gap on (M, g, p) is negative.

If M is a Euclidean (resp. spherical) domain, then the metrics g1,, (p * n), &,p
(p+ 1)and gs,p (p + n— 1, n) can be chosen to be Euclidean (resp. spherical). -

It should be remarked that in the case of Euclidean domains, Theorem 5.7 is in most
degrees a consequence of a stronger theorem on the prescription of the spectrum, which
is explained in the next section.
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Let us comment on the missing cases in Theorem 5.7. For any Riemannian mani-
fold with boundary (M, g) the inequalities 1, o(M, g) 2 1,1(M, g) and py,,1(M, g) <
H1,» (M, g) are always satisfied. Hence Assertion 2 (resp. 3) is never satisfied when p = 1
(resp. p = n). But Assertion 1 is an open problem if p = rnin the case of Euclidean or
spherical domains; similarly, Assertion 3 is open if p = n — 1 in these cases. Indeed, our
method to control the gaps between the eigenvalues is basically to change the metric of
a given manifold in the neighborhood of a point in the boundary by attaching one of the
domains Q. of Theorem 5.4. Now the Faber-Frahn inequality makes it impossible to
get on a Euclidean domain a small eigenvalue y; ,-; without getting at the same time a
small u; ,-». This gives a heuristic explanation of these open problems (in the case of
spherical domains, we consider quasi-isometric images of the Q, 's on the sphere).

But if we only work on abstract manifolds, glueing to the manifold an zn-dimensional
sphere using a cylinder of given length and small radius leads to a small eigenvalue u; ,
whereas for each p < n, “;, p remains far from 0. This leads to assertions 1, p = n and
assertion 3, p = n — 1 in this case.

6. Prescription of the spectrum

The constructions developped above are the basic tools to get a stronger theorem
which enables us to prescribe finite parts of the spectrum of the Hodge Laplacian on
Euclidean domains.

Such a result was proved by Colin de Verdiére in [CV] in the case of functions for
the Neumann boundary problem (note that this would be impossible for the Dirichlet
problem because the second eigenvalue cannot be too large with respect to the first, by
the Payne, P6lya and Weinberger inequality, see [P-P-W]).

For p-forms, 2 < p < n — 1, itis possible to prescribe also the topology and the
volume:

THEOREM 6.1 ([G2)). — LetQ beadomaininR"™ (n > 3). Foreachp € {2,...,n-1},
fix a finite sequence a,,, < - - - < ag,p of positive real numbers. FixV € Ry.

Then there exists a domain Q' of volume 'V, independent on p and diffeomorphic to
Q, such that

”;C:P(Q’) = ak,p

foreachk € {1,...,K}.

For functions and 1-forms it is ‘possible to prescribe the topology, but not the vol- .
ume:

THEOREM 6.2 ([G2]). — LetQ be a domaininR"™ (n > 2)and b, < --- < by bea
finite sequence of positive real numbers. Then there exists a domain Q"' diffeomorphic to
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Q such that forany k € {1,...,K}:

U0 () = w1 (Q7) = by.

Sketch of proof of Theorem 6.1. Recall that the theorem applies to p-exact forms,
with 2 £ p < n — 1. For simplicity we sketch the proof for a fixed p and denote the
prescribed sequence of eigenvaluesby a; < - - + < ag.

The main tools in the construction of Q" are the domains Q p.c of Theorem 5.4 and a
domain ) which has the following properties:

Hiop( Q) > ax

and its volume is any constant fixed in advance. The domain Q is obtained by suitably
shrinking Q2 and then attaching a long thin cigar (see section 5.1 above).

Step 1. Using homotheties on the domains Q. and suitable choices of £ one gets
foreach k € {1,..., K}, a domain Cy diffemomorphic to a ball such that:

Hy,,(Ce) = ax  and u;,p(ck) > ag.

Step 2. One attaches the domains Gy, to Q using cylinders of fixed length and radius
n << 1. Let Q, be the resulting domain, see Figure 2; by choosing the diameters of
the domains in Step 1 sufficiently small, and the volume of Q in the right way one can
actually assume that the volume of Q,, is equalto V.

C, 1< k<K

Figure 2: The domain Q.

Step 3. We then prove that for all k,
}’i_r% uk’p(Q,,) = ag.

This is the technical part of the proof. Roughly speaking, it consists in showing that,
asymptotically as n — 0, the eigenform associated to “;c, p(Qn) concentrates in H!-norm
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on C. This implies, via the min-max principle, that the k** eigenvalue of the whole
manifold is close to the first eigenvalue of Cy, which is ay.

Step 4. It consists in a classical perturbation argument, which basically shows that
the required domain Q' is obtained by suitably perturbing Q,, for some n which is small
but positive. ®

REMARK 6.3. — The procedure needed to prove Theorem 6.2 (which is the precrip-
tion of the spectrum on functions and 1-forms) is somewhat different, and for that we
refer to [G2].

Let us make some comments on Theorem 6.1.

Theorem 6.1 enables, for n > 4and 2 < p < n — 2, to prescribe finite parts of the
spectrum with multiplicity 1 or even 2.

Moreover, one can actually construct Q' so that y; ,(Q') > ak,,-1. This is interest-
ing as one cannot prescribe at the same time the first eigenvalue for absolute n-forms
and the volume (because of the Faber-Krahn inequality). As u; , is large, one can then
also prescribe the spectrum on (n — 1)-forms.

The existence of non-trivial harmonic p-forms on tubular neighborhoods of
spheres for p > 1 leads to the crucial properties of the domains Q, ¢, which lead to
the prescription of the eigenvalues.

On the other hand it is the absence of absolute cohomology on (7 — 1)-dim. balls
in degree p > 1 which makes possible to prescribe the volume of Q2, hence the volume
of Q'.
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