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THE HODGE LAPLACIAN ON MANIFOLDS
WITH BOUNDARY

Pierre GUERI NI andAlessandro SAVO

Abstract

This survey paper is an expanded version of seminars given by the authors at the
Institut Fourier. Its main scope is to discuss the fîrst positive eigenvalue ii\tP of the
Hodge Laplacian actingon differential /?-forms on amanifoldwith boundary.
In section 2 we review the Gallot-Meyer and Chanillo-Trêves estimâtes valid for
closed manifolds.
In section 3 we give the two gênerai inequalities of [G-S] which will imply some new
estimâtes for manifolds with boundary.
These are given in section 4. More precisely, we first give a lower bound of fU\fP for
manifolds whose boundary have some degree of convexity, and then we show that on
convex Euclidean domains the first eigenvalue for the absolute conditions is nonde-
creasingwith respect to the degree: ii\tP ^ l*i,p-i- We then discuss explicit geomet-
rie bounds from [G-S] and [Gl].
In section 5 we first show that the classicalisoperimetric inequalities which are valid
for functions do not extend to forms; then we show that the inequality ii\t p ^ £*i,p-1
does not in gênerai, thus justifying the convexity assumptions in section 4.
Finally in section 6 we expose a theorem in [G2] which shows that the Hodge spec-
trum can be prescribed on Euclidean domains.

1. General f acts

Even if we are mostly interested in the case of manifolds with boundary, we start by
recalling the main facts on the Hodge Laplacian of closed manifolds. So, let (M*, g) be a
compact Riemannian manifold without boundary, of dimension n. For p e {Q,...,n},
the Hodge Laplacian A, which acts on smooth differential p-forms œ e A P ( M ) , is de-
fined by:

Ato =

2000Mathematics Subject Classification 58150, 58J32.
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where d is the exterior derivative and 5 = d* is its formai adjoint with respect to the
L2 inner product on forms. One has 5 := (_i) W<P+-D+I * d* where * is the Hodge star
operator.

The Hodge décomposition theorem states that we have an orthogonal direct sum:

AP(M) = &p{M) © d(Ap~l(M)) e

where &P(M) is the space of harmonie p-forms, solutions of the équation Aco = 0. The
importance of harmonie forms is given by the Hodge-de Rham Theorem, which follows
immediately from the above décomposition:

THEOREM 1.1. — The space&p(M) is ïsomorphic tothereal p-th de Rhamcohomol-
ogyspaceofM; inparticular, eachdeRhamcohomologyclassofM has a unique harmonie
représentative.

More generally, one is interested in the spectrum of the Hodge Laplacian, which is
a discrete séquence of nonnegative real numbers tending to +oo, and in particular to the
first positive eigenvalue of A, which we dénote by ixXfP. Note that the Hodge * operator
is an isometry commuting with the Laplacian and therefore we have the Hodge duality
between the eigenvalues:

V\.p = V\,n-p-

As the Laplacian on p-forms is associated to the quadratic form

Q(eo,oo)= f ||rfeo||2 + ||5«)||2,
JM

we have the tollowing variational characterization of jjjtP (min-max principle):

lXi,p(M) = inf {^(oo), CÜ * 0, œ e

where

is the Rayleigh quotient of GO.

If dM * 0 , w e need to specify the boundary conditions.

Let v be the inner unit vector normal to dM, and consider the eigenvalue problem
defined by the absolute boundary conditions :

( Aco = lioj

= J*i$dœ = 0

where i$ is the interior multiplication and ƒ : dM — M is the canonical inclusion.
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Let us say that the form œ is tangential if it vanishes whenever one of its arguments
is a vector normal to the boundary. Hence œ satisfies the absolute boundary conditions
iff both œ and dco are tangential.

The dual boundary conditions are the relative ones:

( ACÜ = ACÜ

The above boundary conditions are justified by the following generalization of the Hodge -
theorem when dM * 0 .

THEOREM 1.2. — The space of harmonie p-forms satisfying the absolute (resp. rela-
tive) conditions is isomorphic to the real p-th absolute (resp. relative) cohomology space
of(M,dM).

The proof is based on a suitable Hodge décomposition of AP(M) (see for example
[Sc]).

It should be noted that, when the boundary is not empty, the équation ACÜ = 0
does not imply that dco = Sao = 0 without suitable boundary conditions; moreover,
the vector space of all forms which are at the same time closed and co-closed is infinité
dimensional. By Stokes formula, one vérifies that

{ ACÜ = 0 f dco = 5(JO = 0

iff J

= J*Udœ = 0 [ /*ivCü = 0We shall adopt the following notation for the eigenvalues:

f dM = 0 or

dM * 0 for the absolute conditions

and,if3M * 0 :

h\,p(M) := first positive eigenvalue of Ap for the relative conditions.

The Hodge * isomorphism exchanges the two boundary conditions and implies that

in particular ^i,o (M) is the first positive eigenvalue of the Laplacian on functions, for the
Neumann conditions, and

is the first (positive) eigenvalue for the Dirichlet conditions.
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The above Hodge eigenvalues verify the min-max principle:

l*i.p(M) = inf {öfc(co), œ * 0, Uœ = 0, œ e tf

where j&£(M) is, as remarked above, finite dimensional and isomorphic to the p-th ab-
solute cohomology space of M. The first relative eigenvalue \itP vérifies a similar varia-
tional principle.

By the Hodge décomposition:

where \x\p (resp. \\"^ is the first eigenvalue of the Hodge Laplacian restricted to the
exact (resp. co-exact) forms.

2. Two known estimâtes for closed manifolds

2.1. The Gallot-Meyer estimate

The first estimate for \X\iP was given by Gallot-Meyer [G-MI]. It is nontrivial only
in positive curvature, more precisely, when all eigenvalues of the curvature operator are
bounded belowby a positive constant y. It uses the Bochner formula for p-forms:

<AGO, œ) = » VCÜII2 + ^Adlcoll2) + Wp(œ, œ).

where the curvature term Wp(co, co) can be written in terms of the Riemann tensor. In
particular W\ = Ric.

THEOREM 2.1. — LetMn be a compact manifold without boundary having curvature
operator bounded belowby y > 0. Then:

ix\§p ^ c(n,p) - y

where
c(n,p) = min{p(n- p + 1), (p + l ) (n - p)}.

Equality holdsfor the canonical sphère.

Proof. The main points of the proof are the following estimâtes:

Wp(œ,œ) ^ p(n - p)y\\œ\\2

n -
Then, one intégrâtes the Bochner formula applied to an eigenform œ associated, respec-
tively, to v[ p and \\'{pi and observes that, by the Stokes formula:

i = 0

because3M = 0 . •

f i
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REMARK 2.2. — The same estimate holds if M has a convex boundary (more gener-
ally p-convex boundary see section 4 for the définition). In fact in that case:

II'
provided that œ satisfies the absolute boundary conditions.

2,2, The Chanillo-Treves estimate

Chanillo and Trêves have a given in [C-T] a lower bound which is valid for any ori-
entable compact manifold. Their inequality involves the cardinality of a finite covering
of the manifold with geodesically convex balls, their radii as well as positive upper and
lower bounds on the norm of the differential of the exponential map. Their result can be
stated as follows:

THEOREM2.3. — For any compact orientable manifold of dimension n

V\,p ^ c{a,D, r0, n)

where c(oc, D, r0, n) is an explicit positive constant depending on an upper bound a for
the absolute value of the sectional curvatures, the diameter D and the injectivity radius r$.

Sketch of proof. Consider a finite covering {E/ÎÎI^Î^AT of M such that for any i,
Ut is the image by the exponential map of a bail B{Ut r0), r0 ^ 1. One assumes that
there exists a positive constant A such that for any i, A~l ^ \\d expti \\ < A. The crucial
estimate of the proof is then the following lemma:

LEMMA 2.4. — There exists a positive constante which only dépends on A and n such
that, for any exact p-form œ = dfi with j8 co-exact, one has:

It immediately follows that

r

The constants C and AT" may then be controlled by the constants a, D and r$. m

The theorem shows in particular that in the class of manifoldswhose sectional cur-
vatures and diameter are uniformly bounded one can get small eigenvalues for the
Hodge Laplacian only under collapsing, that is, under the assumption that the injectivity
radius tends to zero.

Note that Colbois and Courtois have obtained in [C-C] a similar resuit; however their
constant is not explicit, as the method relies on Gromov's compaetness theorems.
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3. Two new estimâtes

We give here two estimâtes which will imply the main results of [G-S]. The first is a
gênerai estimate of the ratio fm <t>/fM <ƒ> for a non négative function </> on M satisfying
suitable conditions; applied to the squared norm of an eigenform, it will be used to get a
lower bound for iU\tP(M) for manifolds with boundaryhavingsome degree of convexity.

The second is an extrinsic lower bound for the L2-energy of co-closed forms on a
manifold which is isometricallyimmersed in Euclidean space. It will imply some bounds
for the eigenvalues of forms, in particular on Euclidean and spherical domains.

3.1. First estimate

Let M be a manifold with boundary and

( n - 1 ) K = lower bound of the Ricci curvature of M
H = lower bound of the mean curvature of dM
R - inner radius of M

We assume for simplicity the curvature condition:

max{*T,H - ^J[F\} > 0. (3.1)

Then one has:

THEOREM3.1 ([G-S],Thm3.1). — Let M be a Riemannian manifold with smooth
boundary, and assume that the non-negative function <f> satisfles A<t> ^ i*4> on M, for

somey e DL Fixanyt e (0, — ). Then, if\x ^ H2 + t2, one has:
2.R 4

I 4>> [?^H+tcot(Rt)] • f 4>.
JdM l JM

(3.2)

REMARK 3.2. — The proof uses the distance function p from the boundary of the
manifold. The theorem holds without the curvature assumption (3.1); in that case the
constant ( n -1 ) H must be replaced by the infimum A of the regular part of Ap, which can
be estimated by Heintze-Karcher type theorems (see Def. 4.11 in [G-S]). Indeed, under
the assumptions (3.1), the infimum isattained on dMt and its value is A = (n - l)H.

SketchofproofofTheorem3.1. LetF(r) = JM{r) <P, whereM(r)is the set of points
whose distance from the boundary islargerthan r. Then, bythemean-valuelemma([S],
Thm 2.5) F(r) satisfies the differential inequality in the sensé of distributions:

F"(r) + (n - l)HF'(r) + ̂ F(r) ^ 0
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where fjt = H2 + t2. Let y(r) be the solution of the corresponding differential
4

équation with the same initial conditions, which is explicitly given by

y{r) = e~Hr(di cos tr - di sin tr),

where d\ = fM4> and rf2 = 7 fdM 4> - nj^H f M $• By Standard comparison arguments,
F(r) ^ y(r) hence the first zero of F(r), which is R, is larger than or equal to the first
zero of y (r). This implies the result. •

The bound is somewhat sharp; in fact, observe that a positive eigenfunction as-
sociated to A1/0 satisfies fm <f> = 0, hence if H ^ 0 the inequality (3.2) can't hold for

t G (0,n/(2R))t so Aio(M) > - ( « - l)2H2 + t2 and by letting t tend ton/(2R), one
4

gets:

COROLLARY3.3. — Let M be a Riemannian manifold with smooth boundary satisfy-
ing the curvature condition (3.1). If H ^ 0, tae/r

Ai,o(M) ^ 7 ( » - l ) 2 ^ 2 + 7^2-4 4i?^

The bound is sharp in the following two cases. First, if M = B% is a geodesie bail in
HT, then /ƒ = coth R > 1 = VT^T for all JJ; hence:

Ai,o(M) ^ i ( n -
4

which is well-known, and is sharp as R — 00 by a result of McKean [McK]. If K = H = 0f

the bound becomes

A1#o(M) ^

which is originally due to Li and Yau [L-Y], and is sharp for flat cylinders, that is for any
manifold which is the Riemannian cartesian product of a closed manifold and the inter-
val [0,2*].

3.2. Second estimate

Let Mn — Rd be an isometric immersion. For any vector v normal to M, consider
the shape operator Sv relative to v; it is the self-adjoint endomorphism of TM defined
by the identity

) = (L(X,Y),v),

for all X, Y G TM, where L(X, Y ) is the second fundamental form of the immersion. We
extend Sv by dérivation to a self-adjoint operator Sy acting on AP(M). If (v i , . . . , vm)
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is an orthonormal basis of the normal bundie of M (ra = d - n being the codimension
of the immersion), and CÜ is a p-form, then we let

The second main estimate gives a lower bound for the energy of co-closed forms on M.

THEOREM 3.4 ([G-S] Thm 2.1). — LetMn — Rd bean isometric immersion and CÜ a
co-closed p-form on M, with p e {!,..., n}. IfdM * 0 , we assume in addition that CÜ is
tangentialtodM. Then:

pn\ (Af) f
JM

/ f
M JM

The inequality is sharpfor any eigenform associated to VLf{iP{§n), where Sn — IR" is the
standard immers ion of the canonical sphère.

We give a rough idea of the proof. We take the inner product of the co-closed p-
form CÜ with a suitable family of vector fields on M; this family, parametrized by § d ~\ is
given by the projection on M of parallel vector fields on R.d of unit length. If V is any such
field, the ( p -1 ) -form iy co will be co-exact and so it will be a test-form for the eigenvalue
^\,p-\ ( -^ = Vi.piM). By the min-max principle, we obtain the following inequalities,
indexedbyV G S^"1:

V'IP(M) f \\ivoo\\2^ f Wdiycüf.
JM JM

The final resuit is obtained after intégration on S^"1.

When CÜ is an eigenform associated to /ij' , the theorem will give an extrinsic lower
bound of \x'{p - \xXp (see Theorem 4.8).

The above theorem may be viewed as a generalization of the following inequality,
valid for closed manifolds M, and obtained by Reilly, see [R]:

„2 . Vol(M)f uni!* ^ • ' mfi(M) . (3.3)
JM

where H is the mean curvature vector of the immersion. In fact, (3.3) follows by applying
the Theorem to the volume form of M.

4. Estimâtes of the eigenvalues for manifolds with boundary

The estimâtes here are based on-the theorems of the previous section, and on the
Bochner formula. They involve what we call the p-curvatures of the boundary. Let 5 be
the shape operator of the immersion dM — M relative to the inner unit normal v.
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Let us list the principal curvatures of dM, at any of its points, in a non-decreasing
order:

Vi ^ Hz ̂  • • • ^ Vn-i-

The (""^ numbers:

where i\ < • • • < ip, arecalledthe p-curvatures of'dM. Let us dénote by

o-p := m + • • • + r\p

the smallest p-curvature of dM at x, and let

<Tp(dM) = inf ap(x).

Note that
(T\ (dM) = lower bound of the principal curvatures of dM

—^- = H - lower bound of the mean curvature of dM
n- 1

One sees that H ^ apl p > a\ for all p. Wewillsaythat3Mis p-convex \fap ^ 0. Hence
the condition of /?-convexity is intermediate between the usual condition of convexity
and that of having non-negative mean curvature. Note that "convex" implies " p-convex"
for all p.

The p-curvatures show up because they are the eigenvalues of SE p]
 f the self-adjoint

extension of the shape operator acting on p-forms on dM, defined by

p

S[p]co(Xl Xp)

In fact, the term in Bochner formula:

' Adlcoll2)2 JM

is simply zero when M is closed. When dM * 0 and co satisfies the absolute boundary
conditions one has (see Lemma 4.10 in [G-S]):

\ f
1 Ju

f A(|M|2)= / <Vvco,co>
u • J3M

= f (S[p]U*œ),J*œ) (4.1)
JM

<7P f
Jd

><7P f IMI2.
JdM

In particular, if the boundary is p-convex:

1
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4.1. Applications of Theorem 3.1: manifolds with p-convex boundary

The scope of the following estimate is to generalize the Gallot-Meyer estimate when
dM * 0 . Recall that we defined:

(n - 1)K = lower bound of the Ricci curvature of M
H = lower bound of the mean curvature of dM

We assume the curvature condition as in (3.1): max{K, H - sJ\K\} ̂  0.

THEOREM 4.1 ([G-S], Thm 3.3). — Let M be a rrianifold with boundary with curva-
ture operator boundedbelowbyy e IR and p- curvatures ofdM boundedbelowbyap ^ 0.
Then:

H\,P ^ pin- p) • y+c ' ( rc ,p) • a2
p.

where: d(n, p) = — — min{ , p}.Inparticular:

m.n-i = A u > (n - 1)K + (n~l) H2

o

Sketch of proof. Integrating the Bochner formula applied to an eigenform associ-
ated to pifP, one gets (taking into account (4.1)):

The improvement over the Gallot-Meyer estimate consists in finding a positive lower

bound for the ratio: ^ - . For that we apply Theorem 3.1 totf> = ||CÜ||2; thiswilllead

to the term c (n, p) • trj; involving the lower bound of the p-curvatures of the boundary. •

COROLLARY4.2. — Ifthe Euclidean domain M satisfles ap > 0, then:

In particular, ifthe mean curvature of d M is positive:

We will use the corollary to show in section 5, that the classical Weinberger inequal-
ity does not extend to /?-forms, when p ^ 2. For other bounds of ii\tP for convex Eu-
clidean domains, see the next section.

The theorem sometimes gives a positive lower bound also when the inner curvature
(that is, y) is négative, provided that the /?-curvatures are positive enough. For example,
we see what happens for a domain M in the hyperbolic space.
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The next corollary shows that, if the principal curvatures of the boundary are not
less than 1, and the degree is sufïiciently small with respect to the dimension, then Ai,p is
bounded below by a positive constant depending only on the degree and the dimension.

COROLLARY4.3. — Let M be a (convex) domain in D-0" with principal curvatures
boundedbelowbyl. Then:

Ai,p > cp(n- l ) 2

1 lp2jr2p
for all p < (n - 2)/8, with cp = ^ positive and depending only on p. In

8 (8p + 1)
particulart for n ^ 10:

REMARK 4.4. — It is well-known that any hyperbolic domain (not necessarily con-
vex) satisfies the inequality:

\ l ) 2 , (4.2)\ { n l ) ,
4

The above corollary generalizes this property under the given conditions. In fact, without
further assumptions, (4.2) carit hold for Aj/P, p ^ 1: there exists a family of hyperbolic
domains MPt€ (even with uniformly bounded diameters) such that:

e-O

(see Remark 5.6).

REMARK 4.5. — Note that there exist domains with arbitraiïly large diameter satis-
fying the condition in Corollary 4.3 (for example, geodesie balls).

Moreover, the second author has verified that:

Um \hp(B
n(R)) = 0 for p ^ ^—^-,

thus showing that a condition on the degree p is necessary, although our condition p <
{n - 2)/8 is not sharp.

4.2. Applications o f Theorem 3.4: Gap estimâtes

In this section we apply Theorem 3.4 to study the gap of the first eigenvalue on forms
for different values of the degree of the form; typically, we examine what we call the p-gap
ofthemanifold:

Knowing that the gap has a certain sign, one can deduce bounds for the eigenvalues
themselves (see Theorem 4.7 below). We note that the 1-gap is always non positive:
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To see that, take a first eigenfunction (with Neumann conditions if dM * 0) and differ-
entiate it.

Takahashi proved in [T] the following result on the 1-gap:

THEOREM 4.6. — Any closed differentiable manifold of dimension n ^ 3 admits a
< \\\$ and one with \X\t\ -

This shows that topology has no influence on the 1-gap of closed manifolds.

Let us come to manifolds with boundary, in particular, Euclidean domains. In that
case; we always have in fact the inequality:

which is just a restatement of the well-known inequality between the first Neumann and
Dirichlet eigenvalues:

^1,0 < ^1,0/

and which can be proved by the classical Weinberger and Faber-Krahn inequalities:

/iifo(M) ^ /iif0(M*) < Aif0(M*)

Here M* is the bail having the same volume of M. The middle inequality cornes from an
explicit estimate.

So, the rigidity of the Euclidean metric might a priori imply some rigidity for the sign
oïVi,p-Vi,p-i- Theorem 5.7 in Section 5 shows that this is in fact nottrue, for most values
of p at least. It also actually shows that on any compact differentiable manifold with
boundary, of dimension n ^ 3, one can find metrics for which the p-gap may assume
any sign.

So, in order for the gap to have a definite sign, we need to impose some geometrie
condition on dM. The main application of Theorem 3.4 shows that p-convexity is one
such sufficient condition for Euclidean domains.

THEOREM 4.7 ((G-S], Thm 2.6). — Let M be a Euclidean domain.

a)Ifap(dM) ^ 0, then\X\tP ^ \i\,p-\.

b) IfM is actually convex, then:

andfforall p ̂  n/2;

In particular, the first eigenvalue ofp-forms, for either the absolute or relative condi-
tions, lies in the interval [IÀ\$, K\,Q\.
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If M is convex Theorem 4.7, together with the Payne-Weiberger inequality on /Ji(o
and the domain monotonicity for Ài(o, implies the estimate:

2 *2

diam(M)2 ^ ^ifP ^ R2

where j n = first Dirichlet eigenvalue of the unit bail.

For example, for vector fields on a convex domain in IR3 one gets:

7T2 ^̂  JM | |cur1X||2+l|divXl|2 ^ j *

diam(M)2 ^ L

provided that X is everywhere tangential or everywhere normal to the boundary.

For convex Euclidean domains, the lower bound:

max{p(n- p),n - 1} 1
l'p ' ne? diam(M)2

was obtained by Guerini ([Gl]), by using a totally geodesie projection on the sphère and
the theorem of quasi-isometry of Dodziuk (see [D], Prop. 3.3).

Let us now give a more gênerai resuit on the gaps of an isometric immersion, which
follows from Theorem 3.4. By T[p^ we dénote the endomorphism of AP(M) which is
associated to the quadratic form ||SGO||2 (see Theorem 3.4).

By Hodge decomp osi tion, inequalities for n'{ p~lJ\fP wîll imply inequali ties f or ^ i, p -

THEOREM 4.8 ([G-S], Thm 2.3). — LetMn -> Rd be an isometric immersion with M
either closed or with a p-convex boundary. For ail p—\,...,n — \t one has

-iiltP{M) > - inf(Wp - Tp).

The notation on the right-hand side refers to the inflmum overx G M ofthe lowest eigen-
value ofWp - Tp actingon p-forms atx.

The inequality is sharp if M = §n, orMisa hémisphère of§n, in which case iï{ -
ix\p = n-2p.

For the proof, just apply Theorem 3.4 to an eigenform associated to fi" , and use
the Bochner formula.

For Euclidean domains, one has T [p] = Wp = 0 and Theorem 4.7 follows; for spher-
ical domains Wp = p(n - p) • Id, T^p] = p2 • Id, and one gets:
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THEOREM 4.9. — Let M be a convex domain of §n, and §+ the hémisphère. Then:

n-2p

Moreover, the spectrum of the Laplacian on p-forms, for either the absolute or rela-
tive conditions, is bounded below by ^1>0, that is, by theflrst Neumann eigenvalue of the
Laplacian on functions. Finally, for all p < n/2;

For closed manifolds, the condition Rie ^ 0 implies that fUito ^ TT2 /D2 (see [L-Y]),
hence when the diameter is bounded the eigenvalue ^i,o = A*'u cannot be small. On the
other hand it might happen that IA{X is arbitrarily small (for example, for suitable Berger
sphères, see [C-C]), so that in particular iA\t\ < ^i,o-

The next corollary gives a somewhat stronger extrinsic condition on the Ricci cur-
vature of an immersion for having / J U = ^lf0; here the immersed manifold M is either
closed or with a convex boundary.

COROLLARY4.10. — (a)LetMn — Rd be an isometric immersion. IfRlc ^ T[l] at all
points of M, then iX\t\{M) = ^fo(Af).

(b) Let Mn be a convex hypersurface of Rn+1, and assume that, at any point of M,
anyflxed principal curvature of M is not greater than the sum of all the others. Then

In (b) we assume that the principal curvatures of M are all nonnegative: this is pos-
sible by choosing appropriately the unit normal field v on M. Note also that T t l ] is a
nonnegative operator.

Using bounds on JL/1/0 the corollary implies bounds for ^1,1. Note that the first author
proved in [Gl] the inequality

max{l, p} 1
^'p " 2? diam(M)2

which is valid for any convex hypersurface of Euclidean space.

5. Construction of gaps; counterexamples

5.1. Isoperimetric inequalities: functions vs, differential forms

The first positive eigenvalues of the Laplacian acting on functions on a Euclidean
domain satisfy strong isoperimetric inequalities which only involve the volumes of the
domains (and no other geometrie invariants), independently of their topology.
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FABER-KRAHNINEQUALITX — Let Q be a domain in Rn and Q.* the Euclidean n-
dimensional bail having the same volume as D. Then, in the case of the Dirichlet prob-
lem, the first eigenvalue of the Laplacian cannot be small if Vol(D.) is not large. More
precisely, the Faber and Krahn inequality (see [Ch]) asserts that

Ai,o(n) > Alf0(n*) (5.1)

with equality iff Cl and Q.* are isometric. Note that this is the spectral viewpoint of the
isoperimetric inequality in Rn.

We prove that this inequality does not extend to the eigenvalues h\,p, p > 0, even
for convex domains. The construction is quite simple. Consider, for R > > 1, the domain
int":

which can be smoothened and can be made of volume 1 for a suitable choice of e = e(R).
Note that QR is convex. We show that

Hm AlfP(Ûa) = 0 (5.2)

for all p ^ 1.

We construct the test-form as foDows. Let <f>R : (0, R) -+ (0,1 ) be a smooth function
such that:

fo on [R-l.R]

[l on [0,*-2]

and with first derivative bounded independently of R. We consider the p-form:

= 4>(dn(x))dx} A - - - A dxp_i A dxn,

where dn (x) is the distance from the axis of the cylinder, that is, the x„-axis. One vérifies
that ooR restricts to the zero form on the boundary, hence is a test-form for the relative
boundary conditions, and that the Rayleigh quotient of eu R tends to zero as R — oo, thus
showing the assertion.

REMARK 5.1. — As Q.R is convex, it is enough to show (5.2) only for p = 1, because
byTheorem4.7onehas AjiP ^ Aïfi for all p ^ 1.

WEINBERGER INEQUALITY. — In the case of the Neumann problem, the first non-
zero eigenvalue satisfies an opposite property: it cannot be large if the volume of the
domain is not small. One hasnamely the Weinberger inequality (see [W])

(5.3)

with again equality ifffi and Q* are isometric.
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It has been proved in [G2] that (5.3) doesnot extend to ̂ tP for p^ 2 (for p = 1 (5.3)
is actually true, see the Remark 5.3 below).

In fact take, for R » 1 a "thin cigar" Cl(e,R) whose boundary is the cylinder
S""1 (e) x (0, R) at the ends of which we glue two hémisphères of radius et and choose
e - e(R) so that the domain has volume 1. Note that Q(et R) is convex.

It follows from a lemma due to McGowan (see [G-P] and [McG]) that for any p > 2:

lim jL/i,p(£2(i?7e)) = +oo.

REMARK 5.2. — We now give also a direct proof of the above fact, which uses Corol- -
lary 4.2. In fact, at any point of the boundary of Q(R, €), at least n-1 principalcurvatures
areequalto 1/e, so that a2(dD.(etR)) ^ l/e. Therefore, if p > 2:

<rp(dCi(€,R))

as R — oo (so that e — 0 because the domain has volume 1). By Corollary 4.2

asiï — oo.

REMARK 5.3. — For any domain £1 one has, using the Weinberger inequality as well
as Theorem 4.7 applied to balls:

Hence JL/I,I(Q) ^ A îfi(̂ *)» ie. the Weinberger estimate extends to 1-forms with the
absolute boundary conditions.

5.2* Construction of gaps

We now give constructions which show that p-gap

of suitable Euclidean domains may assume any sign without geometrie assumptions;
hence, the monotonicity of the finite séquence (iu\tP)o^P^n which is satisfied in the case
of convex Euclidean domains (see section 4) does not hold in gênerai: much liberty re-
mains in the construction of gaps, even if we impose a strong rigidity on the metric (ie.
Euclidean os spherical).

The results of this section are essentially based on the existence of small eigenval-
ues on some Euclidean domains diffeomorphic to balls, with uniformly bounded diam-
eters. These domains are natural generalizations to p-forms of the well known "Cheeger
dumbbeU balls11.
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THEOREM5.4 ([G2]). — Foranyintegersn ^ landp e { 1 , . . . , « - 1} and any E > 0
there existe a domain QPf€ c IR" diffeomorphic to an n-dimensional bail and of diameter
not larger ihan 2 such that

1. fJt\tP(ClPiC) - O a s e - 0,

2. fj'2 (nPi£) ^ C and fj[ q(ÇlPi£) ^ Cforeachq * p where C is a positive constant
independent of E.

REMARK 5.5. — Using homotheties, one may actually assume that the diameters of
our domains are smaller than any positive constant fixed in advance. In particular, the
monotonicity with respect to inclusion is only satisfied by A^o.

REMARK 5.6. — By the quasi-isometry theorem of Dodziuk, one obtains domains in
hyperbolic space with the same properties.

Let us sketch the constructions of the domains. The Qi,f's are the classical dumbbell
balls; the construction consists in linking two balls {le. a tubular neighborhood of a 0-
dimensional sphère) by a cylinder of given length and small radius E. This may be done
keeping the diameters of the domains smaller than or equal to 2. As e tends to zero, the
domain, which is topologically a bail, "tends" to the union of these two balls and one
easily shows that the harmonie function whose value is 1 on the first bail and -1 on the
second leads to a test function on the dumbbell, of mean value 0 and whose Rayleigh
quotient tends to zero. Hence the eigenvalue Hit0 also tends to zero and, consequently,
sodoes/ij(1.

This idea can be extended to differential p-forms. Indeed, instead of taking a tubu-
lar neighborhood of a 0-sphere one takes, for 2 < p ^ « - 1, a tubular neighborhood
of Sp~l c IR". This is the "thick" part of the domain we are constructing. Then one gets
a topological bail D.Pte by glueing to the thick part a small tubular neighborhood Bp(s)
of the /?-dimensional bail whose boundary is the sphère Sp~l we started with (this is the
"thin" part). See Figure 1 where we represented s cross-section of the thick and thin parts
ofQiff inR3.

A non zero harmonie (p - l)-form on Sp~l then yields a test form on £ïPf£ whose
Rayleigh quotient tends to zero as s tends to zero. This explains why ii\tP-\ {£lp,e) tends
to zero with f.

To get the more précise resuit on the exact eigevalues, one then needs some more
work, using the lemma of Mc Gowan (note that the case of classical Cheeger dumbbell
balls follows from the study of Colette Anné in [A] ).

This construction may be used to construct gap metrics on manifolds with bound-
ary. Indeed, by Theorem 5.4, one obtains for n ^ 2, if s is small enough,

• The p-gap on QPt£ is zero, i f l ^ p ^ r c - 1
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-S1

\ Thickpart

Thin part

Figure 1: Cross section of fi l j f in IR3.

• The p-gap on Qp_i)f is positive, if 2 < p ^ n

• T h e p-gap o n Q p ^ t E i s n é g a t i v e , i f l ^ p ^ n - 2

The following theorem shows that on any compact manifold we can choose metrics
so that the p-gap may assume basically any sign. It is obtained by attaching to a given
manifold the domains fip,e.

THEOREM 5.7 ([G-S], Thm 1.1). — LetM beasmooth compactmanifold withbound-
ary of dimension n ^ 3 and let p be an integer in { 1 , . . . , n}. Then there exist metrics
gi, p, &, p,g%pOnM such that:

1. for any p the p-gap on (Af, g\tP) is zero;

2. ifp * 1, then the p-gap on (M, g2(P) is positive;

3. ifp * n, then the p-gap on (M, gsiP) is négative.

If M is a Euclidean (resp. spherical) domain, then the metrics g\tP (p * n), g2tP

(p * l) and gs,p (p * n- \,ri) can be chosen to be Euclidean (resp. spherical). •

It should be remarked that in the case of Euclidean domains, Theorem 5.7 is in most
degrees a conséquence of a stronger theorem on the prescription of the spectrum, which
is explained in the next section.
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Let us comment on the missing cases in Theorem 5.7. For any Riemannian mani-
fold with boundary (M, g) the inequalities Vifo(M, g) > / J U (M, g) and ^i,„_i (M, g) <
fj\>n(Mf g) are always satisfied. Hence Assertion 2 (resp. 3) is never satisfied when p = 1
(resp. p = n). But Assertion 1 is an open problem if /? = n in the case of Euclidean or
spherical domains; similarly, Assertion 3 is open if p = n - 1 in these cases. Indeed, our
method to control the gaps between the eigenvalues is basically to change the metric of
a given manifold in the neighborhood of a point in the boundary by attaching one of the
domains ClPi€ of Theorem 5.4. Now the Faber-Frahn inequality makes it impossible to
get on a Euclidean domain a small eigenvalue £<i,n-i without getting at the same time a
small A/ilW-2* This gives a heuristic explanation of these open problems (in the case of
spherical domains, we consider quasi-isometric images of the QPt€'s on the sphère).

But if we only work on abstract manifolds, glueing to the manifold an ra-dimensional
sphère using a cylinder of given length and small radius leads to a small eigenvalue fj\tn

whereas for each p < n, ix\ remains far from 0. This leads to assertions 1, p = n and
assertion 3, p = n - 1 in this case.

6. Prescription of the spectrum

The constructions developped above are the basic tools to get a stronger theorem
which enables us to prescribe finite parts of the spectrum of the Hodge Laplacian on
Euclidean domains.

Such a resuit was proved by Colin de Verdière in [CV] in the case of functions for
the Neumann boundary problem (note that this would be impossible for the Dirichlet
problem because the second eigenvalue cannot be too large with respect to the first, by
the Payne, Pólya and Weinberger inequality, see [P-P-W]).

For p-forms, 2 ^. p ^ n — 1, it is possible to prescribe also the topology and the
volume:

THEOREM 6.1 ([G2]). — LetQbe a domain inW1 (n ^ 3). For each p e { 2 , . . . , n - l } ,
fix a finite séquence aifP < • • • < a^tP ofpositive real numbers. FixV G R+.

Then there exists a domain O! of volume V', independent on p and diffeomorphic to
Cl, such that

for each k e {!,..., K}.

For functions and 1-forms it is possible to prescribe the topology, but not the vol- .
urne:

THEOREM 6.2 ([G2]). — Let Q. be a domain in \SLn (n ^ 2) and b^ < • • • < bK bea
finite séquence of positive real numbers. Then there exists a domain Q!r diffeomorphic to
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Çlsuchthatforanyk e {!,...,K}:

Sketch of proof of Theorem 6.1. Recall that the theorem applies to p-exact forms,
with 2 ^ p ^ n - 1. For simplicity we sketch the proof for a fixed p and dénote the
prescribed séquence of eigenvaluesbyfli < • • • < a^.

The main tools in the construction of Q.' are the domains Q.p>€ of Theorem 5.4 and a
domain Q. which has the following properties:

aK

and its volume is any constant fixed in advance. The domain Q is obtained by suitably
shrinking Q and then attaching a long thin cigar (see section 5.1 above).

Step 1. Using homotheties on the domains £lPtE and suitable choices of f one gets
for each fee { 1 , . . . , K}t a domain Cjc diffemomorphic to a bail such that:

and aK.

Step 2. One attaches the domains C^ to D, using cylinders of fixed length and radius
r] << 1. Let Qn be the resulting domain, see Figure 2; by choosing the diameters of
the domains in Step 1 sufficiently small, and the volume of Q in the right way one can
actually assume that the volume of D.n is equal to V.

Figure 2: The domain Qn.

Step 3. We then prove that for all fc,

This is the technical part of the proof. Roughly speaking, it consists in showing that,
asymptotically as Y] — 0, the eigenform associated to \xr

k „(Qn) concentrâtes in Hl -norm
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on Cfc. This implies, via the min-max principle, that the kth eigenvalue of the whole
manifold is close to the first eigenvalue of Q, which is a^.

Step 4. It consists in a classical perturbation argument, which basically shows that
the required domain O! is obtained by suitably perturbing Qn for some Y] which is small
but positive. •

REMARK 6.3. — The procedure needed to prove Theorem 6.2 (which is the precrip-
tion of the spectrum on functions and 1-forms) is somewhat different, and for that we
referto[G2].

Let us make some comments on Theorem 6.1.

Theorem 6.1 enables, for n ^ 4 and 2 < p ^ n - 2, to prescribe finite parts of the
spectrum with multiplicity 1 or even 2.

Moreover, one can actually construct Q! SO that n\iTl(ÇÏ) > aK,n-\- This is interest-
ing as one cannot prescribe at the same time the first eigenvalue for absolute n-forms
and the volume (because of the Faber-Krahn inequality). As piiR is large, one can then
also prescribe the spectrum on (n - l)-forms.

The existence of non-trivial harmonie p-forms on tubular neighborhoods of
sphères for p ^ 1 leads to the crucial properties of the domains QPf£, which lead to
the prescription of the eigenvalues.

On the other hand it is the absence of absolute cohomology on {n - l)-dim. balls
in degree p ^ 1 which makes possible to prescribe the volume of D., hence the volume
ofn'.
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