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POLYHEDRA WITH SPECIFIED LINKS

Alina VDOVINA

Abstract

We construct compact polyhedra with m-gonal faces whose links are generalized
3-gons. It gives examples of cocompact hyperbolic bildings of type P(m, 3). For m =
3 we get compact spaces covered by Euclidean buildings of type A;.

1. Introduction

1.1. Preliminaries

Given a graph G we assign to each edge the length 1. The diameter of the graph is
its diameter as a length metric space, its injectivity radius is half of the length of the
smallest circuit.

Due to [2], [7] or [9] the following definition is equivalent to the usual one

DEerFINITION 1.1. — For a natural number m we call a connected graph G a gener-
alized m-gon, if its diameter and injectivity radius are both equal to m.

A graphis bipartiteifits set of vertices can be partitioned into two disjoint subsets
P and L such that no two vertices in the same subset lie on a common edge. Such a
graph can be interpreted as a planar geometry, i.e. a set of points P and a set of lines
L and an incidencerelation R C P X L. On the other hand each planar geometry can
be considered as a bipartite graph.

Under this correspondence projective planes are the same as generalized 3-gones
(9. :

Let G be a planar geometry. For a line y € L we denote by I(y) the set of all
points x € P incident to y. If no confusion can arise we shall write x € yinstead of
x € I(y) and y1 n y, instead of I(y1) N I(y2). Asubset S of P is called collinearifit is
contained in some set I(y), i.e. if all points of S are incident to a line.

Given a planar geometry G we shall denote by G’ its dual geometry arising by
calling lines resp. points of G points resp. lines of G'. The graphs correspomding to
Gand G’ areisomorphic.

We will call a polyhedror a two-dimensional complex which is obtained from sev-
eral oriented p-gons by identification of corresponding sides. Consider a point of the
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polyhedron and take a sphere of a small radius at this point. The intersection of the
sphere with the polyhedron is a graph, which is called the link at this point.

DEFRINITION 1.2. — Let &( p, m) be a tessellation of the hyperbolic plane by regular
polygons with p sides, with angles 1t/ m in each vertex where m is an integer. A hyper-
bolic building of type £(p, m) is a polygonal complex X, which can be expressed as
the union of subcomplexes called apartments such that:

1. Every apartment is isomorphic to $(p, m).

2. For any two polygons of X, there is an apartment containing both of them.

3. For any two apartments A1, Ay € X containing the same polygon, there exists
an isomorphism Ay — A; fixing Ay N Az.

If we replace in the above definition the tessalition £ (p, m) of the hyperbolic
plane by the tessalation A, of the Euclidean plane by regular triangles we get the
definition of the Euclidean building of type A;.

Let Cp, be a polyhedron whose faces are p-gons and whose links are generalized
m-gons with mp > 2m + p. We equip every face of Cp, with the hyperbolic metric
such that all sides of the polygons are geodesics and all angles are 7t/m. Then the
universal covering of such a polyhedron is a hyperbolic building, see [6].

In the case p = 3, m = 3, i.e. Cp is a simplicial polyhedron, we can give a Eu-
clidean metric to every face. In this metric all sides of the triangles are geodesics of
the same length. The universal coverings of these polyhedra are Euclidean buildings,
see [2], [3], [7].

So, to construct hyperbolic and Euclidean buildings with compact quotients, it is
sufficient to construct finite polyhedra with appropriate links.

The main result of the paper is a construction of a family of compact polyhedra
with m-gonal faces (for any m > 3) whose links are generalized 3-gons. Fundamen-

- tal groups of our polyhedra with m > 6 are residually finite by results of [11].

. One of the main tools is a bijection T of a special type between points and lines
of a finite projective plane G. If such a bijection exists, we can construct a family of
compact polyhedra with m-gonal faces, with any m > 3 whose links are general-
ized 3-gons. The existence of T in known for the projective planes over finite fields
of characteristique = 3 (chapter 3). But for the projective plane of order 3 such a
bijection exists as well.

So, if one can prove the existence of T for a finite projective plane G (even non-
desarguesian), then chapters 2.2 and 2.3 immediately give the existence of buildings
with G as the link.

We note, that some hyperbolic buildings with links, which are finite projective
planes were constructed also in [8]. '

1.2. Polygonal presentation.

We recall the definition of the polygonal presentation, given in [10].
Definition. Suppose we have r disjoint connected bipartite graphs Gy, G, ... Gy.
Let P; and L; be the sets of black and white vertices respectively in G;, i = 1,...,n;
letP=UPR,L=VUL, BnPj=3L;nL;=@fori=+ jandletAbeabijection
A:P - L

Asetx of k-tuples (x1, x2, ..., x¢), x; € P, will be called a polygonal presentation
over P compatible with A if
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(D (x,x2,x3,...,x) € Zimpliesthat (x2, x3,..., X, x1) €A,

(2) given xj, x, € P, then (x;, x2, x3, ..., x;) € & for some x3, ..., x; if and only
if x2 and A(x; ) areincident in some G;

(3) givenx;, xp € P,then (x1, x2,x3,...,x) € & foratmostonexz € P.

If there exists such &, we will call A a basic bijection.

Polygonal presentations for » = 1, k£ = 3 were listed in [5] with the incidence
graph of the finite projective plane of order two or three as the graph G;. Some polyg-
onal presentations for » > 1 can be found in [10].

1.3. Construction of polyhedra.

- One can associate a polyhedron X on # vertices with each polygonal presenta-
tion o as follows: for every cyclic k-tuple (xj, x2, x3, ..., Xx) from the definition we
take an oriented k-gon on the boundary of which the word xj x2x3 . .. X is written.

To obtain the polyhedron we identify the sides with the same label of our polygons,
respecting orientation. We will say that the polyhedron X correspondsto the polygo-
nal presentation 4.

The following lemma was proved in [10]:

LEMMA 1.3. — A polyhedron X which corresponds to a polygonal presentation %
has graphs Gy, G, ..., Gy, as the links.

Remark. Consider a polygonal presentation o#. Let s; be the number of vertices of
the graph G; and ¢; be the number of edges of G;, i = 1,..., n. If the polyhedron X
corresponds to the polygonal presentation %, then X has n vertices (the number of
vertices of X is equal to the number of graphs), k ) .-, s; edges and Y |-, ¢ faces, all
faces are polygons with k sides.

2. Main Construction.

2.1. Crucial lemma

Let G be afinite projective planeand let P resp. L denote the set ofits points resp.
lines.
Assume that a bijection T : P — Lis given and satisfies the following properties

1. Foreach x € P the point x and theline T (x) are not incident.

2. For each pair xj, x; of different pointsin P the points x;, x; and T (x;) N T (x2)
are not collinear.

LEMMA 2.1. — LetT : P —~ L beasabove,y € L aline. Thenthemap T* : I(y) —
I(y) given by T* (x) = T(x) n I(y) is a bijection.

Proof. — By the first property of T the map T* is well defined, by the second
property it must be injective. Since I(y) is finite, the statment follows. O

LetG,P,L, T : P — Lbeasabove. Let P = {x],..xp} be alabelling of points in P
andsety; = T (x;). Consider the followingset O C P X P X P, consisting of all triples
(xi, xj, xz) satisfying x; € yg, xj € y;andand xj € yi.
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Remark. — The conditionson (x,-,xj,xk) € K arenotcyclic. We require Xj € ¥
and not x; € y; !! For this reason in the polygonal presentations defined below dual
graphs of G appear.

The following lemma is crucial for the later construction:

LEMMA 2.2. — A pair (x;, x) resp. (x;, xj) resp. (xj, x) is a part of at most one
triple (x;, xj, x) € K and such a triple exists iff x; € yy resp. xj € y; resp. xj € y
holds.

Proof. — The conditions stated at the end are certainly necessairy.

1) Let x; € y be given. Theny; and y;, are different and the point x; = y; 0 yx is
uniquely defined.

2) Let x; € y; be given. Then x; and x; are different, so there is exactly one line
Yx containing x ; and x;.

3) Let x; € y; be given. Then (x,-,xj,xk) isin K iff for the map T* : I(y;) —
I(y;) of Lemma 2.1 the equality T*(x;) = x; holds. By Lemma 2.1 the point x; is
uniquely defined. a

2.2. Euclidean polyhedra

Now we are ready for the polygonal presentations. Let the notations be as above,
G; and G, two projective planes with isomorphisms J : G - G; and G3 a projective
plane with an isomorphism /3 : G' - G; of the dual projective plane G’ of G. For
t = 1,2weset x{ = J'(x;), ¥} = J'(yi) andfort = 3wesetx} = J3(y;) and
y? = J3(x;).

Let P; resp. L; be the set of lines of G;. For P = UP, and L = UL; we consider the
bijectionA : P — Lgivenby A(x{) = yf“ (¢ + 1is taken modulo 3).

Now consider the subset  of P x P x P consisting of all triples (x;, x%, x3) with
(xi, xj, xx) € K and all cyclic permutation of such triples.

The stament of Lemma 2.2 can be now reformulated as:

PROPOSITION 2.3. — The subset I of P X P X P defines a polygonal presentation
compatible with A.

The polyhedron X which corresponds to J by the construction of Lemma 1.3
has triangular faces and exactly three vertices with two links naturally isomorphic to
G and one link naturally isomorphic to the dual G’ of G. By [2] or [7] the universal
covering of X is a Euclidean building.

2.3. Hyperbolic polyhedra

We continue to use the same notation. We have a projective plane G, with points
P={x,.., xp} andlines L = {y, ..., yp} andasubset K C P X P x P.

Let w = z;...2, be a word of length » in three letters a, b, c with z; = a,2, =
b, z3 = c that does not contain proper powers of the letters a, b, c. (l.e. z; # z:4) and
zp *+ a). For example w = abcbcabis a possible choice.

Set Sign(ab) = Sign(ba) = Sign(ac) = 1 and Sign(cb) = Sign(ca) = Sign(ba) =
—-1. For t = 1,...,nlet G; be isomorphic to G resp. to G’ if Sign(z,;z;+)) = 1 resp.
Sign(z,;z;41) = —1.
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Fixed isomorphisms induce as above a natural labelling of the points and lines of
Ge: P = (x], ..., xp) and Ly = (yf, ....,yf,).

For P = UP, and L = UL; we define a basic bijection A : P ~ Lby A(x!) = y{”.

For each triple (x;, xj, X;) € K we consider the unique n-tuplein P" such thatat
the ¢-th place stands x} resp. x‘j resp. Jc,‘C if z, is equal to a resp. bresp. c. Consider
the subset T, € P” of all such tuples together with all their cyclic permutations.

>From Lemma 2.2 we immediatly see:

PROPOSITION 2.4. — The subset T,, € P" is a polygonal presentation over A. By
Lemma 1.3 it defines a polyhedron X whose faces are n-gones and whose n-vertices
have as links G resp. G'.

3. An algebraic construction

Let F = F; be a finite field of charakteristik p #+ 3 with g elements. Consider the
field K = Fp as an extension of F of degree 3. In the sequel we shall denote by g
elements of K and by a, b, ¢ elements of F and call them scalars. We denote by Gr;
resp. Grz the set of 1- resp. 2-dimensional F vector spaces of K.

The multplicative group K* operates on the sets Gr; and Gr» by multiplication.
The kernel of this operation is precisely F* and K* / F* operates on both sets simply
transitively. Especially we can write each element of Gr; as gF forsome g € K*.

Let Trbethe tracemap Tr: K — F of the extension F C X.

Denote by E € Gr, the 2-dimensional kernel of Tr : K — F. We define a
map T : Gr; — Gry by T(gF) = gE. The map T is well defined bijective and K*
invariant.

ProposiTION 3.1 (A.Lytchak, private communication). — Forthemap T : G —
Gry and arbitraryl + I} € Gny holds:

1. Theimage T (1) does not contain I.

2. Thel, |y and T (1) n T (})) generate the vector space K.

Proof. — Since T is K™ invariant, we may assume = F. Since Tr(1) = 1, F
does notliein T(F) = E. Now assume that /; = gF. If the statment is wrong, some
non zero element of the form bg — amust bein T(F) n T(gF) = E n gE. Since 1
isnotin E and Gis notin gF, we may assume (replacing g by a scalar multiple ) that
thisnon zeroelementisg—1.Sog—-1€ Eandg -1 € gE.

The first inclusion is equivalent to T'r(g) = 1 and the second one to Tr'(—é) = 1.
Let’s prove, that if for an element g € K™ the equalities Tr(g) = Tr(%g) = 1 hold,
then gis equal to 1. Assume g = 1. Then gisnotin F. Let m(x) = x> + ax? + bx+ ¢
be the minimal polynom of g. Then ¢ # 0 and m(x) = x>+ £x2 + 2x + Listhe
minimal polynom of %. The condition T'r(g) = Tr(%,) = 1means a = Lc’ = -1 Le.
m(x) = x3 — x>+ bx — b= (x? + 1)(x - b) isreducible. Contradiction. So, g = 1.

Now we get a contradictionto ! = ;. a

COROLLARY 3.2. — For the projective plane %* (Fg4) over finite field ¥4 of charak-
teristique + 3 there is a bijection T between the set P of points and the set L of lines,
T : P - L, that satisfies the following properties
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1. Foreachx € P the point x and the line T (x) are not incident.

2. Foreach pair x;, x3 of different points in P the points xy, xp and T (x1) 0 T(xy)
are not collinear.
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