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REMARKS ON SPHERE PACKINGS, CLUSTERS AND
HALES FERGUSON THEOREM

Jean-Louis VERGER-GAUGRY

1. Introduction

In a short note to one of his friends in 1610 about the structure and the shape of
snowflakes crystals (see the remarkable articles of Hales [H] and Oesterlé [O] for histo-
rical details), Strena seu de nive sexangula, Johannes Kepler claims the following result
known as Kepler's conjecture, which is considered today as Hales Ferguson’s theorem,
since 1998.

THEOREM 1.1 ( Hales - Ferguson ). — No packing of identical spheres in three dimen-
sions has density greater than the face-centred cubic packing, namely % = 0.74048....

The Kepler conjecture was an old unsolved problem in discrete geometry.

The face-centred cubic packing is known as the canonballs packing or the pyramid
stacking of oranges and is the densest lattice packing of spheres, of density 1r/+/18. The
fundamental question asked by the conjecture was to understand how the density could
or not exceed the so-called Kepler bound 7r/+/18 in the case of aperiodic packings of
spheres with respect to lattice sphere packings of R”. Hales, in a multistep programm
abundantly described on the web [H3] [H4], whose one step was Ferguson'’s thesis [F],
announced the proof of the conjecture in 1998 after more than seven years of investiga-
tions. In the meantime an incomplete proof by Hsiang [Hs] was published in 1993 and
was a source of controversy [H2] [O].

The seminar given by the author was intended to sketch the main ingredients of the
proof of Hales as presented in [H].

In this present short note, we will just recall a few questions which seem important
about densities of aperiodic and lattice sphere packings in R”. Comparison will be made
with the ingredients developed by Rogers, Hales, Ferguson, Hsiang and others.
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The general context in which we will proceed is that of the set of uniformly discrete
sets, suitably topologized, leaving aside spaces of lattices. We will recall the Minkowski-
Hermite approach for lattice sphere packings (in section 4) which is generalized by the
theory of systoles [B] and generalized systoles [A]. The integer n will be assumed to be
greater than 2 in the sequel.

2. Uniformly discrete sets, Delone sets and densities

First, in order to make more accurate the statements and fix the notations, we will
recall some definitions about densities and systems of spheres of R"”, n > 1.

Let ¢ > 0 be a real number. By definition, we will say that a discrete set A of R” is
an uniformly discrete set of constant ¢t > 0 if {lx — yll > ¢t assoonas x = y with
x,y € A. Examples of uniformly discrete sets of constant ¢ are the empty set &, point
sets reduced to one point {x}, with x € R"; let us cite also any Z-module k1 <
k < n, built on the canonical basis of R”, in particular Z”, as uniformly discrete set of
constant 1. We will say that a discrete point set of R” is a uniformly discrete set if there
exists t > 0 such that it is a uniformly discrete set of constant t. By definition a finite
uniformly discrete set of R” will be called a cluster.

Take r > 0 and assume £ := (a;);c; is a finite or infinite discrete collection of
points of R” which is a uniformly discrete set of R” of constant 2r. The set .« may be
empty. Denote by B = B(0,r) the n-dimensional closed ball of R"” of volume v,(r) =
w2 T "—'2*2 ), centred at the origin and of radius r. By definition, a system of (identical)
spheres over .« of radius r is a packing of translates of B where the translation vectors
belong to .«£. We will denote it by

AB(L) ={a;+Bliecl}

We will speak of a system of spheres of radius r without mentioning the dependency
to .« and will mention it when necessary in the sequel. Two different balls (so-called
spheres in literature by tradition) in the packing £ (.«##) may have at most one point in
common on the boundary or are of empty intersection.

There is an obvious one-to-one correspondence between system of spheres of ra-
dius r and uniformly discrete sets of constant 2r of R”.Indeed, to obtain a packing
of spheres from any arbitrary uniformly discrete set .« of constant r, we chose the real
number t > 0 aslarge as possible such that the balls {a; + B(0,z) | i € I} have pair-
wise disjoint interiors, that is for ¢ = r. Conversely, any system of spheres clearly defines
a uniformly discrete set which is constituted by the collection of the centres of spheres
and its constant is twice the common radius of the spheres.

In chapter 1 of Rogers {R], it is shown that a density can be attributed to the system
of spheres (). Let x be an arbitrary element of R”. Let us call 6(%(.#)) € [0,1] its
density, computed at xg, defined by

6(B(A)) = limsup [vol((U(a,-+B)) ﬂB(xo,R)) /vol (B(xo,R))] e [0,1] (1)

R—+e0 icl
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The theorem 1.7 in Rogers [R] proves that this value is independent of the point xg.
Therefore we will speak of the density of the sphere packing %(.«#) without mentioning
xo and will take, asitis usual, xo = 0 for simplicity’s sake. Itis clear that if .« is the empty
setthen 6(#(@)) = 0; similarly, if .« isa finite uniformly discrete set of arbitrary strictly
positive constant, we have §(Z(.«£)) = 0. Even though .« is an infinite uniformly dis-
crete set of arbitrary strictly positive constant, the notion of density becomes interesting,
i.e. non zero, when .« has enough points say at infinity in a sense we will precise below. It
is the case of lattices which were extensively studied (Conway and Sloane [CS], Martinet
{M]) and remains a wonderful subject.

By the theorem 1.7 in Rogers [R], we know that any non-singular affine transforma-
tion of R” leaves invariant the density of a sphere packing of R”. Therefore, we will
restrict ourselves in the following to the study of densest systems of spheres of R” which
arise from uniformly discrete sets of R” of constant 1 (say 1 for simplicity’s sake). It
amounts to make a dilation of R” to have r = 1/2. We will denote by %2 the set of
uniformly discrete sets of constant 1 and by %/@-sets its elements. Take R > 0 areal
number. We will denote by Xz the subset of %% constituted by the discrete sets A of
R” such that

Aisa %-set

and obeys the following condition of relative denseness:
Vz e R"” 3A € A suchthat A € B(z,R).

The elements of Xp are said to be Delone sets of constants (1,R). In general, if a discrete
set A belongs to %42 and is such that there exists a real number R > 0 such that
A € Xa, then we will say that A is a Delone set (ensemble de Delaunay in french),
without mentioning necessarily the constants (1,R).

A Delone set of constants (1,R) does not contain say any deep hole of diameter
greater than 2R by definition. A feature common to all Delone sets of R” is that the R-
span of an arbitrary Delone set is always R” itself. Lattices which are uniformly discrete
sets of R” of constant 1 are Delone sets, for instance Z". The empty set is not a Delone
set. Forall R" > R > 0,then Xg C Xp . For all Delone set A of R”, let us denote by

R(A) :=inf{R| A € Xg}

the covering radius of A, namely the smallest real number R such that A € Xp; ob-
viously R(A) > 0. We have

A € Xpay with A € Xp

forall R > 0 strictlyless than R(A). Let Ry, := infp p.... R(A) the minimal covering
radius over all Delone sets of R”.If R’ issuch that 0 < R’ < Rpyn then obviously
Xp = Q.

The terminology about uniformly discrete sets and Delone sets did not appear in
Rogers [R] but this author has studied sphere packings over Delone sets (see Chapter 7
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in [R]) in the scope of defining nonzero local densities and bounded Voronoi polyhedra.
This concept of Delone set of R” was also implicitely used by Hales since one of his
first operation on a given sphere packing, in the search for densest sphere packings, is
saturation [H3]. Saturation means that each time a sphere packing has a sufficiently large
hole, a sphere may be put inside; and so on, up till it becomes impossible to do it. Let us
precise this notion.

PROPOSITION 2.1. — Packings of identical spheres of maximal density in R" arise
Jrom Delone sets of constants (2t,2t) where t > 0 is the common radius of the spheres.
In other terms

sup 6(B(&£)) = sup 6(B(A))
&LeXy L UD

Proof. — Assume t = 1/2 for simplicity’s sake and that .« € % is an arbi-
trary #@-setin R”. If there exists z € R"” such that [[z— A > 1 forall A € .«,
then we put a ball B of radius 1/2 at z. We repeat this adding process indefinitely
up till there is no more points of R” which satisfy this property. This adding process of
balls creates a sequence of uniformly discrete sets from which we extract a subsequence
which is converging in the d-topology (see theorem 2.2 below) and for which the limit is
a Delone set. This adding process of balls favours an increase of the density of .«# along
this subsequence to give rise to a Delone set of constant (1,1) of higher density (not
necessarily strictly) made of the whole collection of old and new sphere centres. This
adding process does not necessarily stop after a finite number of steps. Ifa 2/%-set can-
not be added a ball by this adding process, then it is already necessarily a Delone set of
constants (1,1). Note that this adding process can eventually be used for some Delone
sets .« of constants (1,1) to densify them: if there is a point z € R” such that the
closest A € .« is at distance 1 from z, we put a ball B at z. Therefore sphere pa-
ckings of maximal density arise from Delone sets of constants (1,1). Conversely, itis not
known whether an arbitrary Delone set of constants (1,1) ‘gives rise to a sphere packing
of density equal to

sup 6(%B(L))
AEX)

Possibly not since presumably the density function is not constant on Xj. O

Let us remark that if we remove a finite number of points from a %242-set, its density
will not change. The previous proposition means that all the information about densest
sphere packings is contained in X;.

Muraz and Verger-Gaugry [MVG] have shown that a certain uniform topology can be
puton %2.Moreover, they have constructed a distance d on 242 for which (%2.,d) is
a metric space and proved the following result.

THEOREM 2.2. — The space (%2,d) is a compact metric space. Forall R > 1, the
subset Xp C UPD of Delone sets of constants (1,R) is compact in the d-topology.
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Since the proof of the theorem in [MVG] can obviously be extended to any R >
Rpmin, we deduce that Xz is compact forall R > Ry, and that the space g, Xg of
all Delone sets of R™ is locally compact in the d-topology.

We now pull back the d-topology on %22 to the set of systems of spheres of radius
1/2, denoted by SS, without mentioning ‘n’ the dimension of the ambiant space R”. We
define, keeping the same notation ‘d’ for the distance,

Ad(B(AL),B(A)) = d(ZAL') foral L& € UD

CoRroLLARY 2.3. — The set of systems of spheres of radius 1/2 endowed with the d-
topology, (SS, d), is a compact space.

Let us recall the classical definition of the packing constant of R”:

5, = sup §(B())
SE UD

Obviously, we have:

5, = sup §(B(&£)) = sup §(B(A))
AEX) &< Xp

where R > 1 is an arbitrary real number. Let us define in a similar way

5, := inf 8(B(L))
AeX;

(QO) For all integer n > 1, does there exist systems of spheres & of R” of maximal
density, i.e. such that their density reaches the packing constant

5(B) = &, ?

Does there exists a topology on %42 such that § is continuous?

If the answer is yes, we will say that a system of spheres (or a sphere packing) is
extremeif it corresponds to a local maximum of the density function 8. Some questions
can now be formulated as far as we are concerned with densest sphere packings of R”.

(Q1) How many extreme systems of spheres does there exist (up to translation, rotation
and symmetry) and how can they be characterized?

In particular
(Q2) Which are among them the densest ones, and for which value of §7,?

If 6 cannot be made continuous for any non trivial topology on %@, we cannot
speak of extreme lattices, but we will only consider those sphere packings of density close
to &5, without knowing whether this value is reached by a system of spheres.

We have only a very partial answer to question (Q0) by the following proposition
(2.5).
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First, let us mention a useful lemma correlating the proximity of %@-sets in the
d-topology and their respective pointsin R”.

LEMMA 2.4. — Let A,A’ be two non-empty ¥UP-sets. Let | = dist(0,A) < +o denote
thedistance from the origin to A in the Euclidean norm. Let € be an arbitrary real number
in the interval 10,735;[ and assume that

dAN) <€

Then forall A € A such that
1—-€
Al <

(i) there exists an unique A" € A" such that ||IA = Al < 1/2, (ii) this pairing (A,A") sa-
tisfies the inequality:
A=A < (1/2+ IAlDe

Proof. — See section 2 in [MVG]. O

Let us define the class

€ ={.%’(A)InAe UD,

. vol ((Uje;(ai + B)) N B(O,R)) _ vol ((Uies(ai + B)) N B(O,R))
im inf vol (B(0,R)) gy i vol (B(0.R)) }

The following proposition is a very partial counterpart of the Minkowski-Hermite
approach for lattices (recalled in section 4) and shows the usefulness of the d-topology
to study aperiodic systems of spheres of R” as far as the class & is known.

PROPOSITION 2.5. — The restriction of the density map & to the class € is conti-
nuous in the d-topology.

Proof. — Let € > 0. Assume that .« = (a;);cz and ' = (a});cz are two elements
of & such that
|6(B(A)) ~ 5(B(A')) < € (2)

We are looking for n > 0 such that d(«.#') < n implies the inequality (2). Take
R > 1 areal number (we will chose it in a suitable way below). Let us denote by

1
Sp(B(A)) = mvol ((g(ai*'B)) ﬂB(O,R))

By the fact that the density function is a true limit on the class €, there exists Ry such
that R > Ry implies

|6(B(AL)) — Sp(B(£))] < €/3 and |5(B(AL)) - Sp(B(A£)) < €/3  (3)
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We will show that
|6R(B(L)) — Sp(B(A))| < €/3

assoon as d(.£.#’) < n with n > 0 small enough. Indeed, by lemma 2.4 we know that
if n > 0 is small enough, then the inequality d(«.<') < n implies that all the points
of .« are uniquely paired to points of &’ within a big ball, say B(0,T) with T = lé%’l
Let us take n such that

0<n<

2Ry +3
Then T > Ry + 1. The number of points a; of .« n B(0,T) will be exactly the num-

ber of points a; of . N B(0,T) except perhaps within distance 1 from the boundary
2(B(0,T)) of B(0,T).

(i) first class of pairings (a,-,a:-) : those for which simultaneously a;+B and a§+B lie
within B(0,T). Their contributions cancel each other in the difference

|6R(B(2)) — 6r(B(L))]

(ii) second class of pairings (a;,a;): those for which either (a; + B) ¢ B(0,T) or
(a§ + B) ¢ B(0,T). The elements a; and a§ both lie within 9(B(0,T)) + B(0,1). Then
the maximal volume fraction occupied by the points a; € 2(B(0,T)) + B(0,1), resp.
a; € 9(B(0,T)) + B(0,1),is

vol(2(B(0,T)) + B(0,1))
vol(B(0,T))
which clearly tends to zero when T tends to infinity. Therefore there exists ng such that

B _ vol(9(B(0,T)) + B(0,1)) <e/6
N < Mo vol(B(0,T))

Forall n < min{no,z—,}#} we obtain

/ vol(9(B(0,T)) + B(0,1))
é 2)) — & 2
[6r(B(AZ)) — SR(B(L))]| < Vol(B(0.T)) <€/3 (4)
From the inequalities (3), (4), we deduce (2), that is the continuity of the restriction of the
density function é to €. O

This proof does not work in general on SS since a generic %2-set has a density
which is presumably not given by a true limit (such that lim inf = lim sup). The question
is now: which Delone sets of constants (1,1) have a density given by a true limit?

DEFINITION 2.6. — The subset
H,:=61({6%}) c ss

is called the locus of densest systems of spheres (or sphere packings) of R". We will denote
by H, , the setof systems of spheres of H, arising from Delone sets of constants (1,1).

Theloci Hy, H;,,, of densest packings of R” may be empty.
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3. Voronoi polyhedra and local densities

We will focus our attention to systems of spheres obtained from Xz with R >
Rnin and particularly from X, giving rise to the densest sphere packings of R”. Let
o2 = (a;)icz € Xr be a Delone set of constant R > Rnin and &RB(«) its associated
sphere packing of R”. To each sphere a; + B in () are associated its local cell
C(a;,B(a2)) defined by the closed convex polyhedron, called Voronoi cell or Voronoi
polyhedron at a;

C(a;,B(&)) = {x € R" | llx - aill < llx - a;ll forall j = i}
and its local density A(a;,#B(£)) at a;
A(a;, B (L)) = vp(1/2) [vol(Cla;, B(A2)))

The decomposition into Voronoi polyhedra of the sphere packing #(«) forms a tiling
of R”. Each local cell has bounded volume. The density of () is then the weighted
average of the local densities A(a;,ZB(+#)) where the weights are vol(C(a;,#B(«£))), all
strictly positive. An upper bound of the local densities is therefore an upper bound of the
density of the tiling (see lemma 3.2).

Denote by
Yan = {Cla,B(L)) ~a;li€l a; e L Xg)

the set of all possible Voronoi cells (refered to the same origin, say 0) existing in sys-
tems of spheres arising from Delone sets of R” of constant (1,R). The number of ver-
tices of a Voronoi cell C(a;,#B(#)) — a; € g, is uniformly bounded by construction
and a Voronoi cell C(a;,Z()) is uniquely determined by a finite number of points of
ZB(«2)) which are close to a;. More precisely, Rogers has shown in chapter 7 of [R] that
C(a;,ZB(£)) is entirely defined by the finite %/%-set made of the points of #(«) which
are within the interior of the ball B(a;,2R). Therefore we can transport the d-topology
existing on the space of clusters lying inside the closed ball B(0,2R) to the set 7%, of
Voronoi cells associated with Xp and will still speak of the d-topology on this space.
Since Rmin < R’ < R implies Xg' € X, then %, C %k . Letusdefine

= %
R>0

as the set of all possible Voronoi cells (refered to the same origin, say 0) existing in sys-
tems of spheres arising from Delone sets of R".

PROPOSITION 3.1. — Let R 2> Rmin. The space of Voronoi cells ¥, is a compact
space in the d-topology. The space ¥y is locally compact in the d-topology.

Proof. — In [MVG], it was shown that, on the space of clusters lying inside the clo-
sed ball B(0,2R), the d-topology was exactly the topology given by the Hausdorff metric.
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Since the ball B(0,2R) is compact, the set of 2-sets lying inside it is compact in the
Hausdorff topology, therefore in the d-topology. By transport to 7, we deduce the
result. 0

Since the local density application C(a;,#B(#£)) — A(a;,PB(£)) is continuous in
the d-topology, there exists at least one Voronoi cell of minimal local density, resp. maxi-
mal local density. Let us define, for all R > Rpn:

AR n = sup sup A(a;,B(L))
ALeXp a;s A

Ag, = inf inf A(a;, 3B (7))
’ AEXp a,€A

LEMMA 3.2, — Forall R 2 1 we have:

- - - + +  _ At
AR,n S Al,n < 6n < 6n s Al,n - AR,n

Proof. — Indeed, the equality comes from the fact that any %-set belonging to
X, also belongs to Xp so that the densest local cells are equally produced by systems of

sphere from one or the other set of Delone sets. As for the inequalities, they are obvious.
O

The main questions we can ask are the following:

(Q3) Given the integer n > 2, does there exists only one minimal Voronoi cell in R” up
to rotation and symmetry? What is/are its/their geometry?

(Q4) In a densest sphere packing in R”, are necessarily minimal Voronoi cells present?
does there exist densest sphere packings of R” containing none of the minimal Voronoi
cells?

(Q5) if a densest sphere packing of R” contains minimal Voronoi cells, what is their
distribution in space?

Partial answers exist nowadays. If n = 2 or n = 3, (Q3) is answered by yes and
the geometry of the minimal Vornoi cells is given by the following results (theorem 3.4 is
cited in [H]).

THEOREM 3.3 ( Thue, Fejes-T6th ). — The densest packing of identical discs (of ra-
dius 1/2) in the plane is obtained from a lattice packing, which is the hexagonal packing.
The maximal local density of any disc packing is the packing constant, namely

5; = max Ala;,B) = m/V12
B=(a;)€S$S,a;cRB
It is reached at one disc centre if and only if the Voronoi cell at this disc centre is a regular
hexagon (of inradius 1/2).

Geometrically, the plane can be tiled with regular triangles. The minimal Voronoi
cell tiles the plane.
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THEOREM 3.4 ( McLaughlin ). — The maximal local density

21

15130 — 58/5

over all packings of identical spheres (of radius 1/2) in R® is reached at one sphere centre
if and only if the Voronoi cell at this sphere centre is a regular dodecahedron (of inradius
1/2).

= 0.7546974. ..

Let us remark two facts which are at the origin of Kepler’s conjecture. First, the mi-
nimal Voronoi cell does not tile space in dimension 3. Indeed, it is impossible to make
a lattice packing of dodecahedra in R® without leaving some remaining part of space
unoccupied. Second, the maximal local density is strictly greater than the Kepler bound
71//18 = 0.74048. . ..

When a Voronoi cell is minimal at a sphere centre, that is a regular dodecahedron,
the first-neighbour spheres constitute the vertices of a regular icosahedron about the
central one. This is an answer to the problem of 13 spheres around a central sphere and
a solution to the controversy between Newton and Gregory (see [O]).

The observation that the minimal Voronoi cells are unique and highly symmetri-
cal for n = 2 and 3 by Verger-Gaugry [VG] led this author to investigate quasiperio-
dic sphere packings in R” from their symmetry group using the formalism of cut-and-
project schemes.

If n > 4 then (Q3) seems to be an open problem nowadays. The question is now:
does a suitable set of minimal Voronoi cells tile the n-dimensional euclidean space?

4. Lattice sphere packings

Let %, be the set of lattices of the affine space R” (they all contain the origin). The
space .%, is parametrized by the locally compact group GL(n,R)/GL(n,Z) and there-
fore endowed with the quotient topology arising from this homogeneous space (Oesterlé
[O1], Martinet [M]). In [MVG] it is also shown that this topology coincides on %, N %%
with the restriction of the d-topology and that corollary 2.3 is a key result as aperiodic
generalization of Mahler’s selection theorem for lattices (see section 4 in [MVG]).

Let L € %, be alattice of R”. We will denote by m(L) = inf{||l||2 llelLl= 0} the
minimal square distance between two distinct elements of L. We will consider the pa-
cking of identical spheres obtained from L by putting a sphere centred at each element
of L ofradius equalto /m(L)/2. Letusdenote by (.,.) the standard scalar product over
R”.If {ey,e;,...,en} isan arbitrary basis of L, let us define the discriminant of L by

disc(L) = det({e;,e;))

It is independent of the basis of L and is the square of the volume of the compact space
R”/L.1tis usual to define the lattice function y on the quotientspace GL(n,R)/GL(n,Z)
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by
_ m(L)
disc(L)!/n
This function is continuous and satisfies y(tL) = y(L) forall t > 0. Therefore, to know

it on lattices which are %-sets of constant 1, it is sufficient to study it on the space of
unimodular lattices which identifies to SL(n,R)/SL(n,Z).

y(L)

PROPOSITION 4.1. — The application y : SL(n,R)/SL(n,Z) —]0,+ o[ is proper. The
closed set Ry, =y~ ({yn}) is finite.

Proof. — See Oesterlé [O1], Martinet [M] and Gruber and Lekkerkerker [GL]. O

The supremum Yy, = sup;. ¢, ¥(L) isreached at at least one unimodular lattice of
R” and consequently at at least one lattice which isa 2/@-set of R". This constant y,, is
called the Hermite constant; it is a function of n.

For any lattice L € %, N %%, the density of the lattice sphere packing (L) =
{a; + B(0,m(L)/2) | a; € L} isgiven by

.nn/Z

6 - -n n n/2 - e
(B(L) = 27w, (¥ (L) TTE)

y(L)"/?

DEFINITION 4.2. — The lattice packing constant &7 ,, is by definition the maximal
density of a lattice sphere packing:

5., =sup 8(B(L) = sup &(B() = sup 5(AB(L))
Les, Legnuz Le %, det(L)=1

Let us define in a similar way:

Sini=, il S(BL)

COROLLARY 4.3. — For all integer n > 1, there exist lattices L in R” of maximal,
resp. minimal, density which are uniformly discrete sets of constant 1, i.e. such that

nf2

S(BL) = 65, = sup S(BL) = =y, resp. $(B(L)) = 67,
Le $,nuz Z"r(T)

Lattices L € %, such that §(Z#(L)) is alocal maximum are called extreme lattices.
The study of extreme lattices was done in particular by Voronoi and was considerably de-
veloped since then (chapter 111 in Martinet [M]) and generalized in the theory of systoles
by Bavard [B] and Akrout [A].

It seems reasonable to say that densest systems of spheres do not arise in general
from lattice systems of spheres since lattices are not in general Delone sets of constant
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(1,1) (see proposition 2.1). Indeed, a lattice L € %, N %% is naturally a Delone set of
constant (1,R(L)) where R(L) isthe covering radius of L defined by

R(L) = sup infllz— Al
2zeRn” A€L

If L possesses so-called deep holes, the constant R(L) may be very large. Recall that a
holein L is a point of R” whose distance from L is a local maximum [CS] therefore a
vertex of Voronoi cell of L. The greatest distance of any hole of L from L is the covering
radius R(L) of L. The coveringradius R(L) is also the circumradius of the Voronoi cell
of L atthe origin. The existence of possible deep holes in a lattice prevents it from being
a good candidate for providing a very dense system of spheres. Let us define

Ry min == Inf{R(L) | L € %4, N UD}
the infimum of all covering radii of all lattices in %, N %%2. We have
Rmin < RL,min

Is it true that for all integers n > 2 we have Rpj, = Ry min? For n = 2 theorem
3.3 gives the equality. In the case n = 3 the minimal Voronoi cell over all lattices of
% N 2 is not a regular dodecahedron (of inradius 1/2) but a rhombic dodecahedron
(with the same inradius 1/2) which is given by the Voronoi cell at the origin of the face
centred cubic lattice (densest lattice sphere packing). Nevertheless, we still have equality.

Thue - Fejes-Toth theorem 3.3 and Hales - Ferguson theorem 1.1, i.e. Kepler conjec-
ture (in dimension 3), can be reformulated as follows: for n = 2,3

d(%. N 2, H,) = infld(L,A)|Le€ %N UDA\ € H,} = dl%nNUD, H,,) = 0

Let us state a general conjecture.

CONJECTURE 1. — Forallinteger n > 4

a(%, N U2, H,) = d(% N %29, H,,) >0

This conjecture calls for the subsidiary question: is the distance between the subset
H; ,, and thelocally compact subspace %, N %% computable?

The main question is the proximity of H; , to the subspace of lattices of %@ which
are of constant 1. Assume that there exists a Delone set A of R” of constants (1,1) and
alattice L such that

Le 4N U2, A € H,, with d(AL)=d(% n %2, H,,) >0

By lemma 2.4 this implies that both point sets L and A resemble within a certain dis-
tance from the origin by the phenomenon of pairings of points whatever their distribu-
tions of points are at infinity. But by definition the density of A is an asymptotic measure
of its points at infinity. This shows that the d-topology is not fine enough to deal with the
problem of the continuity of density functions in general.
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