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VARIANTS ON ALEXANDROV REFLECTION
PRINCIPLE AND OTHER APPLICATIONS OF
MAXIMUM PRINCIPLE

Ricardo SA EARP & Eric TOUBIANA

Abstract. In this article we discuss several derivations based on Alexandrov Reflection Principle and
Maximum Principle. Particularly, we give some applications for surfaces of constant mean curvature in Eu-
clidean and hyperbolic space. We also discuss the Perron Process for minimal vertical graphs in hyperbolic
space. We infer some new related results in hyperbolic space. Namely, we infer symmetry and half-space re-
sults for properly embedded mean curvature one surfaces. Furthermore, we carry out a Molzon-Serrin type
theorem for a classical overdetermined elliptic equation in hyperbolic space.

Introduction

In this article we shall focus some applications of Maximum Principle, particularly
we shall carry out some results inferred from the magnificent idea due to Alexandrov
called Alexandrov Reflection Principle (see [4]).

This paper is organized as follows: Firstly, we shall writedown a summarized ex-
position of some related classic theorems of both areas, Differential Geometry and Par-
tial Differential Equations. Of course, because of our background, we shall discuss with
more details the derivations on Differential Geometry that are closely related to surfaces
theory. Secondly, we shall prove some new theorems when the ambient space is hyper-
bolic space, see the full statements at the end of the introduction. their proofs are wri-
tredown in section 2. We shall prove in Theorem A a symmetry result concerning com-
pact mean curvature one surfaces in hyperbolic space whose boundary is the union of
two circles. We shall infer in Theorem B a half-space type theorem. Besides, we shall
give in Theorem C a Molzon-Serrin type theorem for a classical overdetermined elliptic
equation in hyperbolic space. All surfaces (or hypersufaces) treated in this paper are of
class C2.

Classification math.: 53A10, 53C42, 35]J25.
Both authors are supported in part by CNPq, FINEP and PRONEX, Brasil
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Maybe it was the famous theorem of Hopf (see [45]) that have motivated the mo-
dern research about constant (non-zero) mean curvature surfaces. In 1951 Hopf proved
that a closed genus zero surface in Euclidean space is a round sphere (the proof works in
hyperbolic space as well). He then asked if the assumption about the genus of the surface
could be removed from the statement of his theorem. This was called Hopf’s conjecture:
In 1986, Wente has given a counter-example to Hopf’s conjecture. He build an immersed
constant mean curvature torus in Euclidean space (see [116]). Afterwards Abresch sim-
plified Wente construction (see [1]) and Pinkall-Stirling have obtained families of Wente
tori (see [76]). Finally, Bobenko has obtained all constant mean curvature tori in R3,$3
and H3, see [14]. Notice that Wente tori should be immersed by Alexandrov Theorem, as
we will see in the sequel.

We shall begin section 1 (see Theorem 1) establishing the famous theorem proved
by Alexandrov in 1956 (see [4]), characterizing the spheres as the only closed connected
embedded genus g surfaces in Euclidean space with constant mean curvature. Maybe,
more significant than the theorem is the procedure introduced by Alexandrov proving
it: This has become customary to call either Alexandrov Reflection Principle, Alexandrov
Reflection or Alexandrov Method. The idea of Alexandrov is quite simple, profound and it
is based on Maximum Principle. It should be noted that Alexandrov Principle has been
a source of many insights, for instance a result due to Hsiang in 1982 (see [46]) can be
deduced from Alexandrov Principle as we will show later (see Theorem 4).

A first striking result (in Differential Geometry) using Alexandrov’s Method is the
theorem proved by Richard Schoen in 1983 (see [102]) characterizing the catenoid (see
Theorem 2).In 1988-1989 held the second main contribution in this field: the theory of
Meeks (see [66]) and Korevaar-Kusner-Solomon (see [50]), we shall say K-K-M-S. They
have shown that a complete connected properly embedded constant mean curvature
surface M in Euclidean space with two annuli ends is rotationally symmetric; namely, a
Delaunay surface. We will say a few words now to show very briefly how the proof works:
Firstly, Meeks has shown that each properly embedded annular end of constant mean
curvature in Euclidean space is cylindrically bounded. The proof of this follows from a
deep geometric insight based on Maximum Principle (comparison with spheres of same
mean curvature), a priori Height Estimates and basic Topology. Applying either Height
Estimates or Alexandrov Method one infers that the two ends and the whole surface M
are contained inside a same cylinder. Then a subtle application of Alexandrov Principle
which makes use of tilted planes, yields M is rotational. We remark that the argument
using Alexandrov Method via tilted planes has been used elsewhere (see [84]). The first
author and Rosenberg has pointed out that an adapted proof of this theorem hold for a
- wider class of f-surfaces that satisfies height estimates property (see [85]); one gets the
special embedded Delaunay surfaces constructed and classified by the authors (see [91],
and also [90]).

In the last decade the interest has grown considerably with many developments. K-
K-M-S have proved a similar result in hyperbolic space (see [51]), using Hsiang's theorem
(see [46]) cited before. Moreover, K-K-M-S have inferred that each properly embedded
annulus end with constant mean curvature H converges geometrically and asymptoti-
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cally to an end of a Delaunay surface: in hyperbolic space H > 1 (see [51)). The analo-
gous study of the geometry of a conformally punctured disc end with mean curvature 1,
finite total curvature, regular and embedded into the upper half-space model of hyper-
bolic space, have been achieved by the authors. That is, up to an isometry of the space
each such an end converges geometrically and asymptotically to an end of an horosphere
or an end of a Catenoid Cousin, either as Euclidean vertical graphs or as surfaces embed-
ded into hyperbolic space. In fact, this geometric behavior follows from an asymptotic
expansion we infer (see [95]). We shall give in Theorem B an application of this fact. It is
worth mention that very recently the authors have presented a new approach giving me-
romorphic data for mean curvature one conformal immersions into hyperbolic space,
see [97] and [99]: For related results, see also [86], [87], [104], [110], [111] and [112].

It turns out that in the study of compact constant mean curvature surfaces in Eucli-
dean space (and in hyperbolic space ), Alexandrov Method has also been applied as an
important tool (see [16]). It has been conjectured that a connected compact embedded
constant mean curvature surface with boundary a circle is spherical. This conjecture can
be posed in higher dimensions, either in Euclidean space or hyperbolic space as well. It
is still an open problem. We have been attracted by the geometric non-variational ap-
proach. Braga Brito, Meeks, Rosenberg and the first author, say B-M-R-SE, have verified
the conjecture in 1991, under the assumptions that the surface is transverse, along the
circle, to the plane of the circle (see Theorem 3). Braga Brito and the first author have
proved in 1991 that if the radius of the circle and the mean curvature are equal to 1,
then the conjecture is true, assuming only that the surface is immersed (see [15]). At the
same year, Barbosa has shown that the conjecture is valid, if we assume that the surface
is contained inside a cylinder of radius equal to the radius of the sphere of same mean
curvature (see [6}). The hyperbolic version of the above Brito-Sa Earp result was carried
out by the first author and B. Nelli (see [73]). The B-M-R-SE theorem cited above has
a counterpart in hyperbolic space, as expected by the first author in 1991 (see [88], pp.
256) and proved by Nelli-Rosenberg (see [72]) in 1995. In hyperbolic space there exists a
sharp result achieved by the first author and Lucas Barbosa: If a compact connected im-
mersed surface with boundary a circle has constant mean curvature not greater than 1,
then it is totally umbilic. This result was announced by Barbosa- Sa Earp in 1995, with a
sketch of the proof (see [8]). The complete proof of Barbosa-Sa Earp result has appeared
later (see [9] or [10]). We digress now to say that in the literature there are other rele-
vant results proved by Koiso [52], Rosenberg-Sa Earp [84], L6pez and Montiel [63]. On
the other hand, it is not always true that “constant mean curvature surface inherits the
symmetry of its boundary”. There exist simple counter-examples for minimal surfaces
in Euclidean space (see, for instance [58] or [102]). About the examples, several ma-
thematicians were interested on the construction of constant mean curvature surfaces
invariant under a subgroup of rigid motions: The reader is refer to Dajczer- Do Carmo
[28], Lawson [57], Smyth [105] and Ordéiies [75]. In 1990, Kapouleas brought up many
examples of complete embedded constant mean curvature surfaces in Euclidean space
(see [47]). One year after he gave genus g (g > 3) immersed examples with boundary
a circle (see [48]). An amazing fact is that Alexandrov Reflection yield at once several
symmetry and uniqueness results about properly embedded constant mean curvature
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H surfaces in hyperbolic space: For instance, if the asymptotic boundary is a point or a
circle then one gets an horosphere or an equidistant surface (see [29]), if the asymptotic
boundary is the union of two disjoint circles and H = 0 (embeddedness here is not ne-
cessary) then one gets a hyperbolic catenoid (see [62]), if the asymptotic boundary is the
union of two disjoint circles and H =+ 0 then one gets a surface of revolution (see [30]).
As a matter of fact, similar results hold for f-surfaces in hyperbolic space as we have
remarked in a recent paper (see [92]). Recently, the authors have obtained some new
symmetry results for constant mean curvature surfaces in hyperbolic space (see [92] and
[93]). The authors have also inferred some general uniqueness (and existence) results for
minimal vertical graphs in hyperbolic space (see [94]). We now remark that there have
been carried out several derivations of Alexandrov techniques to hypersurfaces in Eucli-
dean space (and Hyperbolic space) endowed with nice geometric structures, such as hy-
persurfaces with some r- mean curvature constant, since the Maximum Principle holds
(see for instance ([21], [22], [54], [79], [42], [43]). It should be mention now that there
are a lot of interesting publications focus on the geometric non-variational aspect of the
theory of constant (non-zero) mean curvature surfaces such as the works of Rosenberg-
Sa Earp [83], Nelli-Spruck [74}, Ros-Rosenberg [82], Semmler [100], Collin-Hauswirth-
Rosenberg [26] and others. We apologize for any omission. At last, we would like to point
out that there are point of view rather different than those we focus here; their methods
are based on Functional Analysis, Spectral theory, Calculus of Variations or Geometric
Measure Theory. These methods give rise to important analytic and geometric applica-
tions to constant mean curvature surfaces theory beyond the scope of this discussion:
For readers convenience we refer to Wente [113], {114], [115], Hildebrandt [40], Gulli-
ver [36], [37], Brezis-Coron [13], and Struwe [108], [109]. See also, Meeks-Yau [69],
Bérard- Hauswirth {11}, Barbosa-Bérard [7], Duzaar-Steffen [31], Steffen [107] and to
the references on these articles.

* x *

Serrin has written in 1971 a very elegant paper (see [101]) where he proved that
a “symmetric” overdetermined second order elliptic equation on a bounded domain Q
with “symmetric” boundary value data does imply that Q must be a ball. A typical result
is the following: Let Q be a bounded domain with C? boundary I. Suppose there exists a
C? function u satisfying the Poisson Diferential Equation Au = —1 in Q, together with
the boundary conditions u = 0 and % = const onT[, where 7 isthe unitinner normal
vector to I. Then 2 must be a ball.

It is amazing that Serrin has used Alexandrov Method, to apply it back to Analysis
in order to get symmetry results on Partial Differential Equations. Instead of applying
it to Geometry, as did Alexandrov, he had the beautiful intuition to capture the geo-
metry inside Alexandrov Method. He has improved one of its central background- the
Maximum Principle at the boundary. Indeed, he has proved what we call the boundary
Maximum Principle at a corner (see Lemma 2). Later on, Gidas, Ni and Nirenberg, have
refined Serrin Method establishing in 1979 the called Method of Moving Plane to in-
fer various symmetry and related properties of positive solutions of second order ellip-
tic equations over bounded and unbounded domains (see [33]). C. Li has study sym-
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metry and monotonicity of fully nonlinear elliptic equations in 1991 by introducting
a simplified approach based soleley on Maximum Principle to carry out the the Mo-
ving Plane Method (see [60] and [61]). Caffarelli, Gidas and Spruck in 1989 have pro-
ved asymptotic radial symmetry of positive solutions for the conformal scalar curva-
ture equation and others semilinear elliptic equations using a “measure theoretic” va-
riation of the method of Moving Plane (see [20]). Recently, Korevaar, Mazzeo, Pacard
and Schoen (see [55]) have given a more geometric argument than [20] looking dee-
per to the geometry of the conformal scalar equation (see [5] and [39]) to obtain refined
asymptotics and a slightly stronger estimate. We would like to remark that a pioneer of
the link between PDE and Differential Geometry is R. Finn (see [32]). The reader is also
referred to the work of J. McCuan about symmetry via spherical reflection (see [65]).
For general Maximum Principle on complete Riemannian manifolds see [117] and [27].
* % *

In section 2 we shall prove the following theorems. First, we will fix some conven-
tions and we will recall some definitions: In what follows it is necessary knowledge of
basic hyperbolic geometry developed in the following references (see [96], [106] and
[78]). We will say the a set S in the n- dimensional hyperbolic space IH” is contained
inside the n — 1-dimensional horosphere & if S in contained in the mean convex open
domain £ in " with boundary 5# ( we will also say that 5# involves S). This domain %
is called the horoball bounded by &; that is, the mean curvature vector H of # points
into %. The complement of the closed domain @ in hyperbolic space we will call the ex-
terior of # and if S is contained in this complement we will say that S lies outside . Of
course, the conventions “S is contained inside M” or “S is contained outside M” can be
extended in the case when M is a properly embedded hypersurface in hyperbolic space
with non-vanishing mean curvature vector.

We will say that an horoéphere K, is a translated copy of the horosphere & if there
exists an orthogonal geodesic y and a translation T,, along y (which is a hyperbolic iso-
metry of hyperbolic space, see [96]) which takes &#; to #.

We now recall that the asymptotic boundary of a n-dimensional hypersurface im-
mersed X in hyperbolic space is defined as follows (see [29]): Consider M immersed in
the ball model of hyperbolic space B"*! = {||x|| < 1}.

9 =2 N S"(0)

where $" (o) = {||x]| = 1} and £ is the point set closure of 2 in B™1,

We also recall that the Catenoid Cousin are the noncompact constant mean cur-
vature surfaces of revolution. This terminology is due to Robert Bryant (see [18]). Nice
properties and a description of the Catenoid Cousin have been made by Bryant in his
pioneer article about mean curvature one surfaces, see [18]. The reader is also referred
to Ordédiies ( [75]), and to the authors article (see [95]).

Next, we will extend a symmetry result deduced by the authors (see [92], Theorem
1 and [93], Theorem 4.2).
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THEOREM A. — Let M be a connected constant mean curvature one surface in hy-
perbolic space with boundary €y U €, where €, and € are circles with radius r and R,
respectively. Assume that €, U €, is invariant by rotations around a geodesicy. Let $y and
&) the unique geodesic “parallel” planes with €y C Py and €, C P. Let # be a fixed
horosphere such that € lies on #. Let us assume that €, is contained inside 3¢, and that
R > r. Then there exists a constant d (independent on M) such that if dist($#y, 1) > d,
then M is a surface of revolution.

Theorem above has a corresponding statement in arbitrary dimensions and can be
stated in the setting of f-surfaces as well. Notice that for anyr and anyRsuchthatR > r,
there always exists a piece M of an embedded Catenoid Cousin satisfying the assump-
tions of the theorem, i.e. M = &y U €, (where r is the radius of €y and R is the radius
of @] )

THEOREM B. — Let M be a connected properly immersed constant mean curvature
one surface inIH3. Let # be an horosphere. IfoM = @ and M is contained inside #, then
M is equal to a translated copy of #. If the boundary 0M =+ Q@ (possibly non compact)
is contained in # and M \ oM is contained inside a translated copy #., then M \ oM
is contained inside . Furthemore, if M is embedded (with M \ oM contained inside a
horosphere) and the boundary of M is a circle lying on a horosphere, then M is part of an
horosphere or part of an embedded Catenoid Cousin.

We point out that if one replaces the word “immersed” by “embedded” in the above
theorem, in the case dM = O, one gets the first part of a result of Rodriguez and Ro-
senberg (see [81], Theorem 1). Their proof does not extend to the immersed case: In
fact, if the asymptotic boundary of M is a point and M is embedded then Do Carmo-
Lawson theorem applies. The first statement can be viewed as a half-space theorem (see
[44}) for constant mean curvature one surfaces in hyperbolic space. Let us digress for a
moment to say that the Half-Space Theorem of Hoffman-Meeks for minimal surfaces in
Euclidean space is one of most admired geometric application of Maximum Principle
in Differential Geometry. It has an equivalent in the setting of f-surfaces of minimal
type (see [90]). Another beautiful result is the Maximum Principle at Infinity inferred by
Langevin-Rosenberg in 1988 (see [59]), by Meeks-Rosenberg in 1990 (see [67]) and by
Soret in 1993 (see [103]).

We continue our discussion, saying that we do not know if first and second asser-
tions in the statement of Theorem B remain true for higher dimensions. Third assertion
was proved by the authors (see [93], Theorem 4.1). We have decided to restate it here for
the reader’s convenience. It is remarkable, in contrast with the case where the ambient is
Euclidean space, we make no assumptions about the topology. Moreover, third assertion
hold for constant mean curvature surfaces.

Molzon has produced the Serrin typical result (cited in the introduction) for boun-
ded domains Q in hyperbolic space (see [70}). We remark that Serrin general results is a
project not yet undertaken in hyperbolic space.

Let A be the second order elliptic Laplacian operator acting on IH™*!. We have the
following Molzon-Serrin type result.
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TueoreM C. — Let Q be a domain in IH™*! with boundary a properly embedded hy-
persurface M whose asymptotic boundary is a point. Let n be a global unit normal to M
pointing into Q. Suppose that there exists a C*>(Q) function f nonnegative on Q satisfying

Af=-1 inQ

f=0 and 2—£=k(const) onM.

Then Q is a horoball and M is an horosphere.

1 Some Earlier Results on Alexandrov Reflection and Maximum
Principle

We begin this section recalling the definition of f-surface. Let M be a surface either

immersed into IR® or else immersed into IH3, oriented by a global unit normal field N
ki + k

whose mean curvature H := and extrinsic Gaussian curvature K, := k; kz (ki,k;

are the principal curvature of M), satisfy a Weingarten relation of the form:
H= f(H? - K,).
We shall require that f is a C! function defined on [0, + o[, satisfying:
Vit e [0,+of, 4t( f'(£)? < 1.

Itissaid that f isellipticif f satisfies the inequality above. If M satisfies the first relation
above for f elliptic, then M is called either a special Weingarten surfaceor a f-surface.
They have been studied by Hopf (see [45]), Hartman and Wintner (see [38]), Chern (see
[24]) and by Bryant (see [19]). More recently, there has been considerable progress, as we
have pointed out in the introduction. We now commence to discuss some of the loc. cit.
theorems.

THEOREM 1 (Alexandrov). — A compact connected embedded constant (non-zero)
mean curvature surface M in Euclidean or hyperbolic space is a round sphere.

Proof. — Briefly Alexandrov Reflection Principle works as follows: Fix a certain geo-
desic plane &£ and consider the foliation of all translated copies of & along a certain geo-
desic y that cuts orthogonally &. Then coming from the infinity towards M doing such
translations, one make successive symmetries about these planes and look to the pos-
sible first point of tangent touching contact with M and an element of this family. We will
proceed the proof as follows. Let £ be a fixed geodesic plane far away from M. It suffices
to prove that there exists a translated copy &, such that M is symmetric about £,, and
is a graph over &, in each side. Let £, be the 1-parameter family of translated copy of
&, where we choose the parameter ¢, such that &,, t > 0 is contained in the connected
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component determined by & which contains M and ¢t = dist(%;,#), hence &, = &.
Translating & towards M one gets a first plane &;, thatreaches M; thatis #;, N M = O,
butif z < ¢ then &, N M = @. Thus &, is tangent to M at a point, say p, and M is
contained in on side of &,,. Locally, around each such point p, M is a graph over &,.
To continue the proof we will fix some conventions: Let Q be the bounded domain with
boundary M. Let &; be the half-space determined by &, that contains £, let M, be the
part of M lying in &; and let M/ be the symmetry of M; about #;. Then there exists at
least a small &5 > 0 such that M, 4, is a graph over &,, and M,’;+E is contained in Q, for
0< & < &

Figure 1

_Itisclear that for some #; > 1) + ¢, the symmetrized cap M, intersects the exterior
of Q in anon emptyset. Nowast t 5, t > f; + & one can translate &, and reflects M,
about £,, successively until one reachs a first point of tangent contact of the reflection of
M;, about &,, with M, for some %, varying in the interval (11,%,). Hence either M,’; touch
M at an interior point (see Figure 2) or M;; touch M at a boundary point (see Figure 3).

5]

&%

Figure 3
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In any case, M,:)‘ and M are one in a side of the other, in a neighbourhood of a first
point of tangent contact g. As reflections invert normal vectors, the mean curvature vec-
tor H of both M;; and M at such point g are the same. At last, one can apply either
Hopf Interior Maximum Principle or Hopf Boundary Maximum Principle (see for ins-
tance [77], [34] or [10]) to infer &, is a plane of symmetry of M. The procedure shows
that,in each step as ¢ 1 &, M; is a graph over &; in both sides. This completes the proof
of the theorem. O

It is worth note that there exists a same Alexandrov theorem for f-surfaces of cons-
tant (non-zero) mean curvature type, since the Maximum Principle holds (see [17]). The
method of the proof is the Alexandrov Reflection Principle.

Next, we shall very briefly outline the proof of Schoen’s theorem. For a proof making
use of powerful tools as the monotonicity formula and the maximum principle at infinity
the reader is referred to [80]. Another useful tool that has been used in minimal surface
theory is the called flux formula. It has an important rule in the proof of Schoen’s theo-
rem bellow. It is also intensively applied to constant mean curvature theory. The reader is
referred to ( [102], [41] (minimal surfaces)) and ( [56], [50], [16) and [9] (constant mean
curvature surfaces)). Of course the main tool for minimal surfaces in Euclidean space
is the so-called Weierstrass representation. For constant (non-zero) mean curvature sur-
faces in Euclidean space a Weierstrass type formula was given by Kenmotsu (see [49]).
The authors have recently inferred a Weierstrass-Kenmotsu formula for prescribed mean
curvature surfaces in hyperbolic space (see [98]). For related formulas see, for instance
[2], [3]and [53].

THEOREM 2 (Schoen). — The catenoid is the only complete connected properly im-
mersed minimal surface in Euclidean space with finite total curvature and two embedded
ends.

Proof. — The main ideas in the proof of the theorem are the following: First, Schoen
has derived an asymptotic expansion for minimal embedded ends on finite total curva-
ture ( each such an end is conformally equivalent to a punctured disc): namely each end
is asympotic geometrically to a plane or to a catenoid (for a very clear derivation of this
asymptotic expansion see [41]). Applying either Maximum Principle at infinity or Half-
Space Theorem it can be shown that each end is asymptotic to a fixed catenoid. By ap-
plying Flux Formula one gets that the ends are parallel and one may suppose their limi-
ting normals are vertical having the same logarithmic growth. In fact, Monotonicity For-
mula (see [34]) yields M is embedded. A beautiful monotonicity variation of Alexandrov
Method (see [102], Theorem 1) gives rise that M has an horizontal plane of symmetry;
hence the catenoids have the same axis. Then applying Alexandrov Reflection Principle
again moving parallel planes to the vertical axis, one therefore infers that M is a surface
of revolution O

It is amazing that the assumption finite total curvature can be dropped and repla-
ced (in the setting of properly embedded surfaces) by finite topology. This is a conse-
quence of a great theorem proved by P. Collin (see [25]) inspired by the works of Meeks-
Rosenberg (see [68]) and Meeks-Yau (see [69]): Let M be a properly embedded minimal
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surface in Euclidean space with at least two annuli ends. Then M has finite total curvature
ifand only if M has finite topology. Another nice characterization of the catenoid was gi-
ven by Lopez and Ros (see [64]): Among the complete embedded non-flat minimal genus
zero surfaces in Euclidean space the catenoid is the only of finite total curvature.

The first author with Braga Brito, Meeks and Rosenberg, say B-M-R-SE, have proved
in 1991 the following theorem.

THEOREM 3 [B-M-R-SE]. — Let M be a compact connected embedded constant
mean curvature surface in Euclidean space with strictly convex planar boundaryT trans-
verse, along the boundary, to the plane P containing the boundary Then M is contained
in one of the half-spaces determined by P. Under the same assumptions ifT is a circle it
Jollows that M is a spherical cap.

Proof. — We will focus two central undesirable clichés to show how to eliminate
them, rather than outline a complete proof. The first main configuration to kill is given
by Figure 4. One can handle it by applying a suitable variation of Alexandrov Reflection
called graph lemma carried out by the first author and Braga Brito (see [15]) to arrive to a
contradiction. This is shown in Figure 5: Roughly speaking, let P be the horizontal plane
determined by the boundary I. Moving vertical planes and doing Alexandrov Reflection
one gets a first point of contact p, hence the surface is a graph in both sides of the plane
1t in Figure 5; leading to an obvious contradiction.

[

Figure 4

Figure 5
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The second main configuration to kill is expressed in figure 6. To arrive to a contra-
diction one applies the flux formula to M and to M, see Figure 6 and Figure 7, respecti-
vely. Summarizing, let 7 be the interior unit conormal along dM, and let Y be the unit
normal to P. Thus one can calculate the expression fr Y - n, where - denotes the stan-
dard inner product, by applying Flux Formula to the configuration given by Figure 6 and
to the configuration given by Figure 7. The former gives 2H area (D) and the latter gives
2H area (D;), where H is the mean curvature, and D € P D; C P are shown in Figures
6, 7, respectively. As area (D;) < area (D), this leads to the desired contradiction.

7L
YA

Figure 6

M

1

r
Figure 7 0

We will now sketch the proof of some results when the ambient is hyperbolic space.

THEOREM 4 (Hsiang). — A cylindrically bounded complete properly embedded
constant mean curvature surface M in hyperbolic space is rotational.

Sketch of the proof. — The proof is a consequence of a simple observation making
use of Alexandrov Method. The observation is the following: Let C be a cylinder in hyper-
bolic space, namely the locus of points at the same distance to a fixed geodesic y. The
intersection of any geodesic plane & such that 9, & N 9.,y = @ with C is either compact
or else is empty.

Now let &, be a fixed geodesic plane of symmetry of C, let y be a geodesic cutting
&, orthogonally and let & any translated copy of &,, along y far away from &,,. Then
one can run Alexandrov Method, as in the Alexandrov theorem using the foliations of
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geodesic planes &, along y coming from the infinity towards M, to infer that the reflec-
tion of each part of M in the two sides of &, is contained inside M. One concludes that
2, is a plane of symmetry of M. O

Notice that the assumptions yield that M has non-zero mean curvature; this can
be seen by applying Maximum Principle, using minimal hyperbolic catenoids as useful
barriers. Of course, the above theorem is valid for f-surfaces in hyperbolic space (see
[92]).

Taeorem 5 (Barbosa, Sa Earp). — Let M be a compact surface immersed into hy-
perbolic space whose boundary is a circle. Assume that the mean curvature H is constant
with H? < 1.Then M is part of a horosphere (if H> = 1) or part of an equidistant surface
(fH? < 1).

Sketch of the proof. — The first important observation is the following general fact:
M is contained inside any horosphere & that contains the boundary of M, denoted by T.
This assertion follows by Maximum Principle using the foliations of horospheres having
the same asymptotic boundary as & (see Figure 8). The existence of the foliations of ho-
rospheres issuing from a given point of the asymptotic boundary is crucialfor the proof,
as we shall show in the sequel. This makes an important difference from the Euclidean
situation and has allowed the proof of the theorem for H? < 1. In fact, using these folia-
tions combined with Maximum Principle, it is not difficult to see that when I'is a circle
M can be trapped in two abstract caps: Look to the half-space model of hyperbolic space
and suppose that I'is contained in a vertical plane P, then the two abstract caps are hori-
zontal graphs with respect to P. Now take two H-caps with the same boundary and same
mean curvature H as M, apart from M doing horizontal Euclidean translations (which
are parabolic isometries of hyperbolic space in the upper half-space model). Then mo-
ving them horizontally back towards M again it follows that it is not possible to get a
first point of contact during this movement until the boundaries of M and the H-caps
are identify. Thus we can replace the abstract caps by these H-caps (see Figure 9). We
observe now that there exists a Flux Formula in hyperbolic space similar to the Flux For-
mula applied before in Euclidean space. We can therefore applied this Flux Formula to
ensure that at least the two surfaces have a boundary point of tangent contact. Thus M
is a cap of a totally umbilic surface with mean curvature H, H? < 1, as desired. This
achieves the sketch of the proof of the theorem.

-

{Z=0}

Figure 8
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H~—cap

Figure 9 O

Now we shall state the Perron Process for minimal vertical graphs in hyperbolic
space that has been established in [94] and we shall give an application based essentially
on the Maximum Principle. Consider the upper half-space model of hyperbolic space

1
IH3 = {(x,y,2), z > 0} equipped with the hyperbolic metric ds? = = (dx? +dy? +dz?).

Let Q@ ¢ IR be a domain in the asymptotic boundary and let f : 9Q — [0,[ be a
continuous function. Let us consider the Dirichlet problem (P) :

n
U;u; n
= §;j - ——L=)u;;+—= 0on Q
2= D 00~ T o

uga=f

ueC)nc@.

We call the equation Qu = 0 the minimal vertical equation in hyperbolic space. Notice
that the interior maximum principle for minimal surfaces in hyperbolic space merely
says the following: If two (connected) minimal surfaces are touching at some (common)
interior point p, and one stands in a side of the other around p, then the two surfaces are
equal in a neighbourhood of p. There is an analogous boundary maximum principle.

We shall now define the important notions of subsolution and supersolution. Consi-
der problem (P) above where Q is any domain of IR? and f is any non negative conti-
nuous function on 3. Let u : Q — [0, + o[ be a continuous function. Let U ¢ Qbea
closed round disc. The reader can take as a fact (see Theorem 2.3 in [94]) that u|3y has an
unique minimal extension # on U, continuous up to 9U. We then define the continuous
function My (u) on Q by:

_Jux) if xeQ\U
M"(u)(x)_{a(x) if xeU.

Letnow u : Q — [0, + «[ be a continuous function. We say that u is a subsolution
(resp. supersolution) of (P) if:

D) wan < f (resp. uppn 2 f).
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ii) For any closed round disc U ¢ Qwehave u < My (u) (resp. u > My (u)).

We make in the following some important remarks about subsolutions and super-
solutions.

a) If uis a strictly positive C? function on £, then

0

u is a subsolution & Qu >
u is a supersolution & 2u < 0.

b) If u and v are two subsolutions (resp. supersolutions) of (P) then sup(u,v) (resp.
inf(u,v)) again is a subsolution (resp. supersolution).

¢) Also if u is a subsolution (resp. supersolution) and U C Q is a closed round disc
then My (u) is again a subsolution (resp. supersolution).

d) Let Q ¢ IR? be abounded domain andlet u, v : Q — [0, + o[ be two continuous
functions such that My (u) > u and My (v) < v for any closed round disc U C Q.
Suppose that ujzqo < V)20, then we have u < von Q, i.e. “a supersolution is greater than
a subsolution”.

e) For any domain Q ¢ IR?, if f is any continuous positive function on 2%, then
the vanishing function u = 0 on Q is a subsolution for (P). Observe that for every x €
Q there exists a subsolution u of (P) with u(x) > 0. Indeed let Il be any hemisphere
centered at x such that 9., I1 ¢ Q. ThenITis the graph of a continuous function v defined
onaclosedround disc U ¢ Q. Thensetu = von U and u = 0 on Q\ U. One easily verify
that the function u is a subsolution.

f) Now let @ ¢ IR? be any bounded domain and let f : 3Q — [0, + o[ be any
continuous function. There are at least two natural ways to construct a supersolution for
problem (P). Firstly, to see this just take any geodesic plane & (Euclidean hemispheres
orthogonal to the asymptotic boundary of hyperbolic space) involving the graph of f in
Euclidean sense. By using the foliation of geodesic planes obtained by translating (hyper-
bolically) £, one can conclude that if the minimal vertical graph “escapes” from £ one
get a contradiction with the Maximum Principle. Secondly, let C ¢ IH? be a hyperbolic
catenoid such that its orthogonal projection, Gy, on IR? has a non empty intersection
with Q. Let x € Q be an interior point of . Consider the homotheties h, , with respect
to x, A > 0. Clearly, for A > 1 big enough, a piece of h, (C) is a vertical graph v over a
domain containing Q and vjzq > sup( f). Thatis, v is a supersolution for (P).

Finally, we remark that a u solution of the minimal equation in Euclidean spaceis a
subsolution for the minimal vertical equation in hyperbolic space, i.e. Qu > 0.

The Perron Process for minimal vertical graphs in hyperbolic space is given by the
following theorem

THEOREM 6 (Sa Earp, Toubiana). — Let Q ¢ IR? be a domain and let f : 9Q —
[0, + o[ be a continuous function. Suppose that problem (P) has a supersolution @. Set
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%y = {u, subsolution of (P), u < @}. Wedefine foreach x € Q

v(x) = sup u(x).
UeS

Then the function v is C?> on Q and satisfies the minimal vertical equation in hyper-
bolic space. Furthermore, consider p € 9Q and suppose that either one of the following
cases holds:

i) 9 is C%-convex at p.
ii) phasabarrierand f > o > 0 onoQ.
iii) p has a barrier and f(p) = 0.

Then v is continuous up to p and v(p) = f(p). In particular ifQ is C° convex, the
function v is continuous up to oXQ.

As an application of Perron Process we shall construct complete minimal vertical
graphs invariant by a discrete group of horizontal Euclidean translations:

Corollary7 . — Let Q c IR? be an unbounded domain with 3Q embedded. Sup-
pose that:

i) Thereexists a non null vector & € IR? such that Q) is invariant by the horizontal
translation T (x) = x+ &

ii) Q iscontained in a band & invariant under T.

iii) Forany p € 0Q, p + 0, there exists a hyperbolic catenoid C such thatd,C n Q =
D, p € 0, C and such that the segment joining the centers of the two components of 0., C
intersects Q. This last condition means that the curvature of a non convex part of the boun-
dary of Q is not too big with respect to the width of the band. So it can be compared with the
curvature of the circles that form the asymptotic boundary of the “smallest” minimal cate-
noid that stands across the band. Consider problem (P) where f is the vanishing function
on Q. Then (P) has a solution v which is invariant under the horizontal translation T.
Consequently, the graph S of v is a complete minimal surface of IH® invariant under the
discrete group of parabolic isometries {T9, q € Z}.

Sketch of the proof. — Notice first that any solution of the Dirichlet Problem (P) is
bounded. In fact a more general result holds: Consider our domain Q2 lying in the band
% and a bounded value boundary data f on 99. Take any catenoid € across & such
that €& stands above f in the Euclidean sense. There are many catenoids with this pro-
perty. Of course any piece of € that is a graph over a part of Q is a solution of the minimal
vertical equation in hyperbolic space. What is interesting to observe is that any vertical
upward translation of € is still a supersolution! Geometrically this means that the mean
curvature vector H of any vertical upward translation of a minimal solution is a down-
ward pointing normal (see Figure 10). Precisely, if w is a C? function satisfying w = 0,
then 2(w+ b) < 0 for any b > 0. So using these vertical translations and maximum
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principle it is now easy to conclude the assertion that any minimal extension of f to Q
must be bounded, if f is bounded. Furthermore it can be proved that if Q is convex and
f is bounded and uniformly continuous then the minimal vertical extension u to Q is
unique. Let up be standard solution in the band B of our Dirichlet Problem taking zero
value boundary data. As a matter of fact this solution exists (and is unique). Let us take
up as a supersolution for our problem. Now observe that the catenoids given by condi-
tion iii) are “good barriers” for our problem in the sense that any solution of our Dirichlet
Problem in 2 must stands bellow such catenoids by the argument given just above (see
Figure 11). This means that anysolution must be above the subsolution u = 0 (of course)
and bellow these catenoids forcing that the solution given by Perron Process takes the
prescribed continuous boundary value data f. At last it can be proved uniqueness, that
is the solution is invariant by a discrete group of Euclidean translations.

taking ero value boundary data
/ 0

{Z=0}

\ZClassical solution over a band

Figure 10

C= minimal catenoid working as a *  good’ ’ barrier

=0

Figure 11 O

2 Proof of the new results

Proof of Theorem A

We will proceed the proof analogously to [92], Theorem 1 and (93}, Theorem 4.2.
We now recall and fix some notations:

Let y be a geodesic line in hyperbolic space. Let & be a circle of radius r invariant
by rotations around y. Let & be a fixed (between two) horosphere such that &, lies on
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. Let €) beacircleofradius R, R > rsuch that €U % is invariant by rotations around
Y. Let &5 and £, the unique geodesic “parallel” planes with €, ¢ &, and €; C £,.

Let p be the asymptotic point of y which is not the asymptotic point of s#. Notice
that y cuts orthogonally &# (recall that €y C ) at a point g and that the open geodesic
ray ] p.ql lies entirely outside . Take Vp the unique hyperbolic cylinder issuing from
p, passing through €; (note that R = dist (Vg,y) and that Vj is invariant by rotations
around y). Let Dy be the (closed) “disc” in &% whose boundary is €. Consider now &#;
the 1-parameter family of horosphere such that &#; is the translated copy of & along y.
The parameter £, — oo < t < o is chosen such that ¢ is the oriented distance from &#,
to # = H, with the convention that y is oriented from p to p;, where 9.y = {p,p1}
(p1 is the asymptotic point of 5#). We can assume that €, is contained in some 5#;, with
% = oD,, where D is the closed “disc”’in #, whose boundary is &), i.e. D, C #;
( D lies in the point set closure of the interior of V). Our assumption implies #; > 0.
Consider T, T > 0 bigger enough such that #1 N M = &, hence M lies outside &#7.
Let D1 be the “disc” defined by the intersection of &# 1 with the point set closure of the
interior of Vg.

CLaiM 1. — M \ oM is entirely contained inside the cylinder Vy and it is contained
inside # as well.

Proof of Claim 1. — Consider V, d > 0 the 1-parameter family of cylinders which
are invariant by rotations around y, where d = dist (Vy,y) (The asymptotic boundary
of the cylinders V; are the same). A trivial compactness argument show that there exists
d), di > Rsuch that M is entirely contained inside V;; for all d > d;. Now moving V;
towards Vg as d | R, d > d,, we therefore infer that this family {V;} cannot fit M during
this movement (for d > R) at an interior first point of contact, by applying Interior Maxi-
mum Principle, since the mean curvature of any cylinder calculated with respect to the
inner orientation is strictly bigger than 1. Notice that a first point of contact, if any, would
be necessarily point of tangent contact, since our assumption provides a guarantee that
the boundary component &, of M is contained inside V. Thus V,; does not touch M for
d > Rand Vg n M = &,. This proves the first assertion in the statement. The idea of
the proof of the second assertion is the same. Take a translated copy #; of #, choosing
t << 0 such that M is contained inside &#;. Thus translating s, towards # as ¢t t 0
using the same reasoning as before one completes the proof of the claim. Note that it
follows from Claim 1 that M N (.%,l \E) =@and M N &K = €.

Let V} be the closed piece of the cylinder Vg bounded by &, U 9Dr. Let & be the
closed region bounded by 842 := Dy U M U Vi U Dt (notice that 322 is not smooth over
oM v oDr.) Let we now orient M by N': the inner unit normal to 322 induced by the
mean curvature vector H of M. Recall that %o and &) are the unique geodesic “parallel”
planes with €9 C %y and €, C 2.

CLaM 2. — Thereexists a positive constant d such that ifdist(£y,#,) > d, then the
mean curvature vector H through M is pointing into the interior of #.
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Proof of Claim 2. — It is well-known that there exists a constant d such that if
dist(£0,%,) > d then one can find a 1-parameter family of minimal hyperbolic cate-
noids Cy, A > 0, where A = dist (G,,y), coming from the infinity towards y:as A { 0, G
converges to a geodesic plane & “between” &, and £ (see [46], [35]). We therefore use
the family {C,} to infer that it should be a first interior point of contact between M and
some element of this family, hence H isaninterior pointing normal, by applying Interior
Maximum Principle once again. This completes the proof of Claim 2.

Now, one can carry out a standard orientation argument and Maximum Principle
(comparison with some horosphere #;, ¢t 2> ;) to deduce the configuration:
M nint (D) = @. One therefore gets that M \ oM is entirely contained inside & and is
contained outside 5, ; that is, it lies “between” J# and &#,, . Fix now any geodesic plane
P that contains y. To accomplish the proof of the theorem, it suffices to prove that Pisa
plane of symmetry of M (notice that oM is symmetric about P).

Now taking into account basic hyperbolic geometry (see {96]) we infer that P is or-
thogonal to the family #;. Consider the family of parabolic isometries leaving invariant
each horocycle that cuts P orthogonally. In particular, any such isometry leaves each ho-
rosphere #,,0 £ t < t, invariant. We can now move P by means of this family of isome-
tries far away from M, in each side of P. Then coming back towards P doing Alexandrov
Reflection we therefore conclude that P is a plane of symmetry of M. O

Turning to Theorem B, we emphasize that we shall need some knowledge of the
geometry of the Catenoids Cousin in hyperbolic space. This will be clear in the proof
of the theorem. We pause momentarily to say that Ordéfies in his Doctoral Thesis [75]
has given explicit parametrizations of the Catenoids Cousin (more generally: helicoidal
surfaces of either constant mean or else constant Gauss curvature in space form). The
reader is referred to [75] to look at the geometric behavior of the 1-parameter family
of generating curves. We also refer to Castillon Thesis [23] to see some geometric and
cinematic properties of Delaunay surfaces in hyperbolic space, see also [51] and [12].

Proof of Theorem B

The method of the proof of the first statement is the same as the proof of {93], Theo-
rem 3.1, first statement. Indeed, the method of the proof has two powerful tools: Firstly,
we shall need an asymptotic expansion inferred by the authors (see [95]) for vertical
graphs u = u(x,y) (see [89]) with constant mean curvature 1 in upper half-space model
of hyperbolic space. H® = {(x,y,z), z > 0} (of course, equipped with the hyperbolic me-
tric). We will need to work with a 1-parameter family of vertical graphs {.# } which has
a nice geometric behavior, as we will explain bellow: Each .« is an embedded end of a
non-embedded Catenoid Cousin and is a graph of a smooth function u,(x,y) which has
the following asymptotic behavior: u; ~ cR* as R? = x> + y> — oo, wherec > 0, < 0
(see [95]). In fact, each .« is a graph of a function u over a exterior domain @&,, assuming
on 9%, for all t a suitable constant value 0 < £ + §, < 1, where §; > 0 in order that the
boundary of each end .« lies in a fixed “horizontal” horosphere given by {z = £ + §,}.

We may describe precisely the geometrical configuration in the following way: &; is
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the complement of an open disc B; of radius R(t),t € (0,5] R(t) — Oast — 0. We
shall choose all such discs concentric, satisfying: if £, <  then B, ¢ B,. Moreover,
it follows that the family end .« varies continuously on ¢ and have growth «x(t) with
a(t) — Owhent — 0. (see [75] for explicit parametrizations of the Catenoids Cousin
and to look at the geometric behavior of the 1-parameter family of generating curves).

Secondly, we shall make use of Hoffman-Meeks Method to prove the Half-Space
Theorem (see [44]).

We proceed the proof as follows. Suppose first that 9M # @&. We can assume that M
is immersed into the upper half-space model of hyperbolic space. Up to a rigid motion
of ambient space we can also assume that ¥ = {z = 1} and that #, = {z = &}, with
& < 1, with oM c . We will argue by absurd. Suppose, by absurd that € < 1. We can
assume (for simplicity) that M is asymptotic to #, as well (notice that M is contained
inside ##,, by our assumption). We choose § defined above sufficiently small so that the
boundary of each end does not touch M (recall that the boundary of each .# lies in the
fixed “horizontal” horosphere given by {z = £ + §}). That is, .44 is chosen to obtain 9.« N
M = @. Moreover , we shall choose the initial end .« carefully to guarantee 4, "M = &
(this choice is possible taking into account M is proper and the asymptotic expansion of
). We therefore can apply Hoffman-Meeks Method starting from ., moving the family
<4 towards the horosphere {z = &£ + §}, by making ¢ | 0, until a member the family
reaches M at a first tangent interior point. This leads to a contradiction with the Interior
Maximum Principle, since the mean curvature vector of each member of the family .«4
is an upward pointing unit normal. Note that when oM = @, if one supposes at the
beginning of the proof that M + 4, one gets a contradiction in the exactly same way as
before. The proof of the first part of the theorem is now complete.

We now will check the proof of the last part of the statement.

Let M be a connected properly embedded constant mean curvature 1 surface in
hyperbolic space contained inside the horosphere & and let 9M be a circle € lying on
. 1f M is compact then it follows that M is part of an horosphere (see [72], [8], [92]).
Thus we can assume that M is non-compact (no assumptions about the topology). No-
tice that the assumption “M \ 9M is contained inside 5#” is necessary in the sense that
the configuration (M \ odM) N ¥ # @ is forbidden by Interior Maximum Principle, since
we are assuming that M \ oM is contained inside a translated copy .. Moreover, let
D be the closed “disc” with D C 3 whose boundary is & and let M := M U D be the
properly embedded surface in hyperbolic space not smooth along &. Let us orient M by
the orientation N induced by the unit mean curvature vector H of M. To see the confi-
guration better assume that we focus on the upper half-space model of hyperbolic space
and that & = {z = 1}. Now applying Maximum Principle, using horospheres which
cuts & transversally, as suitable barriers, one can therefore conclude that N through D
is pointing into the horoball & whose boundary is s#. Let us give further details about
this: We consider that the part of hyperbolic space outside 5 (bellow 3¢ in the Euclidean
sense) is contained outside M := M U D. So the above construction using the family
of foliations of horospheres issuing from a finite point of the asymptotic boundary, as
barriers, coming from the infinity towards M, we conclude that the mean curvature vec-
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tor H is pointing to the interior of M. Let us give another proof of this: Just take two
geodesic planes at certain distance d involving € in the Euclidean sense. If d is chosen
properly one can use a family of minimal catenoids coming from the infinity towards M
that converges to a geodesic plane in the middle of the two others to ensure again that
the mean curvature vector is pointing to the interior of M. Now let P be the unique geo-
desic plane that contains €, and let o be the the vertical geodesic line of symmetry of
€, cutting orthogonally P. On account of the 1-parameter family of geodesic planes P;
obtained by translations along «, coming from the outside of 5# (which lies in the out-
side of M) towards %, one therefore infers by Maximum Principle that M \ oM cannot
intersects P,i.,e (M \o0M)N P =O.

We shall show next that every geodesic plane £ of symmetry of € is a plane of sym-
metry of M. Fix such a geodesic plane £. Let y be the unique (oriented) geodesic line in
P cutting & orthogonally at a point g, with y(¢ = 0) = g. Note that hyperbolic transla-
tions along y keeps P invariant and produces a 1-parameter family #;, — o < t < o
of translated geodesic planes such that &y = & and £, is orthogonal to P, V¢ ( ¢ is the
oriented distance from &£, to ). We therefore are able to apply Alexandrov Reflection
on M using the foliation {#;} coming from the infinity towards £, to conclude that &#
is a symmetry plane of M. We remark that Alexandrov Method works because the fol-
lowing three conditions hold: M n &;, t = 0 is either empty or else is a compact set,
M n P = €&, and the reflection of € about &, lies on P, for all t. The proof of Theorem B
is now complete. O

We now shall attempt to proof Theorem C. We shall need the following lemmas.

LEmMmMA 1 (Basic hyperbolic geometry). — Let M be a connected properly embedded
surface in hyperbolic space whose asymptotic boundary consists of a single point. Let &
be a geodesic plane such that 9. M C 0. %P. If M is symmetric about every such geodesic
plane & then M is a horosphere. Furthermore, if $:, #; + & is an arbitrary translated
copy of P along a geodesic y cutting orthogonally P, then either &; N M is empty or else
P: N M is compact.

The lemma above is straightforward hyperbolic geometry. We will omit the proof
here. Clearly, the same statement can be formulated for hypersurfaces in IH"*!.

LemMmMA 2 (Serrin’s boundary maximum principle at a corner [101]). — LetQ be a
domain in IR™" with C? boundary and let T be a (Euclidean) hyperplane containing the
normal to 92 at some point q. Let Q* then denote the portion of Q lying on one particular
side of T. Suppose f is of class C? in the closure of Q* and satisfies the second order elliptic
differential equation (using summation convention)

Lf=ajx)fij+bx)f;<0in QF

of _&f
;! f” - ax,-axj

where we denote x = (xy...Xp+1), fj = ™
J

. We assume the coefficients



Variants on Alexandrov Reflection Principle and other applications of maximum principle 113

uniformly bounded and we assume the matrix a; ; positive definite satisfying

a;j(0)EE; > kIE? k>0
la; j(x)En ;| < K(E - nl +[E] - |d])

where& = (&, ...&u+1) is a vector in IR™1, n is the Euclidean unit normal to the hyper-
plane T, and d is the distance from T. Suppose also that f > 0inQ* and f = 0 atq.
Then either

of o f

— >0 — >0 at

s Y at 9

unless f = 0, where s is any direction at q which enters Q* non-tangentially.

Proof of Theorem C

On account of Lemma 1, we must prove that given an arbitrary geodesic hyperplane
& such that 0, M C 0,2, then M is symmetric about £. To infer this we will make use
of Alexandrov Method, following the plot due to Serrin, and carried out by Molzon when
the ambient is hyperbolic space.

Notice that M is symmetric about £, if and only if the symmetrized cap of each
part of M in each side of & is contained inside M (it is trivial anyway). Let y an oriented
geodesic line cutting £ orthogonally and let &#;, — 0o < t < o be the 1-parameter
family of geodesic hyperplanes obtained by translating & along y, as in the proof of the
last part of Theorem B. We may suppose that £, = £. Denote by &}, 1, € IR the
connected component of IH"*! \ &, which contains £,,t > %, and denote by &, the
other component. Let Q; be the portion of Q lyingin &; andlet Q; () be the symmetry
of Q; about &, (Q; (x) C 7). Similarly, let Q} be the portion of Q lying in &} and let
Q7 (*) be the symmetry of Q about &, (Q; (%) C ;). Finally, if x, € Q let x} be the
reflection of x, across &,.If #; N Q # @ and Q; () (resp. Q7 (%)) is contained in Q, we
can introduce a new function g defined by

g(x) =f(x*) x € Q; (%) (in the case Q; () is contained in Q)
or
glx) =f(x*) x € QF () (in the case Q} (%) is contained in Q) .

Since the Laplacian operator A is invariant under rigid motions of ambient space
and reflections are isometries of hyperbolic space it is evident that, if Q; (x) is contained
in Q, the function g satisfies the following overdetermined elliptic differential problem.

Ag=-1 in Q; (%)
g=f on 9Q; (x) N #;
0

g=0, £ =k constant  on 2Q; (x) N &} .



114 R. SA EARP & E. TOUBIANA

Of course, the function g satisfies an analogous problem in the case Q7 (*) is contained
in Q. Notice that reflections invert normal vectors, we therefore have above a well defined
problem.

We now are able to run Alexandrov Reflection on M using the 1-parameter family of
geodesic hyperplanes &, coming from the infinity towards £ (as we did before), and to
consider the function f-gdefined on Q; (%) (resp. Q7 (*)).1fno2Q; (x), ¢t # 0 and no
9Q} (x), t = 0 touches M at an interior or boundary point of tangent contact then we get
what we want: Indeed, it follows from this situation that the symmetry of the part of M in
each side of £ is contained inside M, we can therefore conclude M is symmetric about
2.

Henceforth, to complete the proof of the theorem it must therefore be shown that
the existence of a first point, say g of either interior or boundary point of tangent contact
(during the above Alexandrov-Serrin process), leads to a contradiction. Thus let us sup-
pose by absurd that there exists a first point of contact g for some f, * 0, and let us
denote by simplicity Q(x) (instead of Q; (x) or Qj (x)).

We first consider the configuration 9Q(x) is internally and smoothly tangent to M
at a point g not lying on £,,. Recall that Q(*) is contained in Q by construction. We can
therefore consider the function f-g defined in Q(*). We get

A(f-g) =0 in Q(x) (1)

and

f-g=0o0n 0Q(x) N &£,
f-g (2)

> 0on Qx)N(Q\ Py).

Note that, as f is nonnegative by hypothesis, last inequality follows immediately,
because g = 0 on 9Q(x) N (Q\ £,). Besides, f must be stricly positive in Q, since it
satisfies the elliptic equation A f = —1.

Now recall that Q (%) is compact (by Lemma 1). On account of (1) and (2) we can
therefore apply Hopf Interior Maximum Principle to infer either

f-g>0 in Q(x)
or else f-g8=0 at all points of Q(x*).

But the latter possibility imply that the symmetrized cap Q(*) must coincide with
the part of Q on the same side of &, as Q(x*), since f>0in Q. We therefore conclude that
Q is bounded which is an absurd. Now the former possibility f>gon Q(*) and the confi-

o(f-8)
™ (q) > 0, ap-

plying Hopf Boundary Maximum Principle. This however leads to an obvious
0 -

contradiction with the fact that M (g) = 0. Thus the possibility 0Q(* ) is internally

and smoothly tangent to M at a point g not lying on &, cannot occur.

guration 2Q(* ) touching (internally) M at the point g ¢ ;,, yields
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We next will infer that the existence of a first point g € %, of boundary point of
tangent contact, i.e. &, fitting orthogonally M at a point g, and f > gon Q(x) is also
an impossible configuration. To attempt this goal, we shall use some basic hyperbolic
geometry again, and we shall carry out some calculations- to enter into the spirit of Serrin
and Molzon- to obtain that the first and second derivatives of f—g vanish at g. Taking
into account Lemma 2, we arrive to an absurd.

We proceed the details as follows. Next, we will work with the ball model B™*! of
hyperbolic space equipped with the metric ds®> = A2(dx? + - - - + dx2,,), where A®(x) =

m. Up to a rigid motion (namely, a Mobius transformation), we may assume
that g lies on the x,,-axis and that the hyperplane {x; = 0} agrees with &, at g (then
the x, axis is normal to &,), and that the vector 7, the inner unit normal to M at g, lies
in the x,+)-axis with 7 - e,+; < 0. Where we denote by - the Euclidean inner product
and e+ = (0,...,1) is the standard vector in IR"*! along the x4, -axis. We commence
to calculate the first and second derivatives of f and g. The following calculations are
contained in the cited paper by Molzon. We summarize them here for the reader’s conve-
nience. Clearly, we can represent M = 9Q locally by the equation

Xp+1 = @(X1,...,X,)
where @ is a C? function.

The condition f = 0 on Q can then be written, in a neighbourhood of g, as

f(xly---pxn'(p(xlr-'-nxn))- (3)

Let us recall now that 7 is the inner unit normal to M in hyperbolic space and let N be
the Euclidean unit normal to M. They satisfy the following relation
— l >
n=—-N.
A
Now the formula of the unit normal to a graph @ in IR"*! and the above relation

yields
1 1

VI+@i+. -+ 2

n =

. (—QD],...,— (pnvl)-

>|

Now the condition %5 = k can therefore be expressed as

—Wlfl""—(pnfn+fn+l=k7\\/17+(p%+"'+<p%- 4)
Thus differentiating (3) and evaluating at g we get

fi=0at gfor 1< j<n (5)

On account of equations (4), (5) we deduce

fn+] = kA at q. (6)
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Next differentiating twice equation (3) withrespecttox;, j = 1,... nand evaluating
taking into account (6) we obtain

fij=-kA@;j at g. )
Now differentiating (4) with respectto x;, j = 1, ... n, and evaluating at g gives

fins1=0at gq.

Lastly, since A f = —1 one obtains easily that

frrint1 = A2+ kA - (@114 - + Qun). (8)

Now since the reflected cap Q( ) is contained inside 2, applying second order Tay-

lor formula with remainder one gets that

qalj=0 at g, j=2,...,n

Since g is defined in terms of f by reflection about the hyperplane {x; = 0}, we then

infer

easily that the first and second derivatives of f and g coincide at g. The proof of

Theorem C is now completed.
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