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VARIANTS ON ALEXANDROVREFLECTION
PRINCIPLE AND OTHER APPLICATIONS OF

MAXIMUM PRINCIPLE

Ricardo SA EARP 8 Eric TOUBIANA

Abstract. In this article we discuss several dérivations based on AJexandrov Reflection Principle and

Maximum Principle. Particularly, we give some applications for surfaces of constant mean curvature in Eu-

clidean and hyperbolic space. We also discuss the Perron Process for minimal vertical graphs in hyperbolic

space. We in fer some new relat ed resul ts in hyperbolic space. Namely, we in fer symmetry and half-space re-

sults for properly embedded mean curvature one surfaces. Furthermore, we carry out a Molzon-Serrin type

theorem for a classical overdetermined elliptic équation in hyperbolic space.

Introduction

In this article we shall focus some applications of Maximum Principle, particularly
we shall carry out some results inferred from the magnificent idea due to Alexandrov
called Alexandrov Reflection Principle (see [4]).

This paper is organized as follows: Firstly, we shall writedown a summarized ex-
position of some related classic theorems of both areas, Differential Geometry and Par-
tial Differential Equations. Of course, because of our background, we shall discuss with
more details the dérivations on Differential Geometry that are closely related to surfaces
theory. Secondly, we shall prove some new theorems when the ambient space is hyper-
bolic space, see the full statements at the end of the introduction, their proofs are wri-
tredown in section 2. We shall prove in Theorem A a symmetry resuit concerning com-
pact mean curvature one surfaces in hyperbolic space whose boundary is the union of
two circles. We shall infer in Theorem B a half-space type theorem. Besides, we shall
give in Theorem C a Molzon-Serrin type theorem for a classical overdetermined elliptic
équation in hyperbolic space. All surfaces (or hypersufaces) treated in this paper are of
classC2.

Classification math. : 53AIO, 53C42,35J25.
Both authors are supported in part by CNPq, FINEP and PRONEX, Brasil
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Maybe it was the famous theorem of Hopf (see [45]) that have motivated the mo-
dern research about constant (non-zero) mean curvature surfaces. In 1951 Hopf proved
that a closed genus zero surface in Euclidean space is a round sphère (the proof works in
hyperbolic space as well). He then asked if the assumption about the genus of the surface
could be removed from the statement of his theorem. This was called Hopf's conjecture:
In 1986, Wen te has given a counter-example to Hopf's conjecture. He build an immersed
constant mean curvature torus in Euclidean space (see [116]). Afterwards Abresch sim-
plified Wente construction (see [1]) and Pinkall-Stirling have obtained families of Wente
tori (see [76]). Finally, Bobenko has obtained all constant mean curvature tori in R3,S3

and H3, see [14]. Notice that Wente tori should be immersedby MexandrovTheorem, as
we will see in the sequel.

We shall begin section 1 (see Theorem 1) establishing the famous theorem proved
by Alexandrov in 1956 (see [4]), characterizing the sphères as the only closed connected
embedded genus g surfaces in Euclidean space with constant mean curvature. Maybe,
more significant than the theorem is the procedure introduced by Alexandrov proving
it: This has become customary to call either Alexandrov Reflection Principle, Alexandrov
Reflection or Alexandrov Method. The idea of Alexandrov is quite simple, profound and it
is based on Maximum Principle. It should be noted that Alexandrov Principle has been
a source of many insights, for instance a resuit due to Hsiang in 1982 (see [46]) can be
deduced from Alexandrov Principle as we will show later (see Theorem 4).

A first striking resuit (in Differential Geometry) using Alexandrov's Method is the
theorem proved by Richard Schoen in 1983 (see [102]) characterizing the catenoid (see
Theorem 2). In 1988-1989 held the second main contribution in this field: the theory of
Meeks (see [66]) and Korevaar-Kusner-Solomon (see [50]), we shall say K-K-M-S. They
have shown that a complete connected properly embedded constant mean curvature
surface M in Euclidean space with two annuli ends is rotationally symmetrie; namely, a
Delaunay surface. We will say a few words now to show very briefly how the proof works:
Firstly, Meeks has shown that each properly embedded annular end of constant mean
curvature in Euclidean space is cylindrically bounded. The proof of this follows from a
deep geometrie insight based on Maximum Principle (comparison with sphères of same
mean curvature), a priori Height Estimâtes and basic Topology. Applying either Height
Estimâtes or Alexandrov Method one infers that the two ends and the whole surface M
are contained inside a same cylinder. Then a subtle application of Alexandrov Principle
which makes use of tilted planes, yields M is rotational. We remark that the argument
using Alexandrov Method via tilted planes has been used elsewhere (see [84]). The first
author and Rosenberg has pointed out that an adapted proof of this theorem hold for a
wider class of /-surfaces that satisfies height estimâtes property (see [85]); one gets the
special embedded Delaunay surfaces constructed and classified by the authors (see [91],
andalso (90]).

In the last decade the interest has grown considerably with many developments. K-
K-M-S have proved a similar result in hyperbolic space (see [51]), using Hsiang's theorem
(see [46]) cited before. Moreover, K-K-M-S have inferred that each properly embedded
annulus end with constant mean curvature H converges geometrically and asymptoti-
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cally to an end of a Delaunay surface: in hyperbolic space H > 1 (see [51]). The analo-
gous study of the geometry of a conformally punctured dise end with mean curvature 1,
finite total curvature, regular and embedded into the upper half-space model of hyper-
bolic space, have been achieved by the authors. That is, up to an isometry of the space
each such an end converges geometrically and asymptotically to an end of an horosphere
or an end of a Catenoid Cousin, either as Euclidean vertical graphs or as surfaces embed-
ded into hyperbolic space. In fact, this geometrie behavior follows from an asymptotic
expansion we infer (see [95]). We shall give in Theorem B an application of this fact. It is
worth mention that very recently the authors have presented a new approach giving me-
romorphic data for mean curvature one conformai immersions into hyperbolic space,
see [97] and [99]: Forrelated results, seealso [86], [87], [104], [110], [111] and [112].

It turns out that in the study of compact constant mean curvature surfaces in Eucli-
dean space (and in hyperbolic space ), Alexandrov Method has also been applied as an
important tooi (see [16]). It has been conjectured that a connected compact embedded
constant mean curvature surface with boundary a circle is spherical. This conjecture can
be posed in higher dimensions, either in Euclidean space or hyperbolic space as well. It
is stil! an open problem. We have been attracted by the geometrie non-variational ap-
proach. Braga Brito, Meeks, Rosenberg and the first author, say B-M-R-SE, have verified
the conjecture in 1991, under the assumptions that the surface is transverse, along the
circle, to the plane of the circle (see Theorem 3). Braga Brito and the first author have
proved in 1991 that if the radius of the circle and the mean curvature are equal to 1,
then the conjecture is true, assuming only that the surface is immersed (see [15]). At the
same year, Barbosa has shown that the conjecture is valid, if we assume that the surface
is contained inside a cylinder of radius equal to the radius of the sphère of same mean
curvature (see [6]). The hyperbolic version of the above Brito-Sa Earp result was carried
out by the first author and B. Nelli (see [73]). The B-M-R-SE theorem cited above has
a counterpart in hyperbolic space, as expected by the first author in 1991 (see [88], pp.
256) and proved by Nelli-Rosenberg (see [72]) in 1995. In hyperbolic space there exists a
sharp result achieved by the first author and Lucas Barbosa: If a compact connected im-
mersed surface with boundary a circle has constant mean curvature not greater than 1,
then it is totally umbilic. This result was announced by Barbosa- Sa Earp in 1995, with a
sketch of the proof (see [8]). The complete proof of Barbosa-Sa Earp result has appeared
later (see [9] or [10]). We digress now to say that in the literature there are other rele-
vant results proved by Koiso [52], Rosenberg-Sa Earp [84], López and Montiel [63]. On
the other hand, it is not always true that "constant mean curvature surface inherits the
symmetry of its boundary". There exist simple counter-examples for minimal surfaces
in Euclidean space (see, for instance [58] or [102]). About the examples, several ma-
thematicians were interested on the construction of constant mean curvature surfaces
invariant under a subgroup of rigid motions: The reader is refer to Dajczer- Do Carmo
[28], Lawson [57], Smyth [105] and Ordónes [75]. In 1990, Kapouleas brought up many
examples of complete embedded constant mean curvature surfaces in Euclidean space
(see [47]). One year after he gave genus g (g ^ 3) immersed examples with boundary
a circle (see [48]). An amazing fact is that Alexandrov Reflection yield at once several
symmetry and uniqueness results about properly embedded constant mean curvature
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H surfaces in hyperbolic space: For instance, if the asymptotic boundary is a point or a
circle then one gets an horosphere or an equidistant surface (see [29]), if the asymptotic
boundary is the union of two disjoint circles and H = 0 (embeddedness hère is not ne-
cessary) then one gets a hyperbolic catenoid (see [62]), if the asymptotic boundary is the
union of two disjoint circles and H * 0 then one gets a surface of révolution (see [30]).
As a matter of fact, similar results hold for ƒ-surfaces in hyperbolic space as we have
remarked in a recent paper (see [92]). Reeen tly, the authors have obtained some new
symmetry results for constant mean curvature surfaces in hyperbolic space (see [92] and
[93]). The authors have also inferred some gênerai uniqueness (and existence) results for
minimal vertical graphs in hyperbolic space (see [94]). We now remark that there have
been carried out several dérivations of Alexandrov techniques to hypersurfaces in Eucli-
dean space (and Hyperbolic space) endowed with nice geometrie structures, such as hy-
persurfaces with some r- mean curvature constant, since the Maximum Principle holds
(see for instance [21], [22], [54], [79], [42], [43]). It should be mention now that there
cire a lot of interesting publications focus on the geometrie non-variational aspect of the
theory of constant (non-zero) mean curvature surfaces such as the works of Rosenberg-
SaEarp [83], Nelli-Spruck [74], Ros-Rosenberg [82], Semmler [100], Collin-Hauswirth-
Rosenberg [26] and others. We apologize for any omission. At last, we would like to point
out that there are point of view rather different than those we focus here; their methods
are based on Functional Analysis, Spectral theory, Calculus of Variations or Geometrie
Measure Theory These methods give rise to important analytic and geometrie applica-
tions to constant mean curvature surfaces theory beyond the scope of this discussion:
For readers convergence we refer to Wente [113], [114], [115], Hildebrandt [40], Gulli-
ver [36], [37], Brezis-Coron [13], and Struwe [108], [109]. See also, Meeks-Yau [69],
Bérard-Hauswirth [11], Barbosa-Bérard [7], Duzaar-Steffen [31], Steffen [107] and to
the références on these articles.

Serrin has written in 1971 a very elegant paper (see [101]) where he proved that
a "symmetrie" overdetermined second order elliptic équation on a bounded domain Q.
with "symmetrie" boundary value data does imply that Q must be a bail A typical resuit
is the following: Let Q be a bounded domain with C2 boundary T. Suppose there exists a
C2 function u satisfying the Poisson Diferential Equation A w = - 1 in Q., together with
the boundary conditions u - 0 and |jj = const on Y, where n is the unit inner normal
vector to T. Then Q. must be a bail.

It is amazing that Serrin has used Alexandrov Method, to apply it back to Analysis
in order to get symmetry results on Partial Differential Equations. Instead of applying
it to Geometry, as did Alexandrov, he had the beautiful intuition to capture the geo~
metry inside Alexandrov Method. He has improved one of its central background- the
Maximum Principle at the boundary. Indeed, he has proved what we cal] the boundary
Maximum Principle at a corner (see Lemma 2). Later on, Gidas, Ni and Nirenberg, have
refined Serrin Method establishing in 1979 the called Method of Moving Plane to in-
fer various symmetry and related properties of positive solutions of second order ellip-
tic équations over bounded and unbounded domains (see [33]). C. Li has study sym-
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metry and monotonicity of fully nonlinear elliptic équations in 1991 by introducting
a simplified approach based soleley on Maximum Principle to carry out the the Mo-
ving Plane Method (see |60] and [61]). Caffarelli, Gidas and Spruck in 1989 have pro-
ved asymptotic radial symmetry of positive solutions for the conformai scalar curva-
ture équation and others semilinear elliptic équations using a "measure theoretic" va-
riation of the method of Moving Plane (see [20]). Recently, Korevaar, Mazzeo, Pacard
and Schoen (see [55]) have given a more geometrie argument than [20] looking dee-
per to the geometry of the conformai scalar équation (see [5] and [39]) to obtain refined
asymptotics and a slightly stronger estimate. We would like to remark that a pioneer of
the link between PDE and Differential Geometry is R. Finn (see [32]). The reader is also
referred to the work of J. McCuan about symmetry via spherical reflection (see [65]).
For gênerai Maximum Principle on complete Riemanrdan manifolds see [117] and [27].

In section 2 we shall prove the following theorems. First, we will fix some conven-
tions and we will recall some définitions: In what follows it is necessary knowledge of
basic hyperbolic geometry developed in the following références (see [96], [106] and
[78]). We will say the a set 5 in the n- dimension al hyperbolic space M" is contained
inside the n - 1-dimensional horosphere 36 if S in contained in the mean convex open
domain ffi in 36n with boundary 36 ( we will also say that 36 involves S). This domain @>
is called the horoball bounded by 36\ that is, the mean curvature vector H of 36 points
into Œ. The complement of the closed domain W in hyperbolic space we will call the ex-
tenor o\36 and if S is contained in this complement we will say that S lies outsider. Of
course, the conventions "5 is contained inside M" or "S is contained outside M" can be
extended in the case when M is a properly embedded hypersurface in hyperbolic space
with non-vanishing mean curvature vector.

We will say that an horosphere 36z is a translated copy of the horosphere 36 if there
exists an orthogonal geodesie y and a translation Ty along y (which is a hyperbolic iso-
metry of hyperbolic space, see [96]) which takes 36£ to 36.

We now recall that the asymptotic boundary of a n-dimensional hypersurface im-
mersed Z in hyperbolic space is defined as follows (see [29]): Consider M immersed in
the bail model of hyperbolic space B"+1 = {||x|| < 1}.

whereSn(oo) = {||JC|| = 1} and Sis the point set closureofZ in B"+1.

We also recall that the Catenoid Cousin are the noncompact constant mean cur-
vature surfaces of révolution. This terminology is due to Robert Bryant (see [18]). Nice
properties and a description of the Catenoid Cousin have been made by Bryant in his
pioneer article about mean curvature one surfaces, see [18]. The reader is also referred
to Ordónes ( [75]), and to the authors article (see [95]).

Next, we will extend a symmetry resuit deduced by the authors (see [92], Theorem
land [93],Theorem4.2).



98 R. SA EARP & E. TOUB1ANA

THEOREM A. — Let M be a connected constant mean curvature one surface in hy-
perbolic space with boundary « 0 u ^ j , where <&0 and <ë\ are circles with radius r andR,
respectively. Assume that <@o u &i w invariant by rotations around a geodesie y. Let&Q and
@>\ the unique geodesie "parallel" planes with <@0 c &>o and <ë\ c &\. Let& beaflxed
horosphere such that <&o lies on&. Let us assume that <%\ is contained insidejtf, and that
R ^ r. Then thereexists a constantd (independenton M) such that if<üst(&Q,&i) > d,
then M is a surface of révolution.

Theorem above has a corresponding statement in arbitrary dimensions and can be
stated in the setting of ƒ-surfaces as well. Notice that for any r and any R such that i? ^ r,
there always exists a pièce M of an embedded Catenoid Cousin satisfying the assump-
tions of the theorem, Le. dM = ^QKJ <ë\ (where r is the radius of <%o and R is the radius

THEOREM B. — Let M be a connected properly immersed constant mean curvature
one surface in 1H3. Let36 be an horosphere. IfdM = 0 and M is contained inside J#, then
M is equal to a translated copy ofjtf. If the boundary dM * 0 (possibly non compact)
is contained in & and M \ dM is contained inside a translated copy 36tt then M \ dM
is contained inside je. Furthemore, ifM is embedded (with M \ dM contained inside a
horosphere) and the boundary of M is a circle lying on a horosphere, then M is part of an
horosphere or part of an embedded Catenoid Cousin.

We point out that if one replaces the word "immersed" by "embedded" in the above
theorem, in the case dM - 0, one gets the first part of a resuit of Rodriguez and Ro-
senberg (see [81], Theorem 1). Their proof does not extend to the immersed case: In
fact, if the asymptotic boundary of M is a point and M is embedded then Do Carmo-
Lawson theorem applies. The first statement can be viewed as a half-space theorem (see
[44]) for constant mean curvature one surfaces in hyperbolic space. Let us digress for a
moment to say that the Half-Space Theorem of Hoffman-Meeks for minimal surfaces in
Euclidean space is one of most admired geometrie application of Maximum Principle
in Differential Geometry. It has an equivalent in the setting of /-surfaces of minimal
type (see [90]). Another beautiful result is the Maximum Principle at Infinity inferred by
Langevin-Rosenberg in 1988 (see [59]), by Meeks-Rosenberg in 1990 (see [67]) and by
Soretinl993(see [103]).

We continue our discussion, saying that we do not know if first and second asser-
tions in the statement of Theorem B remain true for higher dimensions. Third assertion
was proved by the authors (see [93], Theorem 4.1). We have decided to restate it hère for
the reader's convenience. It is remarkable, in contrast with the case where the ambient is
Euclidean space, we make no assumptions about the topology. Moreover, third assertion
hold for constant mean curvature surfaces.

Molzon has produced the Serrin typical result (cited in the introduction) for boun-
ded domains €1 in hyperbolic space (see [70]). We remark that Serrin gênerai results is a
project not yet undertaken in hyperbolic space.

Let A be the second order elliptic Laplacian operator acting on 1H"+1. We have the
following Molzon-Serrin type result.
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THEOREM C. — Let£lbeadomaininTËLn+l wiîh boundary a properly embedded hy-
persurfaceM whose asymptotic boundary is a point. Let n bea global unit normal to M
pointing into Q. Suppose that there exists a C2 (H) function f nonnegative on €1 satisfying

- l inCl

d f
ƒ = 0 and —=- - k {const) on M.

dn

Then fi is a horoball and M is an horosphere.

1 Some Earlier Results on Alexandrov Reflection and Maximum
Principle

We begin this section recalling the définition of ƒ-surface. Let M be a surface either
immersed into Ht3 or else immersed into M3 , oriented by a global unit normal field N

le -4- le
whose mean curvature H := — and extrinsic Gaussian curvature Ke := k\ k2 {ki,k2

are the principal curvature of M), satisfy a Weingarten relation of the form:

H= f(H2-Ke).

We shall require that ƒ is a C1 function defined on [0, + oo[, satisfying:

W e [0, + oo[, 4 f ( / ' ( r ) ) 2 < 1.

It is said that ƒ is elliptic if ƒ satisfies the inequality above. If M satisfies the first relation
above for ƒ elliptic, then M is called either a special Weingarten surface or a /-surface.
They have been studied by Hopf (see [45]), Hartman and Wintner (see [38]), Chern (see
[24]) and by Bryant (see 119]). More recently, there has been considérable progress, as we
have pointed out in the introduction. We now commence to discuss some of the loc. cit.
theorems.

THEOREM 1 (Alexandrov).— A compact connected embedded constant (non-zero)
mean curvature surface M in Euclidean or hyperbolic space is a round sphère.

Proof. — Briefly Alexandrov Reflection Principle works as follows: Fix a certain geo-
desie plane !? and consider the foliation of ail translated copies of 9> along a certain geo-
desie y that cuts orthogonally 8P. Then coming from the infinity towards M doing such
translations, one make successive symmetries about these planes and look to the pos-
sible first point of tangent touch ing contact with M and an element of this family. We will
proceed the proof as follows. Let @> be a fixed geodesie plane far away from M. It suffices
to prove that there exists a translated copy ^ such that M is symmetrie about 9*^ and
is a graph over « ^ in each side. Let !?t be the 1-parameter family of translated copy of
{?, where we choose the parameter f, such that 3Pt, t > 0 is contained in the connected
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component déterminée! by @> which contains M and f = dist(^e>
r,^

)), hence ^o = &•
Translating SP towards M one gets a first plane &tl that reaches M; that is ^*fl n M * 0 ,
but if f < f] then &>t n M = 0 . Thus ^ f l is tangent to M at a point, say p, and M is
contained in on side of ^ f ] . Locally, around each such point p, M is a graph over ^ f l .
To continue the proof we will fix some conventions: Let Q be the bounded domain with
boundary M. Let !?~ be the half-space determined by 3PX that contains @>, let Mt be the
part of M lying in «^7 and let Mr* be the symmetry of Mt about f?t. Then there exists at
least a small f 0 > 0 such that Mtl+£ is a graph over t?tl and Mr*+£ is contained in Q, for
0 < f ^ f0.

lt is clear that for some t2 > t\ + e, the symmetrized cap Mr* intersects the exterior
of H in a non empty set Now as t î t2, t > f] + f o one can translate g>t and reflects Mf

about êPt, successively until one reachs a first point of tangent contact of the reflection of
MtQ about ^ with M, for some to varyingin the interval (f1,12). Hence eitherM^ touch
M at an interior point (see Figure 2) or M^ touch M at a boundary point (see Figure 3).

Figure 2

Figure 3
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In any case, M* and M are one in a side of the other, in a neighbourhood of a first
point of tangent contact q. As reflections invert normal vectors, the mean curvature vec-
tor if of both M£ and M at such point q are the same. At last, one can apply either
Hopf Interior Maximum Principle or Hopf Boundary Maximum Principle (see for ins-
tance [771, [34] or [10]) to infer &^ is a plane of symmetry of M. The procedure shows
that, in each step as t î to, Mt is a graph over &>t in both sides. This complètes the proof
ofthetheorem. D

It is worth note that there exists a same Alexandrov theorem for ƒ-surfaces of cons-
tant (non-zero) mean curvature type, since the Maximum Principle holds (see [17]). The
method of the proof is the Alexandrov Reflection Principle.

Next, we shall very briefly outline the proof of Schoen's theorem. For a proof making
use of powerful tools as the monotonicity formula and the maximum principle atinflnity
the reader is referred to [80]. An other useful tool that has been used in minimal surface
theory is the called flux formula. It has an important rule in the proof of Schoen's theo-
rem bellow. It is also intensively applied to constant mean curvature theory. The reader is
referred to ( [102], [41] (minimal surfaces)) and ( [56], [50], [16] and [9] (constantmean
curvature surfaces)). Of course the main tool for minimal surfaces in Euclidean space
is the so-called Weierstrass représentation. For constant (non-zero) mean curvature sur-
faces in Euclidean space a Weierstrass type formula was given by Kenmotsu (see [49]).
The authors have recently inferred a Weierstrass-Kenmotsu formula for prescribed mean
curvature surfaces in hyperbolic space (see [98]). For related formulas see, for instance
[2], [3] and [53].

THEOREM 2 (Schoen). — The catenoid is the only complete connected properly im-
mersed minimal surface in Euclidean space withfinite total curvature and two embedded
ends.

Proof — The main ideas in the proof of the theorem are the following: First, Schoen
has derived an asymptotic expansion for minimal embedded ends on finite total curva-
ture ( each such an end is conformally equivalent to a punctured dise): namely each end
is asympotic geometrically to a plane or to a catenoid (for a very clear dérivation of this
asymptotic expansion see [41]). Applying either Maximum Principle at infinity or Half-
Space Theorem it can be shown that each end is asymptotic to a fixed catenoid. By ap-
plying Flux Formula one gets that the ends are parallel and one may suppose their limi-
ting normals are vertical having the same logarithmic growth. In fact, Monotonicity For-
mula (see [34]) yields M is embedded. A beautiful monotonicity variation of Alexandrov
Method (see [102], Theorem 1) gives rise that M has an horizontal plane of symmetry;
hence the catenoids have the same axis. Then applying Alexandrov Reflection Principle
again moving parallel planes to the vertical axis, one therefore infers that M is a surface
of révolution D

It is amazing that the assumption fini te total curvature can be dropped and repla-
ced (in the setting of properly embedded surfaces) by finite topology. This is a consé-
quence of a great theorem proved by P. Collin (see [25]) inspired by the works of Meeks-
Rosenberg (see [68]) and Meeks-Yau (see [69]): Let M bea properly embedded minimal
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surface in Euclidean space with at least two annuli ends. Then M hasflnite total curvature
ifand only ifM hasflnite topology. Another nice characterization of the catenoid was gi-
ven by Lopez and Ros (see [64]) : Among the complete embedded non-flat minimal genus
zero surfaces in Euclidean space the catenoid is the only offinite total curvature.

The first author with Braga Brito, Meeks and Rosenberg, say B-M-R-SE, have proved
in 1991 the following theorem.

THEOREM3 [B-M-R-SE]. — Let M be a compact connected embedded constant
mean curvature surface in Euclidean space with strictly convex planar boundary Y trans-
verse, along the boundary, to the plane P containing the boundary Then M is contained
in one of the half-spaces determined by P. Under the same assumptions ifY is a circle it
follows that M is a spherical cap.

Proof — We will focus two central undesirable clichés to show how to eliminate
them, rather than outline a complete proof. The first main configuration to kill is given
by Figure 4. One can handle it by applying a suitable variation of Alexandrov Reflection
called graph lemma carried out by the first author and Braga Brito (see [ 15]) to arrive to a
contradiction. This is shown in Figure 5: Roughly speaking, let P be the horizontal plane
determined by the boundary I. Moving vertical planes and doing Alexandrov Reflection
one gets a first point of contact p, hence the surface is a graph in both sides of the plane
TT in Figure 5; leading to an obvious contradiction.

Figure 4

Figure 5
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The second main configuration to kill is expressed in figure 6. To arrive to a contra-
diction one applies the flux formula to M and to M\, see Figure 6 and Figure 7, respecti-
vely. Summarizing, let n be the interior unit conormal along dM, and Iet Y be the unit
normal to P. Thus one can calculate the expression JT Y • n, where • dénotes the stan-
dard inner product, by applying Flux Formula to the configuration given by Figure 6 and
to the configuration given by Figure 7. The former gives 2H area (D) and the latter gives
2H area {D\ ) , where H is the mean curvature, and D c P D\ c P are shown in Figures
6, 7, respectively. As area (D\ ) < area (D), this leads to the desired contradiction.

Figure 6

Figure 7 •

We will now sketch the proof of some results when the ambient is hyperbolic space.

THEOREM4 (Hsiang). — A cylindrically bounded complete properly embedded
constant mean curvature surface M in hyperbolic space is rotational

Sketch of the proof. — The proof is a conséquence of a simple observation making
use of Alexandrov Method. The observation is the following: Let C be a cylinder in hyper-
bolic space, namely the locus of points at the same distance to a fixed geodesie y. The
intersection of any geodesie plane & such that 3oo 9> n d^y = 0 with C is either compact
or else is empty.

Now let &>% be a fixed geodesie plane of symmetry of C, let y be a geodesie cutting
^to orthogonally and let SP any translated copy of « ^ along y far away from ^ . Then
one can run Alexandrov Method, as in the Alexandrov theorem using the foliations of
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geodesie planes « ^ along y coming from the infinity towards M, to infer that the reflec-
tion of each part of M in the two sides of 9^ is contained insideM. One concludes that
IPtQ is a plane of symmetry of M. D

Notice that the assumptions yield that M has non-zero mean curvature; this can
be seen by applying Maximum Principle, using minimal hyperbolic catenoids as useful
barriers. Of course, the above theorem is valid for ƒ-surfaces in hyperbolic space (see
[92]).

THEOREM 5 (Barbosa, Sa Earp). — Let M be a compact surface immersed into hy-
perbolic space whose boundary is a circle. Assume that the mean curvature H is constant
withH2 ^ l.ThenMispartofahorospheredfH2 = l) or part of an equidistant surface
(if H2 < 1).

Sketch of the proof. — The first important observation is the following genera! fact:
M is contained inside any horosphere Jâ that contains the boundary of M, denoted by F.
This assertion follows by Maximum Principle using the foliations of horospheres having
the same asymptotic boundary as 36 (see Figure 8). The existence of the foliations of ho-
rospheres issuing from a given point of the asymptotic boundary is crucial for the proof,
as we shall show in the sequel. This makes an important différence from the Euclidean
situation and has allowed the proof of the theorem for H1 < 1. In fact, using these folia-
tions combined with Maximum Principle, it is not difficult to see that when Fis a circle
M can be trapped in two abstract caps: Look to the half-space model of hyperbolic space
and suppose that Tis contained in a vertical plane P, then the two abstract caps are hori-
zontal graphs with respect to P. Now take two //-caps with the same boundary and same
mean curvature H as M, apart from M doing horizontal Euclidean translations (which
are parabolic isometries of hyperbolic space in the upper half-space model). Then mo-
ving them horizontally back towards M again it follows that it is not possible to get a
first point of contact during this movement until the boundaries of M and the H-caps
are identify. Thus we can replace the abstract caps by these H-czps (see Figure 9). We
observe now that there exists a Flux Formula in hyperbolic space similar to the Flux For-
mula applied before in Euclidean space. We can therefore applied this Flux Formula to
ensure that at least the two surfaces have a boundary point of tangent contact. Thus M
is a cap of a totally umbilic surface with mean curvature H, H2 < 1, as desired. This
achieves the sketch of the proof of the theorem.

Figure 8
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H-cap

Figure 9 D

Now we shall state the Perron Process for minimal vertical graphs in hyperbolic
space that has been established in [94] and we shall give an application based essentially
on the Maximum Principle. Consider the upper half-space model of hyperbolic space

H 3 = {(x,y,z),z > 0} equipped with the hyperbolic metric ds2 = —
Let D. c IR be a domain in the asymptotic boundary and let ƒ : dQ,
continuous function. Let us consider the Dirichlet problem (P) :

- = 0 on fi

W|3O = ƒ

U € C

[0,oo[ be a

i \ ; = l

We call the équation S>« = 0 the minimal vertical équation in hyperbolic space. Notice
that the interior maximum principle for minimal surfaces in hyperbolic space merely
says the following: If two (connected) minimal surfaces are touching at some (common)
interior point p, and one stands in a side of the other around p, then the two surfaces are
equal in a neighbourhood of p. There is an analogous boundary maximum principle.

We shall now define the important notions of subsolution and supersolution. Consi-
der problem (P) above where Q. is any domain of IR2 and ƒ is any non négative conti-
nuous function on dQ. Let u : £2 — [0, + oo[ be a continuous function. Let U c Cl be a
closed round dise. The reader can take as a fact (see Theorem 2.3 in [94]) that u\^u has an
unique minimal extension ü on U, continuous up to dU. We then define the continuous
function Mu ( u) on Q. by:

Mu(u)(x)
u(x)
OU)

if x e Q \ U

if x e U .

Let now u : Cl — [0, + oo[ be a continuous function. We say that u is a subsolution
(resp. supersolution) of (P) if:

V "lan < ƒ (resp.
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ii) For any closed round dise U c Q we have u ^ Muiu) (resp. u

We make in the following some important remarks about subsolutions and super-
solutions.

a) If M is a strictly positive C2 function on Q, then

u is a subsolution <=> 3>u ^ 0

u is a supersolution <=> ®w < 0.

b) If M and y are two subsolutions (resp. supersolutions) of (P) then sup( u,v) (resp.
inf( u,v)) again is a subsolution (resp. supersolution).

c) Also if w is a subsolution (resp. supersolution) and U c fi is a closed round dise
then Mu ( u) is again a subsolution (resp. supersolution).

d) Let Çï c Ht2 be a bounded domain and let u, v : Ti — [0, + oo[ be two continuous
fonctions such that My(w) ^ M and Mu(v) < y for any closed round dise U c fL
Suppose that U|gn < i /^ , then we have u < i/onH, i.e. "a supersolution is greater than
a subsolution"

e) For any domain Q. c H2 , if ƒ is any continuous positive function on dCl, then
the vanishing function w = 0 on Ti is a subsolution for (P). Observe that for every JC e
Q there exists a subsolution u of (P) with u(x) > 0. Indeed let II be any hémisphère
centeredat jesuch that B^n c Q. Then n i s the graph of a continuous function ydefined
on a closed round dise U c f l Then setu= vonU and w = 0 on fï \ C/. One easily verify
that the function u is a subsolution.

f) Now Iet Q. c IR2 be any bounded domain and let ƒ : dû, — [0, + oo[ be any
continuous function. There are at least two natura] ways to construct a supersolution for
problem (P). Firstly, to see this just take any geodesie plane 8P (Euclidean hémisphères
orthogonal to the asymptotic boundary of hyperbolic space) involvingthe graph of ƒ in
Euclidean sensé. By using the foliation of geodesie planes obtained by translating (hyper-
bolically) <̂ , one can conclude that if the minimal vertical graph "escapes" from 9> one
get a contradiction with the Maximum Principle. Secondly, let C c H 3 be a hyperbolic
catenoid such that its orthogonal projection, CQ, on IR2 has a non empty intersection
with Cl. Let x e Q be an interior point of Q. Consider the homotheties h\fX with respect
to ;c, A > 0. Clearly, for A > 1 big enough, a pièce of h\tX{C) is a vertical graph v over a
domain containing fî and v\za > sup( ƒ ). That is, v is a supersolution for (P).

Finally, we remark that a u solution of the minimal équation in Euclidean space is a
subsolution for the minimal vertical équation in hyperbolic space, Le. Çèu ̂  0.

The Perron Process for minimal vertical graphs in hyperbolic space is given by the
following theorem

THEOREM 6 (Sa Earp, Toubiana). — Let Cl c Ht2 be a domain and let ƒ : dQ. -
[0, + oo[ be a continuous function. Suppose that problem (P) has a supersolution cp. Set
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Ûip = {u, subsolution of (P), u < q>}. Wedefineforeachx G H

v(x) = sup u(x).

Then the function v isC2 on Cl and satisfies the minimal vertical équation in hyper-
bolic space. Furthermore, consider p G dQ and suppose that either one of the following
cases holds:

i) dQ is C° -convex at p.

iï) p has a barrier and f ^ oc > 0 on dQ.

iii) p has a barrier and f{p) =0 .

Then v is continuous up to p and v(p) = f(p). In particular ifQ is C° convex, the
function v is continuous up to dQ.

As an application of Perron Process we shall construct complete minimal vertical
graphs invariant by a discrete group of horizontal Euclidean translations:

Corollary 7 . — Let Q c Ht2 be an unbounded domain with dQ embedded. Sup-
pose that:

i) There exists a non null vector Ç G 1R2 such thatQ is invariant by the horizontal
translation T(x) = JC + Ç

H) Q is contained in a band ffi invariant under T.

iii) Forany p G dQ, p * 0, there exists a hyperbolic catenoidC such thatd^Cn Q =
0» p G 3M C and such that the segment joining the centers of the two components ofd^ C
intersects Q. This last condition means that the curvature of a non convex part of the boun-
dary ofQ is not too big with respect to the width of the band. So itcan be compared with the
curvature of the circles thatform the asymptotic boundary of the "smallest" minimal cate-
noid that stands across the band. Consider problem (P) where f is the vanishing function
on dQ. Then (P) has a solution v which is invariant under the horizontal translation T.
Consequently, the graph Sofv is a complete minimal surface of JH3 invariant under the
discrete group of parabolic isometries {Tq, q e 2}.

Sketch oftheproof. — Notice firstthat any solution of the Dirichlet Problem (P) is
bounded. In fact a more genera! result holds: Consider our domain Q lying in the band
38 and a bounded value boundary data ƒ on d&8. Take any catenoid <& across t% such
that <g stands above ƒ in the Euclidean sense. There are many catenoids with this pro-
perty. Of course any pièce of 9g that is a graph over a part of Q is a solution of the minimal
vertical équation in hyperbolic space. What is interesting to observe is that any vertical
upward translation of 9S is stil! a supersolution! Geometrically this means that the mean
curvature vector H of any vertical upward translation of a minimal solution is a down-
ward pointing normal (see Figure 10). Precisely, if w is a C2 function satisfying Çbw = 0,
then &(w+ b) < 0 for any b > 0. So using these vertical translations and maximum
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principle it is now easy to conclude the assertion that any minimal extension of ƒ to fi
must be bounded, if ƒ is bounded. Furthermore it can be proved that if Q is convex and
ƒ is bounded and uniformly continuous then the minimal vertical extension u to Q is
unique. Let w# be standard solution in the band B of our Dirichlet Problem taking zero
value boundary data. As a matter of fact this solution exists (and is unique). Let us take
UB as a supersolution for our problem. Now observe that the catenoids given by condi-
tion Ui) are "good barriers" for our problem in the sense that any solution of our Dirichlet
Problem in Q must stands bellow such catenoids by the argument given just above (see
Figure 11). This means that any solution must be above the subsolution u = 0 (of course)
and bellow these catenoids forcing that the solution given by Perron Process takes the
prescribed continuous boundary value data f. At last it can be proved uniqueness, that
is the solution is invariant by a discrete group of Euclidean translations.

fClassical solution over a band
I taking zero value boundary data

VS

Figure 10

C= minimal caienoid working as a ' 'good1 * banier

Figurell D

2 Proof of the new results

Proof of Theorem A

We will proceed the proof analogously to [92], Theorem 1 and [93], Theorem 4.2.

We now recall and fix some notations:

Let y be a geodesie line in hyperbolic space. Let <%$ be a circle of radius r invariant
by rotations around y. Let j#bea fixed (between two) horosphere such that <&0 lies on
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36. Let <ë\ be a circle of radius R, R ^ r such that <ë0 u <ë\ is invariant by rotations around
y. Let ^o and ^ i the unique geodesie "parallel" planes with <&Q c &>0 and <&) c ^ .

Let /? be the asymptotic point of y which is not the asymptotic point of 36. Notice
that y cuts orthogonally 36 (recall that <#o c J*f) at a point g and that the open geodesie
ray ]p,q[ lies entirely outside 36. Take VR the unique hyperbolic cylinder issuing from
p, passing through ^ i (note that R = dist ( VRty) and that VR is invariant by rotations
around y). Let JDO be the (closed) "dise" in 36 whose boundary is <@0' Consider now 36 x

the 1-parameter family of horosphere such that 361 is the translated copy of 36 along y.
The parameter f, - oo < t < oo is chosen such that t is the oriented distance from 361

to 36 := 36§, with the convention that y is oriented from p to p\, where 3TOy = {p>P\}
{p\ is the asymptotic point of 36). We can assume that 9S\ is contained in some 36 tl with
^ê\ = 9-Di» where D\ is the closed "disc"in 36\ whose boundary is # j , Le. D\ c 36îx

( D\ lies in the point set closure of the interior of VR). Our assumption implies t\ > 0.
Consider T, T > 0 bigger enough such that 36j n M = 0 , hence M lies outside «^r-
Let DT be the "dise" defined by the intersection of 36 j with the point set closure of the
interior of VR.

CLAIM 1. — M \ dM is entirely contained inside the cylinder VR and it is contained
inside36 aswell.

Proofof Claim 1. — Consider Va, d > Othe 1-parameter family of cylinders which
are invariant by rotations around y, where d = dist (V^,y) (The asymptotic boundary
of the cylinders Vd are the same). A trivial compaetness argument show that there exists
d\, d\ ^ R such that M is entirely contained inside Vd for ail d ^ d\. Now moving Vd
towards VR as d ï R, d ^ d}, we therefore infer that this family {Vd} cannot fit M during
this movement (for d > R) at an interior first point of contact, by applying Interior Maxi-
mum Principle, since the mean curvature of any cylinder calculated with respect to the
inner orientation is strictly bigger than 1. Notice that a first point of contact, if any, would
be necessarily point of tangent contact, since our assumption provides a guarantee that
the boundary component <ë0 of M is contained inside VR. Thus Vd does not touch M for
d > R and VR n M = <&\. This proves the first assertion in the statement. The idea of
the proofof the second assertion is the same. Take a translated copy 361 of 36, choosing
r << 0 such that M is contained inside 361. Thus translating 361 towards * a s r î 0
using the same reasoning as before one complètes the proof of the claim. Note that it
follows from Claim 1 that M n {36%x \ Â") = 0 and M c\36 = <&0.

Let VR be the closed pièce of the cylinder VR bounded by ^1 u dDj. Let ^ be the
closed région bounded by dgfc := Dou M UVRU DT (notice that 3 ^ is not smooth over
dM u dDj.) Let we now orient M by N: the inner unit normal to 3 ^ induced by the
mean curvature vector H of M. Recall that ^ 0 and 9>\ are the unique geodesie "parallel"
planes with ^ 0 c ^0 and ^ c ^ ,

CLAIM 2. — There exists a positive constant d such that z /d i s t ( ^ 0 ^ i ) > d> then the
mean curvature vector H through M is pointing into the interior of&.



110 R. SA EARP & E. TOUBIANA

Proof of Claim 2. — It is well-known that there exists a constant d such that if
dist(^o^i) ^ d then one can find a 1-parameter family of minimal hyperbolic cate-
noids CAl A > 0, where A = dist (Q\,y), coming from the infinity towards y: as A i 0, Q
converges to a geodesie plane SP "between" ^ 0 and SP\ (see (46], [35]). We therefore use
the family {CA } to infer that it should be a first interior point of contact between M and
some element of this family, hence H is an interior pointing normal, byapplying Interior
Maximum Principle once again. This complètes the proof of Claim 2.

Now, one can carry out a standard orientation argument and Maximum Principle
(comparison with some horosphere 36 tt t ^ t\) to deduce the configuration:
M n int (D} ) = 0 . One therefore gets that M \ dM is entirely contained inside 36 and is
contained outside 36 h ; that is, it lies "between" 36 and 36 h. Fix now any geodesie plane
P that contains y. To accomplish the proof of the theorem, it suffices to prove that P is a
plane of symmetry of M (notice that dM is symmetrie about P).

Now taking into account basic hyperbolic geometry (see [96]) we infer that P is or-
thogonal to the family 36x. Consider the family of parabolic isometries leaving invariant
each horocycle that cuts P orthogonally. In particular, any such isometry leaves each ho-
rospherej^r,0 ^ t ^ t\ invariant. We can nowmovePbymeansof this family ofisome-
tries far away from M, in each side of P. Then coming back towards P doing Alexandrov
Reflection we therefore conclude that P is a plane of symmetry of M. D

Turning to Theorem B, we emphasize that we shall need some knowledge of the
geometry of the Catenoids Cousin in hyperbolic space. This will be clear in the proof
of the theorem. We pause momentarily to say that Ordónes in his Doctoral Thesis [75]
has given explicit parametrizations of the Catenoids Cousin (more generally: hélicoïdal
surfaces of either constant mean or else constant Gauss curvature in space form). The
reader is referred to [75] to look at the geometrie behavior of the 1-parameter family
of generating curves. We also refer to Castillon Thesis [23] to see some geometrie and
cinematic properties of Delaunay surfaces in hyperbolic space, see also [51] and [12].

Proof of Theorem B

The method of the proof of the first statement is the same as the proof of [93], Theo-
rem 3.1, first statement. Indeed, the method of the proof has two powerful tools: Firstly,
we shall need an asymptotic expansion inferred by the authors (see [95]) for vertical
graphs u = u{x,y) (see [89]) with constant mean curvature 1 in upper half-space model
of hyperbolic space. E 3 = {{x,ytz),z > 0} (of course, equipped with the hyperbolic me-
tric). We will need to work with a 1-parameter family of vertical graphs {.jét} which has
a nice geometrie behavior, as we will explain bellow: Each jét is an embedded end of a
non-embedded Catenoid Cousin and is a graph of a smooth function ut (x,y) which has
the following asymptotic behavior: ut ~ cR01 as R2 = x2 + y2 — oo, where c > 0, a < 0
(see [95]). In fact, each ̂  is a graph of a function u over a exterior domain S r, assuming
on d0t for all f a suitable constant value 0 < f + 5t < 1, where St > 0 in order that the
boundary of each end ̂  lies in a fixed "horizontal" horosphere given by {z = f + 5t}.

We may describe precisely the geometrical configuration in the following way: &t is



Variants on Alexandrov Reflection Principle and other applications of maximum principle 111

the complement of an open dise Bf of radius R(t), t e (0,ïb] R(f) —• 0 as t -> 0. We
shall choose ail such dises concentric, satisfying: if t\ < h then Bfl g B,2. Moreover,
it follows that the family end jet varies continuously on t and have growth <x(t) with
a(t) —> Owhenr — 0. (see [75] for explicit parametrizations of the Catenoids Cousin
and to look at the geometrie behavior of the 1-parameter family of generating curves).

Secondly, we shall make use of Hoffman-Meeks Method to prove the Half-Space
Theorem (see [44]).

We proceed the proof as follows. Suppose first that dM * 0 . We can assume that M
is immersed into the upper half-space model of hyperbolic space. Up to a rigid motion
of ambient space we can also assume that 30 = {z = 1} and that 36^ = {z = f}, with
£ < 1, with dM c 30. We wil] argue by absurd. Suppose, by absurd that E < 1. We can
assume (for simplicity) that M is asymptotic to 36\ as well (notice that M is contained
inside 30 lt by our assumption). We choose 5 defined above sufficiently small so that the
boundary of each end does not touch M (recall that the boundary of each jét lies in the
fixed "horizontal" horosphere given by {z = E + 5}). That is, ̂  is chosen to obtain d^ét n
M = 0. Moreover, we shall choose the initial end jé^ carefullytoguarantee^nM = 0
(this choice is possible taking into account M is proper and the asymptotic expansion of
^ét). We therefore can apply Hoffman-Meeks Method starting from ^ moving the family
jét towards the horosphere {z = E + 5}, by making t i 0, until a member the family
reaches M at a first tangent interior point. This leads to a contradiction with the Interior
Maximum Principle, since the mean curvature vector of each member of the family jét
is an upward pointing unit normal. Note that when dM = 0 , if one supposes at the
beginning of the proof that M * 30, one gets a contradiction in the exactly same way as
before. The proof of the first part of the theorem is now complete.

We now will check the proof of the last part of the statement.

Let M be a connected properly embedded constant mean curvature 1 surface in
hyperbolic space contained inside the horosphere 36 and let dM be a circle <g lying on
3e. IfM is compact then it follows that M is part of an horosphere (see [72], |8], [92]).
Thus we can assume that M is non-compact (no assumptions about the topology). No-
tice that the assumption "M \ dM is contained inside 3â" is necessary in the sense that
the configuration (M \ dM) r\3# * 0 is forbidden by Interior Maximum Principle, since
we are assuming that M \ dM is contained inside a translated copy 3^e. Moreover, let
D be the closed "dise" with D c 30 whose boundary is <% and let M := Af u D be the
properly embedded surface in hyperbolic space not smooth along <ë. Let us orient M by
the orientation N induced by the unit mean curvature vector H of M. To see the confi-
guration better assume that we focus on the upper half-space model of hyperbolic space
and that 36 - {z = 1}. Now applying Maximum Principle, using horospheres which
cuts 36 transversally, as suitable barriers, one can therefore conclude that N through D
is pointing into the horoball BS whose boundary is 30. Let us give further details about
this: We consider that the partof hyperbolic space outside 30 (bellow 30 in the Euclidean
sense) is contained outside M := M u D. So the above construction using the family
of foliations of horospheres issuing from a finite point of the asymptotic boundary, as
barriers, coming from the infinity towards M, we conclude that the mean curvature vec-
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tor H is pointing to the interior of Af. Let us give another proof of this: Just take two
geodesie planes at certain distance d involving % in the Euclidean sense. If d is chosen
properly one can use a family of minima] catenoids coming from the infinity towards M
that converges to a geodesie plane in the middle of the two others to ensure again that
the mean curvature vector is pointing to the interior of M. Now let P be the unique geo-
desie plane that contains 9S, and let a be the the vertical geodesie line of symmetry of
#, cutting orthogonally P. On account of the 1-parameter family of geodesie planes Pt

obtained by translations along a, coming from the outside of Jïf (which lies in the out-
side of M) towards &, one therefore infers by Maximum Principle that M \ dM cannot
intersects P, i. e (M \ dM) n P = 0 .

We shall show next that every geodesie plane @> of symmetry of <& is a plane of sym-
metry of M. Fix such a geodesie plane &>. Let y be the unique (oriented) geodesie line in
P cutting g> orthogonally at a point q, with y(t = 0) = q. Note that hyperbolic transla-
tions along y keeps Pin variant and produces a 1 -parameter family t?t> - °° < t < oo
of translated geodesie planes such that &>0 = &> and ^t is orthogonal to P, Vf ( t is the
oriented distance from &t to ^ ) . We therefore are able to apply Alexandrov Reflection
on M using the foliation {^t} coming from the infinity towards &, to conclude that 9
is a symmetry plane of M. We remark that Alexandrov Method works because the fol-
lowing three conditions hold: M n ^tt t * 0 is either empty or else is a compact set,
M r\P- <g, and the reflection of 9S about 9>t lies on P} for all t. The proof of Theorem B
is now complete. D

We now shall attempt to proof Theorem C. We shall need the following lemmas.

LEMMA 1 (Basic hyperbolic geometry). — Let M be a connected properly embedded
surface in hyperbolic space whose asymptotic boundary consists of a single point Let &>
be a geodesie plane such that 9TOM c 3TO 9- IfM is symmetrie about every such geodesie
plane g> then M is a horosphere. Furthermore, if&tt&t * @* is an arbitrary translated
copy ofg> along a geodesie y cutting orthogonally &>, then either ^t n M is empty or else
tPt n M is compact.

The lemma above is straightforward hyperbolic geometry. We will omit the proof
here. Clearly, the same statement can be formulated for hypersurfaces in 1H"+1.

LEMMA 2 (Serrin's boundary maximum principle at a corner [101]). — Let Çl be a
domain in IRW+1 with C2 boundary and let T bea (Euclidean) hyperplane containing the
normal to dQ. at some point q. LetQ.+ then dénote the portion of Cl lyingon one particular
sideofT. Suppose f isofclassC2 intheclosureofQ* and satisfles the second order elliptic
differential équation (usingsummation convention)

+ b(x)

df df
where we dénote x = (x\ . . .xw + i ) , fj = —-> f ij = — i — • We assume the coefficients

oXj dxidxj
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uniformly bounded and we assume the matrix atj positive deflnite satisfying

^ k\l\2 k>0

where £ = ( £ ] . . . Çn+i ) is a vector in JRn+1, Ï] is the Euclidean unit normal to the hyper-
plane T, and d is the distance from T. Suppose also that ƒ ^ 0 in Cl+ and ƒ = 0 at q.
Then either

3/ 3/
— > 0 or — - > 0 at q
ds ds2

unless f = 0, where T is any direction atq which enters Cl+ non-tangentially.

Proof of Theorem C

On account of Lemma 1, we must prove that given an arbitrary geodesie hyperplane
9> such that 3WM c 3W &, then M is symmetrie about 9>. To infer this we will make use
of Alexandrov Method, following the plot due to Serrin, and carried out by Molzon when
the ambient is hyperbolic space.

Notice that M is symmetrie about 8P, if and only if the symmetrized cap of each
part of M in each side of SP is contained inside M (it is trivial anyway). Let y an oriented
geodesie line cutting SP orthogonally and let 9*ti - oo < t < oo be the 1-parameter
family of geodesie hyperplanes obtained by translating SP along y, as in the proof of the
last part of Theorem B. We may suppose that ^ 0 = 9- Dénote by 9^9 h € IR the
connected component of IH"+1 \ ^ which contains ^tf t > to, and dénote by ^ the
other component. Let D,~ be the portion ofQlying in ^ 7 and le t^7 (* ) be the symmetry
ofÇi; abou t^ r (H~(*) c ^). Similarly, let £!+ be the portion of niying in 9* and let
£!j(*) be the symmetry of Ç?t about 3>t (fl*(*) c &>"). Finally, if xt e Cl let xr* be the
reflection of xt across é?t. If {?t n D. * 0 andf^7(*) (resp. £!*(*)) is contained in Cl, we
can introducé a new function g defined by

g(x) = f (jc* ) x € CIJ ( * ) (in the case Clï ( * ) is contained in Cl)

or

g(x) = ƒ U* ) x e Cl* ( * ) (in the case Cl* ( * ) is contained in Cl).

Since the Laplacian operator A is invariant under rigid motions of ambient space
and reflections are isometries of hyperbolic space it is evident that, if CIJ ( * ) is contained
in Cl, the function g satisfies the following overdetermined elliptic differential problem.

Ag =

g =

Çf 23

- 1

ƒ

0,

in Q.
on

dg
dn

t (*,)
( * ) n &>t

constant on dnt (*)n



114 R. SA EARP & E. TOUBIANA

Of course, the function g satisfies an analogous problem in the case fi+ ( * ) is contained
in fi. Notice that reflections invert normal vectors, we therefore have above a wel! defined
problem.

We now are able to run Alexandrov Reflection on M using the 1 -parameter family of
geodesie hyperplanes ^t coming from the infinity towards SP (as we did before), and to
consider the function ƒ-gdefined on fi~(*) (resp. fi+(*)).Ifno9fi~(*), t * Oandno
3fi*(*), t * 0 touches M at an interiororboundary point of tangent contact then we get
what we want: Indeed, it follows from this situation that the symmetry of the part of M in
each side of ïP is contained inside M, we can therefore conclude M is symmetrie about

Henceforth, to complete the proof of the theorem it must therefore be shown that
the existence of a first point, say q of either interior or boundary point of tangent contact
(during the above Alexandrov-Serrin process), leads to a contradiction. Thus let us sup-
pose by absurd that there exists a first point of contact q for some ÎQ * 0, and let us
dénote by simplicity Çl( * ) (instead of Q~ (* ) or fi£ ( * )).

We first consider the configuration 3fi( * ) is internally and smoothly tangent to M
at a point ^notlyingon 3*^. Recall that fi(*) is contained in fi by construction. We can
therefore consider the function f-g defined in fi( * ). We get

A(/-g)=0 inn(*) (1)

and

- g = 0 on ( ) & h

f-g^O on 3 Q ( * ) n ( f î \ ^ ) .

Note that, as ƒ is nonnegative by hypothesis, last inequality follows immediately,
because g = 0 on 3£1(*) n (fi \ #^) . Besides, ƒ must be stricly positive in Qt since it
satisfies the elliptic équation A ƒ = - 1 .

Now recall that fi(*) is compact (by Lemma 1). On account of (1) and (2) we can
therefore apply Hopf Interior Maximum Principle to infer either

/ - g > 0 in

orelse f-g-0 at ail points of fi(*).

But the latter possibility imply that the symmetrized cap fi( * ) must coincide with
the part of fi on the same side of ̂  as fi( * ), since ƒ >0 in fi. We therefore conclude that
fi is bounded which is an absurd. Now the former possibility ƒ >g on fi( * ) and the confi-
guration 3fi(*) touching (internally) Mat the point q é &to>yi&às— {q) > 0,ap-

on
plying Hopf Boundary Maximum Principle. This however leads to an obvious

3( f-i?)
contradiction with the fact that —-——{q) = 0. Thus the possibility 3fi(* ) is internally

on
and smoothly tangent to M at a point q not lying on t?^ cannot occur.
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We next wil] infer that the existence of a first point q e ^ of boundary point of
tangent contact, Le. &>% fitting orthogonally M at a point q, and ƒ > g on îî(*) is also
an impossible configuration. To attempt this goal, we shall use some basic hyperbolic
geometry again, and we shall carry out some calculations- to enter into the spirit of Serrin
and Molzon- to obtain that the first and second derivatives of f-g vanish at q. Taking
into account Lemma 2, we arrive to an absurd.

We proceed the details as follows. Next, we will work with the bail model B"+1 of
hyperbolic space equipped with the metric ds2 = A2(dxf + • • • + dx2

+l ), where \2(x) =
4

—. Up to a rigid motion (namely, a Möbius transformation), we may assume
(1 — \x\ )
that q lies on the xn+i-axis and that the hyperplane {JCI = 0} agrées with &>% at q (then
the x\ axis is normal to ^ ) , and that the vector n t the inner unit normal to M at q, lies
in the jtn+raxis with n • en+\ < 0. Where we dénote by • the Euclidean inner product
and en+i = (0,... ,1) is the Standard vector in 1R"+1 along the x„+i-axis. We commence
to calculate the first and second derivatives of ƒ and g. The following calculations are
contained in the cited paper by Molzon. We summarize them hère for the reader's conve-
nience. Clearly, we can represent M = 3Q locally by the équation\,... ,xn)

where <p is a C2 function.

The condition ƒ = 0 on O. can then be written, in a neighbourhood of q, as

i , . . . ,xn,q>(xi,... ,xn)). (3)

Let us recall now that n is the inner unit normal to M in hyperbolic space and let N be
the Euclidean unit normal to M. They satisfy the following relation

n = \ - N.
A

Now the formula of the unit normal to a graph q> in 1R"+1 and the above relation
yields

n = — • . = • ( -cpi , . . . , - tpw , l) .

A ^/l + q>\ + • • - + q>l

Now the condition | £ = k can therefore be expressed as

— <Pl ƒ1 ~ " ' ' ~ ^n fn + /n+1 = fc A
Thus differentiating (3) and evaluating at q we get

ƒƒ = 0 at q for 1 < j < n. (5)

On account of équations (4), (5) we deduce

ƒ„+! = k\ at 4. (6)
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Nextdifferentiatingtwiceéquation (3) withrespecttojc;-, j = 1,... nandevaluating
at q, taking into account (6) we obtain

fij = -k\q>ij at q. (7)

Now differentiating (4) with respect to xj, j = 1,. . . n, and evaluating at q gives

fjn+i = 0 at q.

Lastly, since A ƒ = - 1 one obtains easily that

fn+ln+\ = -A2 + A:A- ((Pii + - "+<Pnn). (8)

Now since the reflected cap D( * ) is contained inside Q, applying second order Tay-
lor formula with remainder one gets that

= 0 at q, j = 2,...,n.

Since g is defined in terms of ƒ by reflection about the hyperplane {X] = 0}, we then
infer easily that the first and second derivatives of f and g coïncide at q. The proof of
Theorem C is now completed.
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