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FLAT VECTOR BUNDLES AND ANALYTIC TORSION
FORMS

Xiaonan MA

1. Introduction

Let Z be a compact manifold. Let F be a flat vector bundie over Z. Let H* (Z,F) =
l(Z,F) be thecohomologieofthesheaf of locally flat sections of F.

If E is a finite dimensional vector space, set det E = Amax(E). Following an establi-
shed tradition in algebraic geometry, we define the determinant of the cohomology of F
to be the line \{F) given by

\(F) = det H*(Z,F) = ®fLTSz(detHi(ZlF)){^)i.

Assume temporarily that hF is a flat metric on F. Let AT be a smooth triangulation
of Z. We can define the Reidemeister metric || || *[£> on A (F). It is a basic result of Franz
[13], Reidemeister [29], and de-Rham [30] (see also [25, §8]), that the metric || | | ^ }

does not depend on K. The metric || ||*j*j on À (F) is then a topological invariant of
F. If H* (Z,F) = 0, it is a positive number, now called the Reidemeister torsion (or R-
torsion).

Remark that the Reidemeister torsion is the first topological invariant which is ho-
meomorphic invariant but is not a homotopy invariant. Reidmeister, Franz classified the
lens spaces Sn/G up to isometry by their fundamental group, along with R-torsion. In
[191, Kohier generalized it to quotients of Grassman ni ans.

In 1971, Ray and Singer asked whether as for many other real topological invariants,
there is an analytic version of the R-torsion.

Let (Q(Z,F),dF) be the de Rham complex of smooth sections of A(7*Z) ® F over
Z. Let gTZ and hF be smooth metrics on TZ and F. In [28], Ray and Singer constructed
the logarithm of the analytic torsion of (Q(Z,F), dF), as a combination of derivatives at
0 of the zeta functions of the Laplacian acting on forms in £l(Z,F) of various degrees. We

Classification math. : 58J52, 58J20,19K56.
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can associate a metric on the line À (F) which is the product of the standard L2 metric on
\(F) (obtained by identifying H*(Z,F) with the harmonie éléments of (Cl(ZtF),dF)),
by the Ray-Singer analytic torsion [28]. This metric is called the Ray-Singer metric on
\{F), and is denoted || || *fF). Ray and Singer showed that if dim Z is odd, then || || *(

5
f )

does not depend on gTZ and hF, i.e. it is a topological invariant of F. When Z is even
dimension and oriented, and if hF is a flat metric, then the Ray-Singer torsion is equal
t o l .

In 1978, Cheeger [9] and Muller [26] proved the famous Ray-Singer conjecture. Na-
mely, if hF is flat metric on F, then Ray-Singer metric is equal to R-metric. Assume now
that Z is odd dimensional, and that only the metric || UdetF induced by hF on det F is
flat. Then the metrics || | |*£} and || ||f(

5
F) are still topological invariants. Muller [27] has

shown that equality still holds.

In [7], Bismut and Zhang have extended the equlity between Reidemeister and Ray-
Singer metrics to any flat vector bundie F. More recently, Bismut and Goette [4] have
generalized Bismut-Zhang theorem to the family case, provided there exists a fiberwise
Morsefunction.

This paper is organized as follows: In Section 2, we recall the définition of Ray-Singer
analytic torsion. In Section 3, we explain characteristic classes of a flat vector bundie. In
Section 4, we construct the analytic torsion form of Bismut and Lott [6]. In Section 5,
we explain briefly the Leray spectra] séquence associated to a fibration, and a flat vector
bundie which will appear naturally in Theorem 6.1. In Section 6, we review the main
resuit of [24], the fonctoriality of analytic torsion forms wilh respect to the composition
of two submersions. In Section 7, we discuss briefly Lott's secondary index.

In the whole note, if the space V = V+ e V~ is 12 graded, and A e End(V), then
we dénote

(1.1) TTS[A] = TTA\V+ -TrA\v-.

2. Ray-Singer analytic torsion

Let Z ba a compact «g00 maniflods. Let (F, V F) be a flat complex vector bundie on Z,
i.e. VF is a connection on F such that its curvature is zero. Let gTZ,hF be smooth metrics
on TZ,F.

REMARK2.1. — i)(F,VF) isflatiffthere is a représentation ofthe fundamental group
ofZ to GL(m,C) (m = dimc F), p : TTI (Z) - GL{m,C), such that F is the corresponding
associated bundle F = Z x ^ ^ ) Cm, hereZ is the universal covering ofZ.

ii) hF isflat iffF can be obtained through a représentation ofn\ (Z) into U(m), and
hF is the metric on F induced by this représentation.

Let Cl(Z,F) = e£i£z£y (Z,F) be the vector space of smooth sections over Z of
A(T*Z) ®F = efjg^A'f T*Z) ® F. Let dF dénote the obvious action ofVF on fï(Z,F).
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Then

(2.1) (rff)2 = 0.

By the de Rham theorem, the cohomology groups of the complex (£l(Z,F),dF) are
canonically isomorphic to Hm (Z,F) the cohomology of the sheaf of locally flat sections
of F.

Let dvz be the Riemannian volume form on Z associated to the metric gTZ. Let { >F
a n d { )A(T*Z)®F be thecorrespondingscalarproductson F and A(T*M) ® F. Let * be
the Hodge operator associated to gTZ acting on A( I*Z) . The operator * also acts on
ACT*Z) <8> F. If of,a' e n(Z,F), set

(2.2)

Let rfF* be the formai adjoint of dF with respect to the scalar product (,). Set

Then D2-2 = dFdF* + rfF*rff : Çïq{ZyF) - n*(Z,F) preserves the2-graded of Q.(Z,F).
By Hodge theory,

(2.4) K-(ZtF) =H*(Z.F).

Clearly K* (Z,F) inherits a metric from the scalar product ( >. Let hH^ZiF) be the corres-
ponding metric on H* (Z,F).

Let P be the orthogonal projection operator from Q.(Z,F) on Km{Z,F) with respect
to the Hermitian product (2.2). Set P1- = 1 - P. Let Nz be the number operator of Q.{Z,F)}

i.e. Nz acts by multiplication by q on Çlq{Z,F).

DÉFINITION 2.1. — Fors G C,Re ($) > | dim Z, ser

(2.5) 0F(s) = -T

By a resuit of Seeley, 6F{s) extends to a meromorphic function of 5 € C which is holo-
morphic at s = 0.

DÉFINITION 2.2. — The Ray-Singer torsion T(Z,hF) of the complex {Q.(Z, F),dF) is
deflned by

(2.6)
ld0F \
-—-(0)).
2 os f
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Let A(F) be the determinant of the cohomology of F to be the following complex
line

A(F) = de t /T (Z,F) = ®^ l Z (de t HHZ{1)\

Let | \™F) be the L2 metric on A(F) induced by hmz-FK

DÉFINITION 2.3. — Let || ||*(
5
f) be the Ray-Singer metric on the complex line

\(F) = detH*(Z,F)

1 d0F

ll£S
f) = l \%fF) expj- — (0)}.(2-7) II l l £ f ) l \%fF) expj

THEOREM 2.1. — (Cheeger-Müller [9], [26]) Assume thathF is a flatmetric on F. Then

(2.8) || \\MF) - H \\MF).

3. Characteristic class of a flat vector bundie

We use the same assumptions and notation of Section 2.

By the définition of flat vector bundies, the usual Chern class of a flat vector bunlde
is zero as the curvature of V f is zero. But we stil] can define odd characteristic classes for
a flat vector bundie.

Let fl(Z) dénote the space of smooth sections of A( T*Z). Let q? : Q(Z) - Cl(Z) be
the linear map such that for all homogeneous œ e O(Z)

(3.1) cpco = (2Tr/)-(degw)/2cü.

DÉFINITION 3.1. — Letœ(F,hF) bethe 1-formonZ taking values in self-adjoint en-
domorphisms of F,

(3.2) œ(F,hF) = {hFrAVFhF.

REMARK 3.1. — hF isflatiffœ{Fth
F) - 0.

For a e C, put

(3.3) f(a) = a expia2),

We have

(3.4) f'(a) = (l + 2a2)exp(a2).

Put

(3.5) f(VF,hF) = (2/7T)1/2cpTr[ f {<JO{F,hF))] e Q(Z).

THEOREM3.1 ([6],Theorem 1.11). — f{VF,hF) isareal, closedoddformanditsde
Rham cohomology class is independent ofhF. We will dénote it as f (F) e Hodd{ZM)-
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For a flat vector bundie F, the characteristic class ƒ (F) will play the same role as the
Chern character for complex vector bundles on Z.

Let Pf : so(m) - R dénote the Pfaffian. Set

(3.6) e(TZ,VTZ)=PÏ\ — - 1 .

Let o{ TZ) be the orientation bundie of TZ, a flat real line bundie on Z. Then e(TZ,VTZ)
is an o(TZ) value closed n-form on Z which represents the Euler class e(TZ) of TZ,
lyingin HâimZ(Zfo(TZ)) [7, (3.17)]. Of course, e{TZ,VTZ) = 0, if dimZisodd.

Let p : 7\Z — Z be the natural projection. Let <5̂  be the current of intégration on
Z. In [7, Theorem 3.7], Bismut and Zhang constructed a current i//( TZ,V TZ) on TZ with
valus in o( TZ) such that

(3.7) H){TZ,VTZ) = p*e(TZ,V r z ) - Sz.

The restriction of qj( TZ,VTZ) to the sphère bundie of TZ is the Mathai-Quillen form.

Let h : Z - R be a Morse function on Z. Let X be the gradient vector field of h
with respect to gTZ on Z. We assume that X vérifies the Smale tranversality conditions.
Then we can define the Milnor metric || | | j ^ on A(JF), which is equal to the Reidmeister
metric on À (f) when hF is flat. Remark that if hF isn't flat, it isn't a topological invariant.

The following theorem was established by Bismut and Zhang [7, Theorem 0.2],

THEOREM 3.2. — The following identityholds

(3.8) log f ll^fe}2) - - / Tr[œ(F,hF)] X*<p{TZ,VTZ).

4. Analytic torsion forms

In this Section, we explain the construction of the analytic torsion form of Bismut-
Lott. We use the notation of Section 3.

4.1. Riemann-Roch-Grothendieck type theorem for flat vector bundles

From now on, let n : W — S be a fibration of ̂ °° manifolds with compact fibre Z.
Let TZ be the vertical tangent bundie of the fiber bundie, and let T *Z be its dual bundie.
Let F be a flat complex vector bundie on W and let VF dénote its flat connection.

Let Hm {Z,F\z) = ®?ÏISzHi(ZtKz) be the 2-graded vector bundie over S whose fiber
over 5 e S is the cohomology H{ZstE,zs) oï the sheaf of locally flat sections of F on
Zs. By [6, §3 (f)], VF induces a canonical flat connection v H ( Z ' ^ 2 ) on H*(Z,F[z) which
preserves the 2-grading.
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The foUowing Theorem is an analog of the Riemann-Roch-Grothendieck theorem
for holomorhpic submersions, in which a holomorphic submersion becomes a smooth
fiber bundie, 3-flat (i.e. holomorphic) bundies become rf-flat bundies, the direct image
of F becomes 5Z^3 z ( - l )^W(Z,F | z ) f the Chern character becomes the ƒ class and
the Todd class becomes the Euler class.

THEOREM 4.1. — ThefollowingidentityholdsinH^iSM)-

dimZ .

(4.1) J^(-l)pf (HP(Z,F\Z))= / e(TZ)f(F)

Actually, Bismut and Lott proved it in analytic way. More precisely, equipped the fi-
ber bundie with a horizontal distribution TH W and a vertical Riemannian metric gTZ,
and the flat vector bundie F with a Hermitain metric hF. In [6, Theorem 3.23], they
constructed an even and real form 3~{THW,gTZ ,hF) such that

(4.2) d£T(THW,gTZ,hF) = f e(TZ,VTZ)f(VF,hF) -
Jz

On the right hand side of (4.2), the first term is local, and the second term is global
along the fibres Z. So &{ THW,gTZ,hF) must be global along the fibres Z. Actually, Iet
&m(THWtg

TZ,hF) be the zero degree part of &{THW,gTZ ,hF) in A(T*S), let 9F(s)
be the function on S defined by (2.5) for each fibre Z. Then

1 d0F

(4.3) £T{0HTHW,gTZ,hF) = log T(Z,hF) = - - — ( 0 ) .
2 os

Remark that if we take the cohomology class of each side for (4.2), we get (4.1). Thus
(4.2) refines (4.1) on the differential form level. In the next subsection, we will explain the
construction of the analytic torion form S~( THW,gTZ,hF) in details.

4.2. Construction of the analytic torsion form

We use the notation in Section 4.1.

Let r ^ l V b e a sub-bundle of TW such that

(4.4) TW = THW e TZ.

Let PTZ dénote the projection from TW to TZ. If U e TS, let UH be the lift of U in
THW, sottiatIT+UH = f/.

Let E = e^o z £* be the smooth infinite-dimensional Z-graded vector bundie over
Swhose fiber over 5 G Sis <ë?OÖ(Zs,(A(r*Z) ® jF)z5).Thatis

(4.5) « " (S ÏE 1 " ) = ^O0(W;A
I'(r*Z) ® F).
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For 5 e ^ ( S ; E) and U a vector field on S, then the Lie differential LJJH acts on
«~(S f£).Set

(4.6)

Then VE is a connection on E which preserves the Z-grading.

If U\ ,U2 are vector fields on S, put

(4.7) T(UUU2) = -PTZ[U?,U2
H] G <S"(W,TZ).

We dénote iT e Q,2(StUom(E\E*~} ))be the 2-form on S which, to vector fields U},U2 on
S, assigns the opération of interior multiplication by T(U\,U2) on E. Let rfz be exterior
differentiation alongfibers. We consider dz to be an element of #°°(S; H o m ( F , r + 1 ) ) .
By |6, Proposition 3.4], we have

(4.8) dw = dz + VE + i r .

So rfM^ is a flat superconnection of total degree 1 on £. We have

(4.9) (rfz)2 = 0, [V £ , d z ] = 0.

Let gTZ be a metric on TZ. Let /2f be a Hermitian metric on F. Let hE be the metric
on£definedby(2.2).

Let (V£)*, rfz*, (rf1^)" be the formai adjoint of V£ , dz, dw with respect to the
scalar product (,)hE. Set

(4.10) D 2 = rfz + dz*, V £ u = ^(V £ + (V£)*).

Let Nz be the number operator of E, i.e. acts by multiplication by k on the space
<&°°(W,Ak(T*Z) ®F).Forw> 0, set

Cu = u

then C '̂ is the adjoint of Cu with respect to hE. Cu is a superconnection and Du is an odd
element of fi(S,End(£)), and

(4.12) C2
U = - D 2

U .

ForX G rZ , letX* G I * Z correspond to X by the metric g r z . Set c(X) = X* A - Z ^ .
By[6, Proposition 3.9], we get

(4.13) Cu = ^
u

In fact, Cw is essentially the same as the Bismut superconnection Au/4 associated to the
vertical signature operator (cf. [6, (3.46)]).
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Let gTS be a Riemannian metric on S then gTW = gTZ © n*gTS is a Rieman-
nian metric on W. Let V r i v dénote the corresponding Levi-Civita connection on W.
Put V r z = PTZ VTW, a connection on TZ. As shown in [2, Theorem 1.9], V r z is inde-
pendent of the choice of gTs.

By [6, §3(0], the flat superconnection dw induces a canonica] flat connection
yHiz.fiz) o n /ƒ (Z | J^Z) . Let hH{Z^] be the Hermitian metric on H(Z,FIZ) as in Section
2. Let P be the orthonormal projection from E on KeriD2) with respect to the Hermitian
product (2.2). Then by |6, Proposition 3.14], we have

(4.14) V W ( 2 f ^ } £

Put

dimZ

(4.15) f{vmzfF]Z)thmz^z)) = J2 (

For any w > 0, the operator Du is a fiberwise-elliptic differential operator. Then
ƒ (Du) is a fiberwise trace class operator. For u > 0, put

(4.16) f(C'u,h
E) = (2zrr)1/2cpTrs[ f(Du)],

The following results are proved in [6, Theorem 3.16],

THEOREM 4.2. — For any u > 0, theform f(C'u,h
E) is real, oddt and closed. lts de

Rham cofwmology class is independent ofu, THW,gTZ andhF.As u — 0,

, ^ * /Wi£x \ I e(TZ,VTZ)f(VF,hF) + O(u) if dim Z is even,
(4.17) f{Cu,h ) = - Jz

O(y/ü) if dimZ isodd.

As u — +oo
(4.18) f(Cu,h

E) = fçsjmzj\z)9hmz,FlZ)} + (

Put

dimZ

(4.19) x(Z) = J2 (-D'rkH'CZ^),
ï=0

dimZ

X'(Z,F)= ^ ( - D ' z r k H ^ Z
i=0

Then x(Z) is the Euler characteristic number of TZ. Andx(Z), x'(Z>F) are locally cons-
tant functions on S.
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The following results are proved in [6, Theorems 3.20 and 3.21],

THEOREM 4.3. — Foranyu > 0, theform fA(C'u,h
E) is real and even. Moreoven

(4.20) JLf(c'u,h
E) = -dfA(C'ufh

E).
du u

Asu ^ Q,

(4 21) fA (C hE) =- 4 d i m Z r k ( F ) x ( Z ) + O ( w ) i f d i m Z i s e v e n '
O(V«) i fd imZisodd.

Asu ~* +oo

(4.22) fA{C'u,h
E) = -x'(Z,F) + O ( - ^ ) .

DEFiNmoN4.1. — TJie analytic torsion form&{THWtg
TZ,hF) isaformonS which

is given by

(4.23) &(THW,gTZ,hF) = - f \fA(C'u,h
E) - \x'{Z,F) / '

7o ^

The following results are proved in [6, Theorem 3.23],

THEOREM 4.4. — Theform £T( THW,gTZ,hF ) is even and real Moreover,

(4.24) d&(THWtg
TZ,hF) = f e{TZ,VTZ)f{VF,hF) - f{v

H{Z>^
Jz

From [6, Theorem 3.24], we knowhow £f{THW,gTZ,hF) dépends on its arguments.
Remark that if dim Z is odd or if hF is flat, then, £T{ THW,gTZ,hF) in Q s / Qs'° is inde-
pendent of THW. If dim Z is odd and H{Z,I\z) = 0 then &(THW,gTZ,hF) is a closed
form whose de Rham cohomology classis independent of THW,gTZ, and hF.

Now, one of the important problems is to understand the analytic torison form
£T{ THW, gTZ, hF). More precisely, how to generalize Cheeger-Müller Theorem, or more
generally, Bismut-Zhang Theorem to the family case. If the fibration has a fiberwise
Morse function, Bismut and Goette [4] confirmed it. For the topologica] side of this pro-
blem,werefer[12],[16], [17].

4.3. Torsion form of a flat complex

Let W b e a ^ M manifold. Let

(4.25) (£,i/) : 0 - £° -i E] - • • - -i En - 0.
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be a flat complex of complex vector bundies on W. That is VE = e"=0 V
£ ' is a flat connec-

tion on E = eJL0£"' and v is a flat chain map, meaning by

(4.26) ( V£)2 = O,!/2 = 0,VEv = 0.

Then v + V£ is a flat superconnection of total degree 1. By [6, §2(a)], the cohomology
H{E,v) of the complex is a vector bundie on Wt and let VH(£ 'v) be the flat connection
on H(E,v) induced by V f . Let

(4.27) d(E) =
ï=0

n

d(H(E,v)) = Y^
i=0

Let hE = ehE' be a metric on E = e£,-. Let i/* be the formai adjoint of v with respect
to ft£. Let N be the number operator on E, i.e. N acts by multiplication by i on E1. As in
(4.15), set

n

(4.28) /(y£,fc£) = ^ J
1=0

i=0

For w > 0, let

(4.29) Du = -y/ü(v* - v) + -œ(E,hE).

By 16, Theorems 2.9, 2.13],

(4.30) ^-Trs[ / ( D J ] = -rfTr,[^N / ' ( D J ] .
OU U l

As w — +oo,

(4.31) (2TT/)1/2cpTr5[/(DJ] = fwmE'v),h**{E'u)) + O(^=),

c p T r j i i V / ^ D J ] = \d{H{E,v)) + O(-^=).

In the same principle of Section 4.2, the followingTheorem [6, Theorem 2.22] provides a
finite dimensional version of Theorem 4.4,

THEOREM 4.5. — The following intégral is welldeflned

(4.32) Tf (i/+ VE,hE) = - f \<pTrsdNf'(Du)] - \d(H{E,v))
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Moreover Tf(v+VE,hB) is an even and realform, and

(4.33) dTf(v + VE,hE) = f{VE,hE) - f(VmE'v),hmE'v)).

Let (F,VF) be a flat complex vector bundie on W. Let 0 c F° c • - • c F" = F be a
filtration of F such that Vf(F'') c F1. Let Gr1'F = f'"/F1""1, then we have a flat complex
of complex vector bundies:

(4.34) d : 0 - F1' - FI+1 - Gr/+1F - 0.

Letft£,/2GrF = eI/2
Gr'/7beHermitianmetricsonF,GrF = e/Gr'F. Let/zF' bethemetric

onF'inducedby^.Let/z0 ' = Ji*1"1 e hF' e /zGr/i: bethemetric on Gt = F ' - ^ F ' e G r ' F .
Let T{v + VGi,hGi) be the form on IV defined by (4.32) associated to (4.34).

DÉFINITION 4.2. — The torsion form of the filtered flat complex vector bundie F is
defined by

H - l

(4.35) T{FtGrFth
F>hGrF) = ] T r ( i / + VG ',fcc").

i=0

5. Leray spectral séquence

Let 7T! : Z — Y be a fibration of compact manifolds with compact fibre X. Let F be
a flat complex vector bundie on Z. Let

(5.1) A ( r * Z ) = F 0 ( A ( r * Z ) ) D F ' t A C T Z ) ) D ••• D F d i m y + 1 ( A ( r * Z ) ) = {O}.

be the standard filtration of A(T*Z). In fact FpAq(T*Z) are the forms which can be
writtenasafinitesumofformsoftheshapecüATT*r?forcü e Aq~k(T*Z),n e Afc(T*y)
for some k ^ p. The filtration (5.1) induces a corresponding filtration of the complex
(Cl(Z,F),dF) such that FPQ.{Z,F) = «r(Z,FpACT*Z) ® F). We also get a correspon-
ding filtration on H'(Z,F). Set

Crrrt7n-
(5.2) G r H {Z>F) -

Let {Er,dr) be the spectral séquence associated to the filtration (5.1) on the filtered
complex (Q(Z,F),rfF) [14, §3.5]. Then, we get

(5.3) (£0
#'Vo) = ( f
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And E2 is a finite dimensional Z-graded vector space. More generally, for any r > 0, Er+\
is the cohomology of the complex (Errdr). And for r > dimZ,

(5.4) (E;-*,dr) = (Gr*H*(Z,F),0).

By [15, Theorem 3.7.3], there is a functor of Leray spectral séquence associated to
the fibration Ui : Z ^ Y.By [24, Theorem 2.1], {Er,dr) (r ^ 2) calculâtes the Leray
spectral séquence.

6. Functoriality of analytic torsion form

Let M^V^Sbe smooth manifolds. Let TT] : W — Vtn2 : V — Sbesmoothfibrations
ofmanifoldswith compact fibre X, Y. ThenTT3 = 7T2 O U\ : W - S is a smooth fibration
with compact fibre Z with dim Z = n. Let (F, VF) be a flat complex vector bundie over
W. Then we have the diagram of smooth fibrations:

>W

)t H*(Y,H-(X,FlX)) betheZ-graded
vector bundies over V, S,S whose fiber over a e V, s € S are the cohomologies
H*(Xa,F{Xa), H*(Zs.FiZt), H*(YS,H'(X,FX)) of the sheaf of locally flat sections of Ft F,
mX,FlX) on Xa,ZstY5.

Let Qs be the vector space of real even forms on S. Let QSf0 be the vector space of
rea] exact even forms on S.

Let T^W^V.T^Wbesub-bun^esof TWtTVfTWvjith respect tonxfn2fn3 as
in (4.4). Let E be the smooth infinite-dimensional Z-graded vector bundie over S whose
fiber over s e Sis ̂ w (Z ç , (A(r*Z) $ F)zJ .Fors e S, let (ErtS,driS) be the Leray spectral
séquence with respect to TT! : Zs — YS,F.

PROPOSITION 6.1. — [24, Proposition 3.2 J There are flat complex vector bundies E?'q

(r ^ 2,p,q G N), and dr : Ef'q - Er
p~rq+l~r such that the fiber of complex (Er =

®p,qEr'q >dr) over s e S is the Leray spectral séquence (ErtS = @p,qE?rf,dr).

By [6, §2(a)], there is also a canonical connection VET = ®Plq^Er on Er = ®p,qE?'q

inducedby rfw.

Let gTZ,gTX ,gTY be metrics on 7Z, TX, TF. Let /zF be a Hermitian metric on F.
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Let hH{X'^)t hmz'^\ hH{Y^mx'^]) be the L2-metrics on H*(X,I)x). H*{Z,I\z),
H^YfH

%(XrF\X)) with respect to gTX,ftF; gTZ,hF and gTY
th

H{X'F^ defined in Section
1.2.

Let V r * , V r y , V r z be the connections on (TX,gTX), (TY,gTY), (TZ,gTZ) defi-
ned in Section 4.2. Let THZ = T}

HW n TZ. Let nf V r y be the connection on THZ
induced by V r y . Then ° V r Z = TT,* VTY e V r x is a connection on TZ = THZ e 7\X\
Let e{ TZ,VTZ,°VTZ) be the Chem-Simons n - 1 forms on Z with values in o{ TZ) such
that

Let &(Tl
HW,gTX,hF),&(T2

HV,gTY,hH(X'W)t &(T3
HW,gTZ,hF) be the analytic

torsion forms corresponding to 7r],TT2,Tr3. Let hEz be the metric on Ez induced by
et/ i£ ' (r > 3) b e t h e l 2 metric on Er as in Section 4.3. Set

(6.2) ]

dim Z

k=0

By (4.9), rfr + V£r is a flat superconnection of total degree 1 on Er.

DÉFINITION 6.1. — Set

(6.3) T{EltH{ZiF\Z))h
B\hmz^z)) = ^ T{dr+VE'th

Er,hEr^)

In fact, by |6, Theorem 2.24], T(.,.) e Qs/Qs'° doesn't depend on the choice of hEr (r
2) on £ r .

THEOREM 6.1. — [24, Theorem 0.1] Thefollowingidentityholds in Qs/Qs'°,

(6.4) &(T3
HW,gTZ,hF) = ƒ e(ry/? r y)^(Ti"w,g r*, /2F)

T(E2>H(Z,FlZ),hE2
th

H{Z^z))

- f ë(TZ,VTZ,°VTZ)f(VF,hF).
Jzfz

Assume now that S is a point. Then we have a submersion TT\ : Z — Y with fibre X.
Let

(6.5) \(F) = ^ ^ ^ ^ 1 ^ '

\(H*(X,FIX)) =
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be the determinant of the cohomologies of F, H9(X,F\x)> By [18], we have a canonical
nonzero section a e A~l(H(X,F\X)) ® A(F).

Let || \\\{H(X.F]X)), II IL\(F) be the Ray-Singer metrics on \(H(X,F[x))> MF) asso-
ciated to the metrics gTY

 fh
H{XrF^x), and gTZ,hF. Let || \\\-1{H(X,F[X))®MF) be the corres-

ponding Ray-Singer metric on \~l(H(X,F\X)) ® MF). Let T{X,hF) be the Ray-Singer
analytic torsion on the fibre X associated to the metrics gTX,hF.

By [6, Theorems 2.25 and 3.29], and (3.5), we can reformulate Theorem 6.1

(6.6) Iog(||cr||A-i( l l(XilÎJf))#A(f)) = f e{TY,VTY)\ogT{X,hF)

- - f ë(TZ,VTZ,°VTZ)Tr[(hFrlVFhF].
2 Jz

IfZisoriented, odd dimensional, and hF is a flat metric, let gjz = £2gTZ + 7r*g r v .
Let T£(Z,hF) be the Ray-Singer analytic torsion associated to gjz. In 110], [11], Dai and
Melrose have calculated the asymptotics of T£(Z,hF) as s — 0. In [21], Lück, Schick and
Thielmann have generalized it to the case that F is unimodular, and that Z is odd or even.
In fact, by using [7, Theorems 0.1, 0.2], [27], they show their main resuit [21, Theorem
0.2] follows from the corresponding result on Reidemeister torsion which is essentially a
problem of finite dimensional linear algebra.

So the équation (6.6) extends the results of [11], [21], to the gênerai case, where F is
not necessary unimodular.

7. Lott's secondary index

Trying to understand the analytic torsion form in algebraical way, in [20], Lott defi-
ned a secondary AT-group for flat complex Hermitian vector bundies on a (g>0° manifold.
Lott defined also the direct image (secondary index) in his secondary .ST-group for a 'g'00

fibration with compact fibre, and the real analytic torsion form is one part of his secon-
dary index. We can consider it as a ^ analogue of Gillet-Soulé's arithmetic if-Theory in
Arakelov goemetry.

Let W be a (ë>0° manifold. The abelian group K°( W) is generated by triples (F,hF,r])t

where (F,VF) is a flat complex vector bundie on W, hF is a Hermitian metric on F, and
n € Qeu(W)/im3ige(d)l subject to the following relations : If

(7.1) < ë : 0 ^ F [ ^ h - % - 0

is an exact séquence of flat complex vector bundies on W, hFi are hermitian metrics,
ra e n.ev(W)/Im(d)t and we form Ei := (Fi,hFi

tni)t Ü\enE2 - El + E3 if

(7.2) ^ « l ï i + n a + r t » , ^ ) ,

where £f{ <ë,h^) is the torsion form of Theorem 4.4 associated to (7.1) equipped with the
metric h® induced by hFi.
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Lott shows that
(F,hF,n)~ f(VF,hF)-dn

extends to a map c' : K°{W) - Q.odâ(W), and he defines

(7.3) K°{W) :=ker(c ' ) .

The assignment W ~ Â"°( W) yields a homotopy invariant contravariant functor from
the category of manifolds to abelian groups.

We now consider a smooth fibre bundie TT3 : W — S with compact fibre Z. We
further choose a horizontal distribution THW. Lott defines the push-forward (TT3)I :
K°(W) - ^°(S)by the assignment:

(7.4) {F,hF,r}) ~

+ (0,0, ƒ e{TZ,VTZ) A r ? - #{THW,gTZ ,hF)) .
Jz

Lott proves well-definedness and independence of THW and g r z .

In [8], Bunke shows that Theorem 6.1 actuallyimplies the functoriality of Lott's se-
condaty indices [20]. More precisely,

THEOREM 7.1. — Lefn^ : W - V, TT2 : V — S be smooth flbrations of manifolds
with compact fibre X ,Y. Wehave{nz)\ = (TT2)Ï © (TTJ). as mapsfiomK°(W) toK°(S).

REMARK 7.1. — Ler Rbea commutative ring with unitary element. Lott also defined
K${W) for the tripes {&,hfL,r}), where

1. & is a local System offinitely generated right-R-modules,

2. h^ is a hermitean metric of the correspondingflat complex vector bundie {Ft,VFt),
and

3. neQ.e

By the same proof Theorem 7.1 stillholds.
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