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A WEIERSTRASS-KENMOTSU FORMULA FOR
PRESCRIBED MEAN CURVATURE SURFACES IN

HYPERBOLIC SPACE

Ricardo SA EARP & Eric TOUBIANA

Abstract

In this article we prove a Weierstrass-Kenmotsu type formula for prescribed
mean curvature in hyperbolic space. We also summarize a meromorphic data and
représentation theorems for mean curvature one surfaces in hyperbolic space.

Introduction

We begin this paper outlying part of its history: In 1979, Kenmotsu, see [5], proved
that any C2 solution £ on a simply-connected domain U of the following équation

produces a conformai imersion X : [7* — IR3 of constant (non-zero) mean curvature.
Hère, [/* := U - {z, Ez = 0}. He proved a similar resuit for prescribed mean curvature. In
this case, the statement is the same but the équation is rather more complicated. As far as
we know, it is not known explicit solutions of the above équation, and the équation is not
yet solved. The authors in a very recent work, see [ 10], have derived a similar équation,
namely

Ezz = _-=r EzEz-

In fact, every solution of (*) gives rise to a mean curvature one conformai immersion
X : U* — H3 into hyperbolic space. We gave the complete struture of a C2 solution of
(*). Indeed, one may express any solution of (*) in terms of meromorphic data (h,T).

Both authors are supported in part by CNPq, FINEP and PRONEX, Brasil
Classification math. :53A10,53C42.
Keywords : Differential Geometry, Surfaces of Constant Mean Curvature.
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Conversely, given any non constant meromorphic data {h,T)vtith h * —-—-,<*,ƒ} G C,
of T + p

there is a natural way to explicit a conformai parametrization of a pièce of a surface with

mean curvature one into hyperbolic space, involvingjust oneintégration / h2Tzdz.
In this paper we prove a theorem similar to the result proved by Kenmotsu referred

above, for prescibed mean curvature surface in hyperbolic space, see theorem 1.2. We note
that R. Aiyama and K. Akutagawa have proved an alternative Kenmotsu type représenta-
tion in the hyperbolic 3-space, see [1]. They also proved a related result in the 3-sphere,
see [2]. We note also that M. Kokubu has given a Weierstrass type représentation for mi-
nimal surfaces in hyperbolic space, see [6].

1. Notations and statement of the main Theorem

We begin as in [10] to state the notations we shall use in this paper. We shall focus
the half-space model of the hyperbolic 3-space and we shall dénote it by M3, namely

H3 = {{u,v,w) e të3, w > 0},

equipped with the hyperbolic metric

du2 + dv2 + dw2

Throughout this paper, U c C wil! be a simply connected domain of the complex
plane with coordinate z = JC + iy, and X : U — H3 will be a C2 conformai immersion of
£/ into H3. We shall cal] M = X(U) the surface in H3. We set

_ dX _dX
XX — ~ / Xy

dx oy

For any vectors ü and vt the notation ü • i/ (resp. (w; ?)) stands for the standard
euclidean (resp. hyperbolic) inner product of ü and v.

For every C]-function ƒ : C7 - C u {00} the notation fz (resp. /z-) stands for the
derivative of ƒ with respect to z (resp. z)t that is

fz = -(fx-ify) \ fx= fz+fi
f1 or equivalently 4

Let N be the euclidean Gauss map of X such that (Xx,Xy,N) (z) is a positive basis of
for each ze U. That is,

XxAXy
\XX A Xy\
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where |. | stands for the euclidean norm. We call N the orienîed euclidean Gauss map of
X, or more briefly the euclidean Gauss map of X, and we dénote by Ni, i = 1,2,3 the
coordinate functions of Nf thatis Af =

DÉFINITION 1.1.

1. Letn : S2 — C u {oo} be the standard stereographic projection. We set

E(z) = (J7 o N)(z) = ^ I + ' f 2 (z ) , Vz € U.
1 - N3

Uien _
(2 Re £,2 lm E,E E - 1)

A/ = = .
££ + 1

We also shall call E the oriented euclidean Gauss map ofX.
2. Let p = X(z) e M be a point on M. Let y+ be the half-geodesic issue from p,

orthogonaltoM andorientedbythe normal vectorN(z). Letœ e 3oolHI3 = C u {oo}
be the asymptotic boundary ofy+. We then deflne a map G : U — C u {oo} setting
G(z) = œ. The map G is the well-known hyperbolic Gauss map ofX (or M), see 14].

We can now state the main resuit.

THEOREM 1.2. — LetX : U — M3 be a C3 conformai immersion and let E be the
euclidean Gauss map ofX. Let us call H the hyperbolic mean curvature ofX with respect
toE and let us assume that E * oo anywhere on U. Then E andU satisfy

(2 +(H- 1)(1 +££))(l + ££)£z i-2(l + (H-
- (1 + E~Ê)2EzHz = 0 . (1)

Tfie induced metric on U is

\2 + (

The Hopffunction with respect to E is

and the second fundamental form with respect toE is

Î1 = (H + Re$)dx2 - 2lm$rfjcrfy + (H - Re*)df- (4)

Conversely, let E : U — C bea C2-map and letH : U — R. be a C1 - ma/? satisfying
(1). Let us set U* = {z e I7 f£ z-*0}.

Then thereexists a mapX : C/ — U3 such that therestricted mapX\y* is a conformai
immersion with Gauss map E and mean curvature H and (2), (3) and (4) are valid. Fur-
thermore, such a map X is uniquely determined up to an orientation preserving isometry
ofM3. More precisely ifX : U - H3 is another such map, then there exista real number
A > 0 and a complex number a G C such thatX - \ • X + oc.
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In fact, it can be proved that S - S* is a discret set in case where H s l , see Lemma
2-3 of [10].

Proof ofTheorem 1.2. — We first state some gênerai resuit about immersed sur-
faces in H3. They can be found in [10]. The notations are the same as above.

PROPOSITION 1.3. — LetX : U — H3 beaC3 conformai immersion. Setting X :=
(u,v,w), we have:

E =
w

and then u + iv=G-w-E.

Gz =w-EZ' (6)

d s 2 =

Proof. — Let z G U be any point. Observe that G(z) = ( u + zi/) (z) implies N(z) =
(0,0, - 1) and, therefore £(z) = 0 = (G - (M + zi/))(z). Thus, we can assume G(z) *
(w + I I /)(Z). We set P = X(z) = (u,v,w), Po = (w,y,0), G(z) = G} + 1G2 = (G,,G2,0)
and N = N(z) = (A/i,A^,N3). Let y+ be the half-geodesic issue from P tangent to and
oriented by the vector iV. Hence, y+ is part of a half-circle lying in H3 with center C =
(ci,c2,0). Moreover, y+joins P to G.

By construction, there exists a real number À G IR such that C = \P0 + (1 - A)G. A
computation shows that

2 ( ( G i -

Now, observe that:

(Ô There exists a strictly positive real number a > 0 such that {N\,N2,0) = a-
a • (G] - M,G2 - v,0) (because G is the asymptotic boundary of y+).

{ii) N and CP are orthogonal vectors.

Thus, we get the following system

N MG2 - v)
2

Finally, as N2 + N2
2 + N3

2 = 1, a simple computation leads to

q^)2+(^r-'N;
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Hence,
2

We conclude therefore
G- (u+ iv)

E
w

as desired, this achieves the proof of (5).

As N is the euclidean Gauss map of X we have

Xx-n~l(E) =XX • N

thatis
{(u+iv)x,wx)

Substituting M + ii/ by G we easily found

Wx "2

In the same way, one may show that

_nRe(Ë(Gy-wEy))
Wy ~2

 ÏÏT
Now, as X is a conformai immersion we have

S\X ' J\X
 = J\y ' J\y ailCl -"-.V " -"-V = *•'•

On the other hand, we have

Xx • Xx = ( («+ ÎI/J^II/JC) • ( («+ iv)xtwx)

= ((G - M / £ ) ^ , ^ ) • ((G - wE)xtwx)

thus, using the expression of wx we get

X t -Ai = |G x - i i ;£ x | 2 -

Working in the same fashion, one can show that

Xy 'Xy = \Gy- U/Eyf

Moreover using the expression of wx and wy we get

XX ' Xy = 0 <=>((G - WE)X,WX) ' ( ( G - WE)y,Wy) = 0

) = 0 .
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We deduce that the complex numbers (Gx - wEx) and (Gy - wEy) have same modules

and their arguments differ from ± —. Now, using

XxAXy _ (2E,E7ï-l)

" \XX AXy\~ £ £ + 1

and
/WyIm(G - wE)x - wxlm(G- wE)y^

Xx A Xy = I wx R e ( G - wE)y - wy Re(G - wE)x \ ,
- wE)x(G- wE)y)

weinferthat(Gj,- wEy) = -i(Gx - «/£*). We deduce that (Gx- wEx) - / (G y- u/f^) = 0,
so then

Gz - wEz,

asdesired.

Now, using the expressions for wA and wy and using the relation Gz = wEz just
proved; we easily get

At last, as X is a conformai immersion, the metric ds2 induced on U by X is given
by

j2_Xx-Xx _ \Gx-wEx\
2

cis -

On account of Gz - wEz = Gz- - w£"z- + Gz - wEz ~ Gx - wEX) we infer that

w2

which concludes the proof. D

PROPOSITION 1.4. — LetX : U -> H3 be aC3 conformai immersion. Let us call i?
the mean curvature ofX with respect to E. LetU = bxxdx2 + 2bxydxdy + byydy2 be the

rm ofX with respect to E and let $ := - ^ —

functionofX. We have

second fundamentalform ofX with respect to E and let $ := - ^ — - ibxy betheHopf

2 — % = = (1 - H)(Gg - wEz) (9)
1 + EE

fl = (H + Re^d^-Zlmïd jc r fy+CH-Re^Jr fy 2 - (11)
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Proof. — We must calculate Ihe coefficients of the second fondamental form. We
have

bxx = -(Xx,VXxN)U3, bxy = -{Xxy

where V is the covariant derivative in H 3 and N is t h e hyperbol ic un i t n o r m a l field, t h a t
is N = w • N. For this, recall t ha t for any vector fields A, B a n d C w e have

<Cï VBA) = - ^ C - DBA + - ^ (~A[w]B • C - B[w]C • A + C[w]A • B) ( T )
vu1 w6

where A[w] s t ands for the (euclidean) derivative of w wi th respec t to A, see [7] or [3].
Therefore

Xi ^ [~N[w]Xx • Xx - Xx[w]Xx • N + Xx[w]Xx • N

iV3

HT

where bxx is the related coefficient of the euclidean second fondamental form. We have

~ "XX yXx • Xx.
W ur

-bxx = Xx • Nx

2E E~E — 1

•((c-^ui-d^u^),:
= ( 1 +

2
E - g ) 2 [Re((Gx - wËx)(Ex - EZËX))

+2 Re(ËEx) Re(£(Gv - wEx))]

2

In the same way, one can show

1 r
= ^ \.wbx^ \.bxy

with

R ( ^ ( G £ ) )
EË
2 ' " 'Gx - wEx))

As
bXx + bvbxx + byy

- 2(XX,XX) a n d H 1X7^X7
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where H is the euclidean mean curvature of X with respect to £, we deduce

ri — — Z-
EE)\GZ-

H=

- 2 ££)(G 2 - -

firom which we infer relation (9).

The relations (10) and (11) can be established from the expressions of bxxt bxy and
byy. This concludes the proof of the proposition. D

Now we are going to prove Theorem 1.2. Let X : U -* M3 be a C3 conformai immer-
sion. From the relation (9) of Proposition 1.4 we deduce

(H - ! ) ( ! + £ £ )
G

Furthermore, from Proposition 1.3 we get Gz = M/£2. Observe that, as X is a C3 map, G is
a C2 map. Consequently we get (Gz)z = {Gz)z> We have

= (o.).

2+(H-l)(l+EE) 2+{H-lHl + EE)

From (*) we have

2+(H- Dil+EE)

From Proposition 1.3 relation (7) we deduce

- 2 £ 1

As if is a real function, we have
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Substituting wz and wz by their previous expression and simplifying by w we deduce

(G*), =(GZ)Z- «

2 EEtEi

EE 2+(H-l)a+EE)

- 2 _ EElE* + 2 _ r -
(l ££)(2 (# l)(l ££)) 2 + ( H - 1)(1+J5£) **

_ _ - 2

l + £ £ ( 2 + ( H - l ) ( l + £ £ ) ) 2

«> - 2££ z£ f(2 + (H - 1)(1 + ££ ) ) + 2(1 + ££) (2 + (H - 1)(1 + £ £ ) ) £ z i =

2(Hz(l + £ £ ) + ( H - l ) (£ z £ + ££l)£z-(l + £ £ ) - 2{H - 1)(1 + ££)££ z -£l

<» - ££z£z-(2 + (H - 1)(1 + ££) ) + (1 + ££) (2 + (H - 1)(1 + ££))£zz- =

HAl + EE~)2EZ + (H - 1)(1 + £ £ ) £ £ z £ i

« ( 1 + ££)(2 + (H- 1)(1 + ££) )£ z z - 2(1 + (H - 1)(1 + ££))££ z£ z-

- ( l+££)2£2-H z = 0

which is the relation (1) stated in Theorem 1.2. Now, the relations (2), (3) and (4) of Theo-
rem 1.2 are easily induced from (* * ) and the relations of Proposition 1.3. This accom-
plished the first part of the proof of Theorem 1.2.

Conversely, let £ : U - C be a C2 function and let H : U — IR be a C1 function
satisfying relation (1). We are looking for a C3 conformai map X = (u,v,w) : U — M3

such that the restricted map X\u~ is an immersion whose euclidean Gauss map is £ and
whose mean curvature is H. From relations (* *) and (7) of Proposition 1.3 we get that
w must satisfy the differential équation

- 2 £
wz = = — =— • wEz (12)

(l £ £ ) ( 2 ( H l ) ( l £ £ ) )

Setting ƒ := Logw. the équation (12) has the form fz - A(z) where A is a complex
function. As ƒ is a real function the integrability condition is Re{A)y = lm(A)x. But the
last condition is equivalent to Im(.Az) = 0. As

~ ( l + £ £ ) ( 2 + (H - ! ) ( ! + £ £ ) ) ' *'
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we have

"£z(l + ££)(2+(H- l)(l+££)) + £(l + ££)(2 + (/?-l)(l + ££))£2z-

- EEZ(EZE + £(£*))(2 + (H - 1)(1 + ££)) - ££z-(l + EE)(HZ(1 + ££)

££)(2 + (ƒ? - 1)(1 + ££))£zz- - ££z-£z(2 + (H - 1)(1 + ££))

-TÏEZEZ(H- l)(l + ££) - (l + fË)2^-/^] € R

£[(1 + ££)(2 + (H - 1)(1 + ££))£« - 2££z-£z(l + (H - 1)(1 + ££))

- ( l + £ £ ) 2 £ f % ] € R

As £ and H satisfy (1), the integrability condition holds. Henceforth there exists a real
function w satisfying (12). In fact, up to a multiplicative complex constant we have

_4Ref = ** ^ . „ f
= e J (l+EE){2 + (H - ÏHI + EE))

In the same way, in view of Propositions 1.3 and 1.4 we are looking for a map G : U —
satisfying

f Gz =

The integrability condition of (S) is ( Gz)z = (Gz)z. But the last is equivalent to the équa-
tion (1) as we have seen in the first part of the proof. Thus, there does exist a complex
map G on U satisfying (S). Observe that G is defined up to an additive complex number.
Then, dëfine the real functions u and v on U as u + iv := G - wE. Now, we define the
map X setting X := ( u,v,w\ : U -> H3. It is a straightforward vérification to prove that
the restricted map X\y* is a conforma] immersion whose euclidean Gauss map is £ and
with mean curvature H with respect to £. Furthermore, the relations (2), (3) and (4) are
valid on f/*. Further details can be seen in [10].

At last, suppose that X = (utv,w) : U — H3 is another such map. Let us call G the
related hyperbolic Gauss map. Observe that w must satisfy the équation (12). Therefore
there exists a complex number A such that w = Kw. Also, G satisfies the system (S) with
Kw (that is w) instead of w. We deduce that there exixts a complex number a such that
G = AG + o(. Therefore we have

X = (u+iv,w) = ( G - wE,w) =
= A(G - wE,w) + (a,0) = A • X + (a,0).
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2. Mean curvature one surfaces in hyperbolic space

We now speciabze for the case where the mean curvature is one. Let X : U — H3

be a C3 conforma] immersion such that E * oo along U. Observe that when H = 1 the
équation (1) reduces to

In [10] the authors have considered this équation and they have proved the following
results.

THEOREM 2.1 (Existence of Meromorphic Data). — LetU c C be a simply connec-
ted domain and letX : U — H3 be a non-totally umbilic conformai immersion. Let E
be the oriented euclidean Gauss map E ofX. Assume thatX has mean curvature one with
respect to E (therefore, E satisfles équation ( * )).

Then, there exist two meromorphic functions h,T onU such that

(Thz + hTz\ ( ( h2

) [ T {
Fwthermore, up to a multiplicative positive constant we have

\h2Tz\
2

w =

then, up to the same multiplicative positive constant and up to an additive complex
constant we have

h3Tzu+ iv = G - wt = G -

Moreover,

x_nhTzhzz-2h\Tz-hhzTZi

h2Tz

ft = Re($(rfz)2) + ds2

K=-4
\hTzhzz - 2h\Tz - hhzTzz\

2(l
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and, up to a rigid motion in IR3, we can choose

_J_ hTzhzz - 2h\Tz - hhzTzz
f~ Tz' h2Tz

where (g, fdz) is the Weierstrass représentation of the minimal immersion in K3 associa-
tedtoX.

This means that the euclidean map E and the immersion X can be expressed in
terms of two analytic fonctions h and T on U, see Theorem 3-9 of [10]. The following
result is a converse one: given two meromorphic fonctions, assuming some conditions,
we can construct a mean curvature one conformai immersion X : U —- W3, see Theorem
3-11 of [10].

THEOREM 2.2 (Représentation Theorem). — Let S be a Riemann surface and let h
and T be two meromorphic functions on S such that h * -^^, for any complex numbers
a,p. We set:

\h*Tz\
2

andS* = { z e S,\Et\ * 0,oo}. Let us assume that

h2Tzdz = 0 (T)

for every closed pathy c Son wh ich neither h nor T have poles, that is the 1 -form h2Tzdz
has a global primitive G on S. Set:

(u + iv){z) := ( G - wE)(z), z e S*.

Then, thefunctionX := (w, vt w) : S* — H3 defines a mean curvature one conformai
immersion whose euclidean Gauss map is E and the hyperbolic Gauss map is G. Further-
more, the geometrie quantities ofX are given by the last relations of Theorem 2.1.

We recall that S - 5* is a discret set, see Lemma 2-3 of [10]. As a matter of fact,
équation (*) can be solved in terms of meromorphic functions, see Theorem 3-12 of
[10]. We found the following représentation:

THEOREM 2.3. — LetU c C be a simply connected domain and let E : U — Cbea
C2 map, neither holomorphic nor anti-holomorphic, satisfyingéquation

(*)
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Then, thereexists a holomorphic function h and thereexists a meromorphicfunction T on
U such that

Moreover, for any point ZQ € U, then T has a pôle there if and only if: h vanishes atzo, and
T and h have same order atthis point.

Now we are going to give some examples of complete mean curvature one immer-
sions in M3. For this, we choose U = C, h(z) = eyz and T(z) = b+ e*, where z e C and
b is a constant complex number. Using Theorem 2.2 it is easily seen that (h,T) give rise
to a complete mean curvature one immersion of C into M3.

Let us first assume y = -\. We deduce from Theorem 2.2 that

\b-ez\2 ((b+ez)(b-ez)

w{z) = 4l+\b-ez\2'
ThereforewehaveX(z + 2TTz) = X(z) + (0,2TT,0) for any z s C. That is, the surface X(€)
is invariant under the horizontal translations ( u + ivtw) — (w+ iv,w) + (2rr/,0) of H3.

In Figure 1-awe draw a pièce of a fundamental domain of the surface corresponding
to b = 1 /2. We draw also three fundamental domains of the same surface in Figure 1 -b.

Figure 1-a

In the particular case where b = 0 we have

Figure 1-b

= z- 2coth(

w(z)
c o s h ( ^ ) '

Now we have X(z + iy0) = X(z) + (O,yo,O) for any y0 e R. That is, the surface X(C) is
invariant under the continuous group of horizontal translation

{(u,v,w) - (u,v,w)
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see Figure 2-a. The profile curve, called "courbe des forçats" (see figure 2-b), was studied
by Poleniin 1729, see [8].

Figure 2-a Figure 2-b

It can be shown thatthis surfaceisan Enneper cousin dual, see [9], Remark 1-11-(2).

At last, when y * -~ we have

iï
w(z) =

Itiseasily conferred thatX(z + 2rri) = (H_4Trim(y) o R4nKe(y))X(z), where foranyreal
number A, we call R\ the rotation around the w-axis whose argument is A and we call
H\ the homothety with respect to 0 and ratio e*x. That is, X is invariant under a discret
subgroupofscrew motions of H3 isometric to 2. See Figure3, where y = - l + /and& = 1.

Figure 3

We refer to [10] for a full geometrie description of the above surfaces. We observe
that M. Umehara and K. Yamada have given some of the previous examples using other
techniques.
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