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A WEIERSTRASS-KENMOTSU FORMULA FOR
PRESCRIBED MEAN CURVATURE SURFACES IN
HYPERBOLIC SPACE

Ricardo SA EARP & Eric TOUBIANA

Abstract

In this article we prove a Weierstrass-Kenmotsu type formula for prescribed
mean curvature in hyperbolic space. We also summarize a meromorphic data and
representation theorems for mean curvature one surfaces in hyperbolic space.

Introduction

We begin this paper outlying part of its history: In 1979, Kenmotsu, see [5], proved
that any C? solution E on a simply-connected domain U of the following equation

E
E,; =2———E,E;
2" "1+EE *™*

produces a conformal imersion X : U* — R3 of constant (non-zero) mean curvature.
Here, U* := U - {z, E; = 0}. He proved a similar result for prescribed mean curvature. In
this case, the statement is the same but the equation is rather more complicated. As far as
we know, it is not known explicit solutions of the above equation, and the equation is not
yet solved. The authors in a very recent work, see [10], have derived a similar equation,
namely

E
E,; = ———E,E;. (%)
ZZ 1 + EE z25&2
In fact, every solution of () gives rise to a mean curvature one conformal immersion
X : U* - H? into hyperbolic space. We gave the complete struture of a C? solution of

(*). Indeed, one may express any solution of (*) in terms of meromorphic data (h,T).

Both authors are supported in part by CNPq, FINEP and PRONEX, Brasil
Classification math. : 53A10, 53C42.
Keywords : Differential Geometry, Surfaces of Constant Mean Curvature.
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1
0,8 € C,
«T15'%F

there is a natural way to explicit a conformal parametrization of a piece of a surface with

Conversely, given any non constant meromorphic data (h,T) with h =

mean curvature one into hyperbolic space, involving just one integration / h?*T,dz.

In this paper we prove a theorem similar to the result proved by Kenmotsu referred
above, for prescibed mean curvature surface in hyperbolic space, see theorem 1.2. We note
that R. Aiyama and K. Akutagawa have proved an alternative Kenmotsu type representa-
tion in the hyperbolic 3-space, see [1]. They also proved a related result in the 3-sphere,
see [2]. We note also that M. Kokubu has given a Weierstrass type representation for mi-
nimal surfaces in hyperbolic space, see [6].

1. Notations and statement of the main Theorem

We begin as in [10] to state the notations we shall use in this paper. We shall focus
the half-space model of the hyperbolic 3-space and we shall denote it by H*, namely

H3 = {(u,v,w) € R®, w> 0},
equipped with the hyperbolic metric

du? + div? + du?
w? '

Throughout this paper, U ¢ C will be a simply connected domain of the complex
plane with coordinate z = x + iy, and X : U — H3 will be a C? conformal immersion of
U into H3. We shall call M = X (U) the surface in H3. We set

For any vectors i and 7, the notation & - ¥ (resp. (i; )) stands for the standard
euclidean (resp. hyperbolic) inner product of & and .

For every C'-function f : U — C U {o} the notation f, (resp. fz) stands for the
derivative of f with respect to z (resp. Z), thatis

1
fz = E(fx - lfy)

1
fz= E(fx +ify)

fx=fz+fz'

or equivalently { )
fy =if,-if:.

Let N be the euclidean Gauss map of X such that (X,,X,,N)(z) is a positive basis of
R3 for each z € U. Thatis,
XA X

X A X
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where |.| stands for the euclidean norm. We call N the oriented euclidean Gauss map of
X, or more briefly the euclidean Gauss map of X, and we denote by N;, i = 1,2,3 the
coordinate functions of N, thatis N = (N;,N,,N3).

DEFINITION 1.1.
1. LetIl: S?* — C U {co} be the standard stereographic projection. We set
N, +iN;
E(z) = (o N)(2) = ="2(z), vz e U.
1-N;
Then _
(2ReE,2ImE,EE - 1)
EE+1 ’
We also shall call E the oriented euclidean Gauss map of X.

2. Letp = X(z) € M be a point on M. Let y* be the half-geodesic issue from p,
orthogonal to M and oriented by the normal vector N(z). Let w € 0 H3 = CuU {0}
be the asymptotic boundary of y*. We then defineamap G : U — C U {oo} setting
G(z) = w. The map G is the well-known hyperbolic Gauss map of X (or M), see [4].

N =

We can now state the main result.

THEOREM 1.2. — Let X : U — H3 be a C* conformal immersion and let E be the
euclidean Gauss map of X. Let us call H the hyperbolic mean curvature of X with respect
to E and let us assume that E + o anywhereon U. Then E and H satisfy

(2+(H-1)(1+EE))(Q+ EE)E,; - 2(1+ (H - 1)1 + EE))EE,E;
- (1+EE)’E;H,=0. (1)

The induced metricon U is
41E; |2
2= _ |Ez| . ldz?
2+ (H -1)(1+ EE)|?
The Hopf function with respect to E is

(2)

~ 4E2Ez
¢ = — = — 3)
(1+ EE)(2+ (H - 1)(1+ EE))
and the second fundamental form with respect to E is
fi=(H+Red)dx® - 2Im Sdxdy + (H — Red)dy*- (4)

Conversely, let E : U — C beaC%-map andletH : U — R be a C'- map satisfying
(1). LetussetU* = {z € U, E; + 0}.

Then thereexistsamap X : U — H? such that the restricted map Xy~ is a conformal
immersion with Gauss map E and mean curvature H and 2), 3) and (4) are valid. Fur-
thermore, such a map X is uniquely determined up to an orientation preserving isometry
of W3. More precisely if X : U — H® is another such map, then there exist a real number
A > 0 and a complex number @ € C such thatX =A- X + .
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In fact, it can be proved that S — $* is a discret set in case where H = 1,see Lemma
2-3 of [10].

Proof of Theorem 1.2. — We first state some general result about immersed sur-
faces in H3. They can be found in {10]. The notations are the same as above.

ProPOSITION 1.3. — Let X : U — H?3 be a C? conformal immersion. Setting X =
(u,v,w), we have:

G-(u+i
p=S- i) ®)
w
andthenu+iv=G- w-E.
G, =w-E,- (6)
w; =1rop - (Gz - wE;) - 7
ds? = |G;—wwE;'|z . Idzlz . (8)

Proof. — Let z € U be any point. Observe that G(z) = (u + iv)(z) implies N(z) =
(0,0, — 1) and, therefore E(z) = 0 = (G — (u + iv))(z). Thus, we can assume G(z) #
(u+ iv)(z). Weset P = X(z) = (u,v,w), B = (u,v,0), G(z) = G + iG, = (G,G;,0)
and N = N(z) = (N,N,,N3). Let y* be the half-geodesic issue from P tangent to and
oriented by the vector N. Hence, y* is part of a half-circle lying in H® with center C =
(¢1,€2,0). Moreover, Y™ joins Pto G.

By construction, there exists a real number A € RsuchthatC = AR + (1 — A)G. A
computation shows that

_ (G —w?+ (G~ v+ u?

A .
2((G — w2+ (G - v)?)

Now, observe that:

() There exists a strictly positive real number o« > 0 such that (M,N;,0) = «o- RTG=
a« - (G, — u,G, ~ v,0) (because G is the asymptotic boundary of y™*).

(i) N and cp are orthogonal vectors.
Thus, we get the following system

=5 w(G — u)
(G - u)?+ (G -v)?-w
=2 w(G; — v) _
(G - u)?+ (G - v)% — w?

Finally, as N + N + NZ = 1, asimple computation leads to

N ((4—)(@—))

() ()

N

- N3

N,
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Hence, ) )
N (z(ﬁ.;—"»z(fzr;").(ﬁ,;—“) + (%) —1)
- = 2 — 2
(854) + (&) +1
— + i
=1T1(G (u w))‘
w
We conclude therefore
E= G- (u+iv)

w
as desired, this achieves the proof of (5).

As N is the euclidean Gauss map of X we have
X -MYE)=X,-N=0

thatis
((u+ iv),,wy) - (2E,EE - 1) =0.
Substituting u + iv by G we easily found

Re(E(G, — wE,))
EE+1 ’

Wy =

In the same way, one may show that
ZRe(f(Gy - wE,))
EE+1 )

Now, as X is a conformal immersion we have

wy=

XA'.X_\=Xy'Xy and .Xx'Xy=0-
On the other hand, we have

Xe X = ((u+ iv) g, wy) - ((W+iv)x,wy)
= ((G - wE)X’wX) ) ((G— WE)wix)

thus, using the expression of w, we get

Xe - X =Gy ~ wE; |2
Working in the same fashion, one can show that

X, - X, = |Gy — wE,|?
Moreover using the expression of w, and wy we get

X, X, =0((G-wE),wy) - ((G- wE),,wy) =0
& Re((Gy — wE,)(G, — wE,)) = 0.

13
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14
We deduce that the complex numbers (G, — wE;) and (G, — wE,) have same modules

g
and their arguments differ from = 7 Now, using

N XnX _(2E,EE -1)
X A X EE+1

and
wy Im(G — wE) ~ wyIm(G - wE),)

Xe N X, = (wae(G— wE), ~ wy Re(G — wE),
Im((G - wE)«(G — wE),)

weinfer that (G, — wE,) = —i(G, — wE;). We deduce that (G, — wEy) — i(Gy— wE,) = 0,

so then
G, = WE,,

as desired.
Now, using the expressions for w, and wy and using the relation G, = wE; just

proved, we easily get
E
= — (Gz' - LUEZ').

WiETTEE

At last, as X is a conformal immersion, the metric ds? induced on U by X is given

by
dz_Xx'X\'_IGx_WEAIZ
5T w2 w? -

On account of G, — wE; = G; — WE; + G, - wE; = G, — wE,, we infer that

2
e 16— wEsl?
w?

which concludes the proof. O
PROPOSITION 1.4. — Let X : U — H3 be a C* conformal immersion. Let us call H

the mean curvature of X with respect to E. Letil = IaN,‘xdx2 + ngydxdy + lgly),dy2 be the
byx — byy .~
—=—Y _ ib,, be the Hopf

second fundamental form of X with respect to E and letd = =

function of X. We have
Gz ~

= = (1 - H)(G; - z

1+ EE (1 )(Gz — wWE;) (9)
~ Gj - sz

b =-2E,—— 10
“w(1+ EE) 10
(an

fl = (H+Red)dx® - 2Imddxdy + (H - Red)dy*
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Proof. — We must calculate the coefficients of the second fundamental form. We
have N
bxx = = (X, Vx, Nz, bxy = — (X, Vx, Ny,
byy = —(X,,V x, N)ys.

where V is the covariant derivative in H® and N is the hyperbolic unit normal field, that
is N = w - N.For this, recall that for any vector fields A, B and C we have

(C;VBA) = LZC - DpA + % (-=A[w]B - C - B[w]C- A+ C[w]A - B) (T)
w w

where A[w] stands for the (euclidean) derivative of w with respect to A, see [7] or [3].
Therefore

_b~xx = (Xx Vx, ﬁ)

1 ~ 1 ~ ~s ~
= — X - Dx, N+ — [-N[wlX; - X, = Xc[w)Xs - N+ X [w]X, - N]
w w

-1 N3
= _bex - —w—ZXx . Xx.

where b,, is the related coefficient of the euclidean second fundamental form. We have
—byxx = Xz« Ny
2E ) (EF -1 ')
1+EE " EE+1""
R-e((-éx - WEX)(Ex - EZFX))

= ((G - wE)xwx) - ((

-
"~ (1+EE)?
+2 Re(EEy) Re(E(Gy - wEy))]

1+ EE Re(Ex(Gx - WEx))

In the same way, one can show

~ 1
by = — [whyy + NaX, - X, ]
~ 1 1
bxy = ﬁ [wbxy + N3 X, - Xy] = ;bxy
with ) )
bxy = WRG(E}'(G} - WEV)) = 1+ EF Im(EX(GX - WEx))
-2 —_ :
byy = -HTE._; Im(Ey(Gx - wEx))
As
H= bxx+byy and H=M

2( X, Xx) 2Xx - X
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where H is the euclidean mean curvature of X with respect to E, we deduce

Re(_E;(Gz- - sz)) _ —2E;
" “(1+EE)|G, - wE;|12  (1+ EE)(G; - wE;)
H= wH+N;
G;

2 — +1
(1+ EE)(G;z — wE;)

from which we infer relation (9).

The relations (10) and (11) can be established from the expressions of 5xx, Ex, and
Eyy. This concludes the proof of the proposition. O

Now we are going to prove Theorem 1.2. Let X : U — H3 be a C* conformal immer-
sion. From the relation (9) of Proposition 1.4 we deduce

G = (H -1)(1+EE)

z = ~ — - wE; (%)
2+ (H-1)(1+EE)

Furthermore, from Proposition 1.3 we get G, = wE,. Observe that, as X is a C3 map, G is
a C? map. Consequently we get (G;), = (G;),. We have

(Gz): = (G;3), c’szz+WEzz=( (H—-1)Q+ EE) ) - WE;

2+ (H -1)(1+ EE)
(H-1DQ+EE) . (H-DQA+EE)
2+ (H-1)(1+EE) -~ “

2+ (H-1)(1+ EE)

From (%) we have

-2 i
Gs — wE; = ——s — . WE; (%)
i * T 2+H-1)Q+EE) T

From Proposition 1.3 relation (7) we deduce

_ -2E 1 "
1+EE 2+ (H-1)1+EE)

w;z

As wis a real function, we have

-2E 1 —_
= — . — — - wE
1+EE 2+ (H-1)(1+EE)

w, = (w;)
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Substituting w, and w; by their previous expression and simplifying by w we deduce

(Gz); =(Gz); &

EE,E;
-2 — ] — +Ezz'=
(1+EE)2+ (H-1)(1+EE))
( -2 \.E, (H -1)(1+ EE) )
2+(H-1)Q+EE) " 2+(H-1)Q+EE) ~*
(H-1)(1+EE) = E;E;
2+(H-1)Q+EE) 1+EE 2+ (H-1)(1+EE)
EE,E; 2
-2 — — — + — —E,;
(1+EE)Y2+(H-1)(1+EE)) 2+ (H-1)(1+EE)
_ -2 ). By — (H-1)(1+EE) EE;E;
2+(H-1)1+EE) *° 1+EE 2+ (H - 1)(1+ EE))?

& - 2EEE;2+(H-1)Q+EE))+2(0+EE)2+(H-1)(A + EE))E,; =
2(H,(1+ EE) + (H - 1)(E,E + EE;)E;(1+ EE) - 2(H - 1)(1 + EE)EE;E;
o -EEEQ@+(H-1)Q+EE)+(Q+EE)2+(H-1)1+EE))E,;; =
H,(1+EE)*E; + (H-1)(1 + EE)EE,E;
(1 +EE)2+(H-1)(+EE))E,;-2(1+ (H-1)(1+ EE))EE,E;
- (1+EE)*E;H, =0

which is the relation (1) stated in Theorem 1.2. Now, the relations (2), (3) and (4) of Theo-
rem 1.2 are easily induced from (xx )} and the relations of Proposition 1.3. This accom-
plished the first part of the proof of Theorem 1.2.

Conversely, let E: U — CbeaC? function andlet H : U — R be a C! function
satisfying relation (1). We are looking for a C? conformal map X = (u,v,w) : U - H?
such that the restricted map Xy~ is an immersion whose euclidean Gauss map is E and
whose mean curvature is H. From relations (x ) and (7) of Proposition 1.3 we get that
w must satisfy the differential equation

o -2E .
* (Q+EE)2+(H-1)1+EE))

wE; (12)

Setting f := Logw. the equation (12) has the form f; = A(z) where A is a complex
function. As f is areal function the integrability condition is Re(A), = Im(A),. But the
last condition is equivalent to Im(A;) = 0. As

—2E
A= — = —
(1+EE)2+ (H-1)(1+EE))

2
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we have

A€R & (E) E;(1+ EE)2+(H-1)(1+EE))+E(1 + EE)(2+ (H - 1)(1 + EE))E;z
- EE;(E,E+E(E;))(2+(H-1)(1 + EE)) - EE;(1+ EE)(H,(1 + EE)
+(H-1)(E,E+E(E)) R

E[(1+EE)(2+ (H-1)(1+EE))E,; - EE;E,(2+ (H - 1)(1+ EE))
- EEE(H-1)Q+EE)- 1+ EE)E;H,] e R

<E[(1+EE)(2+ (H-1)(1 + EE))E,; - 2EE;E,(1+ (H - 1)(1 + EE))
- (1+EE)E;H,] e R

As E and H satisfy (1), the integrability condition holds. Henceforth there exists a real
function w satisfying (12). In fact, up to a multiplicative complex constant we have

EE; _
—4Re/ — — — - dz
w(z) =e (1+EE)(2+(H-1)(1 +EE))

In the same way, in view of Propositions 1.3 and 1.4 we arelookingforamap G: U — C
satisfying

s) { G, = wEk,
. = AH_DA+EE)
G: = 2+7T11)1)1(TEEEF) P WE;
The integrability condition of (S) is (G;)z = (G;).. But the last is equivalent to the equa-
tion (1) as we have seen in the first part of the proof. Thus, there does exist a complex
map G on U satisfying (S). Observe that G is defined up to an additive complex number.
Then, define the real functions u and von U as u + iv := G — wE. Now, we define the
map X setting X = (u,v,w) : U — H3. Itis a straightforward verification to prove that
the restricted map X,y - is a conformal immersion whose euclidean Gauss map is E and
with mean curvature H with respect to E. Furthermore, the relations (2), (3) and (4) are
valid on U *. Further details can be seen in [10].

A A A

At last, suppose that X = (4,0,) : U — H?is another such map. Let us call G the
related hyperbolic Gauss map. Observe that @ must satisfy the equation (12). Therefore
there exists a complex number A such that @ = Aw. Also, G satisfies the system (S) with
Aw (that is @) instead of w. We deduce that there exixts a complex number « such that
G = AG + a. Therefore we have

X = (fi+iv,0) = (G - WE, ) = (AG + & — AwE,Aw)
=A(G - wE,w) +(a,0) =A - X + (,0).
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2. Mean curvature one surfaces in hyperbolic space

We now specialize for the case where the mean curvature isone. Let X : U — H3
be a C3 conformal immersion such that E # o along U. Observe that when H = 1 the
equation (1) reduces to

E
Ezz°= mEzEz" (*)

In [10] the authors have considered this equation and they have proved the following
results.

THEOREM 2.1 (Existence of Meromorphic Data). — Let U c C be a simply connec-
ted domain and let X : U — H? be a non-totally umbilic conformal immersion. Let E
be the oriented euclidean Gauss map E of X. Assume that X has mean curvature one with
respect to E (therefore, E satisfies equation (%)).

Then, there exist two meromorphic functions h, T on U such that

Th, + hT, h,
E=h-|———22)|T+|—2—]]-
R2T, Th,+ hT,

Furthermore, up to a multiplicative positive constant we have

|n?T,|?
w=
|Thy + hT,12 + | by |2
G, = W*T,

then, up to the same multiplicative positive constant and up to an additive complex
constant we have

nT, —_— 2
+iv=G-wE=G~- (Th, + hT) (T + | —=——1).
urw v Th i +ime (Thet hT)d (Thz+hrz)

Moreover,
hT,h,, — 2h2T, — hh,T,
ds = | Esdz| = 1220z lhl;lz Lzl () 1 72) a2
z
a') = thzhzz - 2h§Tz - hhszz
h2T,
1 = Re(®(d2)?) + ds?
e LINEAN

4
|hThy, — 2R2T, — hh T, |2(1 + | T12)*
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and, up to a rigid motion in R3, we can choose
g=T

1 hTzhzz - 2’137"2 - hhszz
I hT,

where (g, f dz) is the Weierstrass representation of the minimal immersion in R® associa-
tedtoX.

This means that the euclidean map E and the immersion X can be expressed in
terms of two analytic functions # and T on U, see Theorem 3-9 of [{10]. The following
result is a converse one: given two meromorphic functions, assuming some conditions,
Wwe can construct a mean curvature one conformal immersion X : U — H?3, see Theorem
3-11 of [10].

THEOREM 2.2 (Representation Theorem). — Let S be a Riemann surface and let h

. . 1
anz T be two meromorphic functions on S such thath # 7=z, for any complex numbers
«, B. Weset:

W T,)? Th,+ h h
w(z) = Ih L CE=p. (IMethEN (o (R
|Th, + hT;|? + | h,|? 2T, Th, + hI,

and S* = {z € S, |E;| = 0,0}. Let us assume that

/hszdz=O (T)
Y

for every closed path'y C S on which neither h nor T have poles, that is the 1-form h* T,dz
has a global primitive G on S. Set:

(u+iv)(z) == (G- wE)(z), ze€ S*.

Then, the function X = (u, v, w) : S* — W3 defines a mean curvature one conformal
immersion whose euclidean Gauss map is E and the hyperbolic Gauss map is G. Further-
more, the geometric quantities of X are given by the last relations of Theorem 2.1.

We recall that S — S* is a discret set, see Lemma 2-3 of [10]. As a matter of fact,
equation (%) can be solved in terms of meromorphic functions, see Theorem 3-12 of
[10]. We found the following representation:

THEOREM 2.3. — LetU C C bea simply connected domain andletE : U - Cbea
C? map, neither holomorphic nor anti-holomorphic, satisfying equation

E; = ——=E.E;- ()
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Then, thereexists a holomorphic function h and there exists a meromorphic function T on

U such that
Th, + hT, h,
=h | ———2Z2) | T+|=——])]-
E ( h2T, )( (Thz+hTz)

Moreover, for any pointzg € U, then T has a pole there if and only if: h vanishes at zy, and
T and h have same order at this point.

Now we are going to give some examples of complete mean curvature one immer-
sions in H3. For this, we choose U = C, h(z) = e*? and T(z) = b+ €°, where z € C and
b is a constant complex number. Using Theorem 2.2 it is easily seen that (h,T) give rise
to a complete mean curvature one immersion of C into H3.

Let us first assume y = — % We deduce from Theorem 2.2 that

(u+iv)(z) =z+ ((b+€*)(b—e*)+1)

1+|b- e??
|7
PR L
w(z) = 4T e

Therefore we have X (z+2mi) = X (z) + (0,217,0) for any z € C. That is, the surface X (C)
is invariant under the horizontal translations (u + iv,w) — (u + iv,w) + (217i,0) of H3.

In Figure 1-a we draw a piece of a fundamental domain of the surface corresponding
to b = 1/2. We draw also three fundamental domains of the same surface in Figure 1-b.

Figurel-a Figure 1-b

In the particular case where b = 0 we have
3
(u+iv)(z) =z - 2coth(¥)

w(z) = _2__
cosh(Z%)

Now we have X (z + iyp) = X (2z) + (0,),0) for any yo € R. That is, the surface X (C) is
invariant under the continuous group of horizontal translation

{(ululw) - (ulvlw) + (0;}’0,0):}'0 € R}l
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see Figure 2-a. The profile curve, called “courbe des forgats” (see figure 2-b), was studied
by Poleniin 1729, see [8].

Figure 2-a Figure 2-b
It can be shown that this surface is an Enneper cousin dual, see [9], Remark 1-11-(2).

Atlast, wheny = —% we have

(w+ () = @02 (- (b+ &) By + 1+ 9)&) %)

2y +1 Iby + (1 +y)e*|? + |y|?
le*|?
|by + (1 +y)e?|2 + |yl
It is easily conferred that X (z + 21i) = (H_4r1m(y) © Ran Re(y)) X (2), where for any real
number A, we call R, the rotation around the w-axis whose argument is A and we call

H, the homothety with respect to 0 and ratio ¢*. That is, X is invariant under a discret
subgroup of screw motions of H® isometric to Z. See Figure 3, wherey = —1+iand b = 1.

yYZ+yz

w(z) =e

Figure 3

We refer to [10] for a full geometric description of the above surfaces. We observe
that M. Umehara and K. Yamada have given some of the previous examples using other
techniques.
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