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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 32 (2014-2015) 1-37

NODAL SETS OF EIGENFUNCTIONS,
ANTONIE STERN’S RESULTS REVISITED

Pierre Bérard & Bernard Helffer

Abstract. — These notes present a partial survey of our recent contributions
to the understanding of nodal sets of eigenfunctions (constructions of families of
eigenfunctions with few or many nodal domains, equality cases in Courant’s nodal
domain theorem), revisiting Antonie Stern’s thesis, Göttingen, 1924.

1. Introduction

In dimension one, a theorem of C. Sturm [34] says that the zeros (nodes)
of an eigenfunction associated with the n-th eigenvalue of a self-adjoint
Sturm–Liouville problem in a bounded interval divides the interval into n
sub-intervals (nodal domains).
Let Ω ⊂ Rn be a bounded domain (a bounded connected open subset).

Consider the Dirichlet eigenvalue problem in Ω,

(1.1)
{−∆u = λu in Ω ,

u = 0 on ∂Ω .

Arrange the corresponding eigenvalues in non-decreasing order, with mul-
tiplicities,

(1.2) λ1(Ω) < λ2(Ω) 6 λ3(Ω) 6 · · · .

Keywords: Nodal domains, Courant theorem, Pleijel theorem, Dirichlet Laplacian.
Math. classification: 35P15, 49R50.
Acknowledgements: The authors would like to thank P. Charron for providing an early
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Given a function u on Ω, the nodal set of u is defined to be

(1.3) N(u) := {x ∈ Ω | u(x) = 0} .

The connected components of Ω \N(u) are called the nodal domains of
u. Denote by µ(u) the number of nodal domains of u.

In 1923, R. Courant [15] gave an upper bound for the number of nodal
domains of the eigenfunctions of a self-adjoint eigenvalue problem. In par-
ticular, his theorem states that an eigenfunction associated with the n-th
eigenvalue of the eigenvalue problem (1.1) has at most n nodal domains.
Sketch of the proof of Courant’s theorem. — Let {un}, n > 1 be an

orthonormal basis of eigenfunctions of problem (1.1), associated with the
eigenvalues λn(Ω), n > 1. Let v be an eigenfunction, associated with the
eigenvalue λk(Ω). Assume that v has at least (k + 1) nodal domains,
ω1, ω2, . . .. For 1 6 j 6 k, define the function vj by,

(1.4) vj(x) =
{
v(x) if x ∈ ωj ,
0 otherwise.

One can find a linear combination w :=
∑k
j=1 αjvj such that w is orthogo-

nal to u1, . . . uk−1, and has L2-norm 1. Taking into account the definition of
vj , one finds that

∫
Ω |dw|

2 dx = λk(Ω). It follows from the min-max that w
is also an eigenfunction associated with λk(Ω). Since w vanishes identically
on the open set ωk+1, it must be identically zero on Ω, which contradicts
the fact that it has norm 1. �

Note that an eigenfunction associated with λ1(Ω) has exactly one nodal
domain (Ω is connected). For orthogonality reasons, an eigenfunction asso-
ciated with the eigenvalue λk(Ω), k > 2, has at least two nodal domains. In
particular, an eigenfunction associated with λ2(Ω) has exactly two nodal
domains.
In his paper, Courant indicates that, for partial differential equations, it

is easy to give examples of eigenvalues of higher rank and corresponding
eigenfunctions with only two nodal domains. He does not give any detail,
but we can guess that he had in mind the case of the square as described
in Pockels’ book [32, Chap. II.6.b]. For the square ]0, π[×]0, π[⊂ R2, the
Dirichlet eigenvalues are the numbers λm,n = m2 + n2, and a complete
set of orthogonal eigenfunctions is given by the functions um,n(x, y) =
sin(mx) sin(ny), where m,n are positive integers. Figure 1.1 displays the
nodal sets of some eigenfunctions associated with the eigenvalues λ2 = λ3
(top row) and λ4 = λ5 (bottom row), corresponding respectively to λ1,2 =
λ2,1 and λ1,3 = λ3,1 . Similarly, Figure 1.2 displays some nodal sets for the
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eigenvalues λ6 = λ7 (top row) and λ8 = λ9 (bottom row), corresponding
respectively to λ2,3 = λ3,2 and λ1,4 = λ4,1 .

Figure 1.1. Eigenvalues, λ2 = λ3 and λ4 = λ5, [32, p. 80]
Note that Courant’s upper bound is not sharp in the case of a multiple

eigenvalue. Indeed, assume that, for some positive integers k and m,

λk−1(Ω) < λk(Ω) = · · · = λk+m(Ω) < λk+m+1(Ω) .

Since any eigenfunction u associated with λj(Ω), k+1 6 j 6 k+m is also an
eigenfunction associated with λk(Ω), we have µ(u) 6 k, so that Courant’s
upper bound is definitely not achieved for the eigenvalues λj(Ω), k + 1 6
j 6 k +m .
The following formulation of Courant’s theorem takes care of possible

multiplicities.

Theorem 1.1. — Let N (λ) := #{j : λj < λ} be the counting func-
tion. For any λ, let E(λ) be the eigenspace associated with λ if λ is an eigen-
value, and {0} otherwise. For any λ, let µ(λ) denote the maximum number
of nodal domains of an eigenfunction in E(λ), possibly 0 if E(λ) = {0}.
Then, µ(λ) 6 N (λ) + 1.

VOLUME 32 (2014-2015)
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Figure 1.2. Eigenvalues, λ6 = λ7 and λ8 = λ9, [32, p. 80]

Remark. — Courant’s theorem is quite general (no assumption on the
degree of the operator nor on the number of variables), the main require-
ment being that the eigenvalue problem is self-adjoint. One can for example
consider the Neumann eigenvalue problem for the Laplacian, or take Ω to be
a compact Riemannian manifold, with or without boundary, and replace
∆ by the associated Laplace–Beltrami operator (for example the sphere
with the spherical Laplacian). One can also consider non-compact cases,
for example the isotropic quantum harmonic operator −∆ + |x|2 in R2.

Natural questions. — In view of the preceding discussion, the fol-
lowing questions are natural.

Question 1 — Is the number 2 the best general lower bound for the
number of nodal domains? How often does this phenomenon hap-
pen?

Question 2 — Can one give sharper upper (lower) bounds on the num-
ber of nodal domains?

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Question 3 — Call the eigenvalue λ Courant-sharp whenever µ(λ) =
N (λ) + 1. Can one characterize Courant-sharp eigenvalues? Can
one determine the Courant-sharp eigenvalues of a given domain or
manifold?

Question 1 is the main topic of these notes. It was first investigated by
Antonie Stern [33] in her 1924 PhD thesis at the university of Göttingen,
under the supervision of R. Courant. She considered the eigenvalue prob-
lem for the Laplacian in the square membrane with Dirichlet boundary
conditions, and for the spherical Laplacian on the 2-sphere. In both cases,
she proved that there exists an infinite sequence of eigenvalues, and cor-
responding eigenfunctions with exactly two nodal domains, see [4] (tags
[Q1,K1,K2]) and Section 2 for more details. The spherical case was also
studied by H. Lewy [28, 1977]. Courant-sharp eigenvalues of spheres and
Euclidean balls are investigated in [22]. An infinite sequence of eigenfunc-
tions with only two nodal domains on the flat square 2-torus is mentioned
in [19], with a reference to [23], see Section 7 for more details.

Question 2 has first been tackled by Å. Pleijel [31, 1956]. Using the
Faber–Krahn inequality, he proved that for any bounded domain Ω ⊂ R2,
the number of nodal domains of a Dirichlet eigenfunction associated with
λk(Ω) is asymptotically less than

(
2
j

)2
k < 0.7 k, where j denotes the least

positive zero of the Bessel function J0 . This result implies that there are
only finitely many Courant-sharp Dirichlet eigenvalues. For more details,
we refer to [6] and the survey [10]. See also the recent contributions [11, 12]
for the case of the two-dimensional quantum harmonic oscillator, and [13]
for Schrödinger operators with radial potentials.
In some cases, it is possible to improve Courant’s upper bound by using

symmetries. This occurs in particular for the spherical Laplacian on the
sphere S2. The idea is to use the antipodal map, the fact that even and odd
spherical harmonics are always orthogonal, and to adapt Courant’s proof
as sketched above. This also occurs for the isotropic quantum harmonic
oscillator −∆+|x|2 in R2. For more details, we refer to Leydold’s papers [29,
30] and to [8, 7].

Question 3 is related to spectral minimal partitions. For more details, we
refer to the survey [10].

VOLUME 32 (2014-2015)
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Remarks.
(i) For domains, we have only mentioned the Dirichlet eigenvalues.

The same investigations can be made for the Neumann eigenval-
ues as well. To determine Courant-sharp eigenvalues for the Neu-
mann problem turns out to be more difficult, we refer to [10] for
more details and references. Note that, in the Neumann case, it
does not seem possible to construct an infinite sequence of eigen-
functions with only two nodal domains [21, p. 36]. More precisely,
the following conjecture has been proposed by Helffer and Persson
Sundqvist [21, Conjecture 10.7]: For any sequence of eigenfunctions
of the Neumann problem in the square associated with an infinite
sequence of eigenvalues, the number of nodal domains tends to in-
finity. Concerning Question 2, C. Léna [27] recently proved that
Pleijel’s theorem is true for the Neumann case.

(ii) It is claimed in [16, Footnote 1, p. 454] that any linear combination
of eigenfunctions associated with eigenvalues less than or equal to
λn has at most n nodal domains. This assertion was questioned by
V. Arnold, and proved to be wrong by O. Viro for linear combi-
nations of spherical harmonics in dimension 3 [1, 24], see also [31,
Section 7].

(iii) In higher dimension, one can easily construct high energy eigen-
functions with only two nodal domains on product manifolds of
the form S2 ×M , with the product metric gS2 × ε2gM . A less triv-
ial example can also be given using Riemannian submersions with
totally geodesic fibers on the 3-sphere [9, Corollary 6.7].

The paper is organized as follows. In Section 2, we summarize Stern’s
results and geometric ideas for the square membrane and for the 2-sphere.
In Section 3, we revisit and complete Stern’s proofs in the case of the
square membrane. In Section 4, we explain Stern’s results for the sphere. In
Section 5, we explain how Stern’s ideas can be applied to construct regular
spherical harmonics with many nodal domains. In Section 6, we extend
Stern’s result to the case of the 2-dimensional isotropic quantum harmonic
oscillator. In Section 7, we look at eigenfunctions of the flat rectangular
2-torus.

2. The results of Antonie Stern

Antonie Stern was born in Dortmund in 1892. She defended a PhD the-
sis in mathematics at Göttingen University on July 30, 1924, under the
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supervision of R. Courant. She later worked as a researcher at the Kaiser-
Wilhelm-Institut für Arbeitsphysiologie in Dortmund from 1929 to 1933.
She emigrated to Israel in 1939, and still lived in Rehovot in 1967. We are
grateful to Annette Vogt for providing us with these details, see [35].

2.1. Stern’s results

Stern’s thesis was published in Göttingen, in a volume containing other
theses, and reviewed in the Jahrbuch für Mathematik.

JFM 51.0356.01
Stern, Antonie (Stern, Antonie)
Bemerkungen über asymptotisches Verhalten von Eigenwerten
und Eigenfunktionen.
Math.- naturwiss. Diss. (German) [D] Göttingen, 30 S.
Published: 1925
Im 1. Teil wird u. a. gezeigt, einmal, dass es zu jedem Eigen-
wert von ∆u + λu = 0 auf der Kugel Eigenfunktionen gibt,
deren Nullinien die Kugelfläche in zwei oder drei Gebiete teilen;
ferner, dass (beim gleichen Problem) bei den Eigenwerten Gebi-
etszahlen von ganz verschiedener Grössenordnung auftreten, so
dass ein asymptotisches Gesetz für die Gebietsanzahlen nicht
besteht. Im 2. Teil wird (für gewisse Randwertaufgaben bei
partiellen Differentialgleichungen 2. Ordnung) ein asymptotis-
ches Gesetz für die Verteilung der Eigenwerte in Abhängigkeit
von den Randbedingungen hergeleitet.
[Haupt, O.; Prof. (Erlangen)]
Subject heading: Vierter Abschnitt. Analysis. Kapitel 13. Po-
tentialtheorie. Theorie der partiellen Differentialgleichungen
vom elliptischen Typus.
Signatory at SUB: <19>: 1601/Diss. 19 845

Stern’s thesis is mentioned in a footnote in the classical book of Courant–
Hilbert, see [16, Chap. VI.6, pp. 455-456] and [17, Chap. VI.6, p. 396], to-
gether with two figures from her thesis. This citation only concerns Stern’s
results for the square membrane. To this day, we did not find any refer-
ence to Stern’s results for the sphere in the book of Courant–Hilbert, nor
elsewhere in the literature.
Here is a quotation from the introduction of Stern’s thesis [33, Einleitung,

p. 3].
[...] Im eindimensionalen Fall wird nach den Sätzen von Sturm
das Intervall durch die Knoten der nten Eigenfunktion in n
Teilgebiete zerlegt. Dies Gesetz verliert seine Gültigkeit bei

VOLUME 32 (2014-2015)
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mehrdimensionalen Eigenwertproblemen, [...] es läßt sich
beispielweise leicht zeigen, daß auf der Kugel bei jedem Eigen-
wert die Gebietszahlen 2 oder 3 auftreten, und daß bei Ordnung
nach wachsenden Eigenwerten auch beim Quadrat die Gebiet-
szahl 2 immer wieder vorkommt.[...]

Stern’s thesis is written in a rather discursive style. As far as Question 1
is concerned, the main results of her thesis can be summarized in theorem
form as follows.

Theorem 2.1 (Stern’s result for the square membrane). — For the
square ]0, π[×]0, π[⊂ R2, there exists a sequence {vm} of Dirichlet eigen-
functions associated with the eigenvalues λ2m,1 = 1 + 4m2, m > 1, such
that µ(vm) = 2.

Theorem 2.2 (Stern’s results for the sphere). — On the 2-sphere, for
any positive integer `, there exists a spherical harmonic u` of degree `, such
that

(2.1) µ(u`) =

2 if ` is odd,

3 if ` is even.

Upon reading [33], it seemed to us that the proofs lacked some important
details although the ideas were nice and geometric. We thought it useful
to give complete proofs along these geometric ideas. Doing so, we actually
obtained more precise quantitative results, and a better understanding of
the bifurcations of nodal sets, see [6, 8]. Our methods also turned out to
be useful to determine Courant-sharp Dirichlet eigenvalues of the equila-
teral, hemiequilateral and isosceles triangles [5]; see [2] for the right-isosceles
triangle with Neumann boundary condition, and [3] for 2-rep-tile domains
with Neumann boundary condition.
Theorem 2.2 was rediscovered by H. Lewy in 1977. Lewy’s proofs [28]

are less geometric and more analytic than Stern’s proofs, see [8] for a com-
parison. He also proves that the lower bound 3 for spherical harmonics of
even degree is sharp. Lewy was also a student of Courant. He defended his
thesis in Göttingen in 1926. His paper does however not mention Stern’s
thesis.

2.2. Stern’s ideas

We now describe Stern’s ideas in the case of the square ]0, π[×]0, π[⊂ R2.
Recall the notation

(2.2) u`,m(x, y) = sin(`x) sin(my) ,

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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where `,m are positive integers, and x, y ∈]0, π[.
For any positive integer r, Stern considers the family of eigenfunctions

u2r,1 + µu1,2r, associated with the eigenvalue λ2r,1 = 4r2 + 1, where µ a
real parameter close to 1. Stern claims that the nodal set of u2r,1 + u1,2r
is given by Figure 2.1.

Wir betrachten die Eigenwerte λn = λ2r,1 = 4r2 + 1 , r =
1, 2, . . . und die Knotenlinie der zugehörige Eigenfunktion
u2r,1 + u1,2r = 0, für die sich, wie leicht mittels graphischer
Bilder nachgewiesen werden kann, die Figur 7 ergibt.

As a matter of fact, Figure 2.1 illustrates the case r = 6. For a proof of
this claim, we refer to [6, Prop. 6.6], see also [19].

Figure 2.1. Stern [33, Figur 7]

Next, Stern claims that when µ leaves the value 1, all the nodal crossings
disappear at the same time and in the same manner, leading to a nodal line
as in Figure 2.2. It follows that for any positive integer r, there exist values
of µ for which the above eigenfunction has exactly two nodal domains.

Laßen wir nur µ von µ = 1 aus abnehmen, so lösen sich die
Doppelpunkte der Knotenlinie alle gleichzeitig und im gleichem
Sinne auf, und es ergibt sich die Figur 8. Da die Knotenlinie aus
einem Doppelpunktlosen Zuge besteht, teilt sich das Quadrat
in zwei Gebiete und zwar geschieht dies für alle Werte r =
1, 2, . . . , also Eigenwerte λn = λ2r,1 = 4r2 + 1 .

In order to prove her claim, Stern introduces two geometric ideas. Con-
sider the eigenfunctions u`,m and um,` associated with the eigenvalue λ`,m =
`2 + m2. Their nodal sets are the union of segments parallel to the x

and y axes. The connected components of the set ]0, π[×]0, π[\(N(u`,m) ∪
N(um,`)) are open rectangles which can be colored (white/grey) according

VOLUME 32 (2014-2015)
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Figure 2.2. Stern [33, Figur 8]

to the sign −/+ of the function u`,m um,`, forming a kind of checkerboard.
The following properties hold.

(1) If µ > 0, then the nodal set of u`,m + µum,` is contained in the
white rectangles of the checkerboard.

(2) For all µ, the nodal set N(u`,m + µum,`) contains N(u`,m) ∩
N(um,`), the set of fixed points.
Um den typischen Verlauf der Knotenlinie zu bestimmen, [...]
Legen wir die Knotenliniensysteme von u`,m (` − 1 Parallelen
zur y-Achse, m−1 zur x-Achse) und um,` (m−1 Parallelen zur
y-Achse, ` − 1 zur x-Achse) übereinander, so kann für µ > 0
(< 0) die Knotenlinie nur in den Gebieten verlaufen, in denen
beide Funktionen verschiedenes (gleiches) Vorzeichen haben.
Weiter müssen alle zum Eigenwert λ`,m gehörigen Knotenlinien
durch Schnittpunkte der Liniensysteme u`,m = 0 and um,` = 0,
also durch (`− 1)2 + (m− 1)2 feste Punkte hindurchgehen.

Remark. — It is interesting to note that the consideration of the fixed
points already appears in the figures in Pockels’s book (see also the corre-
sponding picture in the book of Courant–Hilbert, [16, p. 302]).

3. Stern’s proofs revisited

As the elements of proof given by Stern did not look sufficient, we looked
into the following items.

• Give a precise description of the nodal set of the eigenfunction
u1,2r + u2r,1 .

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Figure 2.3. Checkerboards and fixed points for λ1,3 ,λ1,4 and λ2,3

• Establish the regularity of the nodal set of the function u1,2r +
µu2r,1 in the interior of the square, for µ close to 1 and different
from 1 .

• Prove that the nodal set of u1,2r + µu2r,1 is connected (in partic-
ular, that no connected component of the nodal set can avoid all
the fixed points).

Recall the definition of the nodal set N(Φ) of a Dirichlet eigenfunction
Φ of the square ]0, π[2

(3.1) N(Φ) = {(x, y) ∈]0, π[2 | Φ(x, y) = 0} .

Given an integer R, introduce the following one-parameter family of
eigenfunctions associated with the eigenvalue λ1,R = 1 +R2,

(3.2) Φθ1,R(x, y) = cos θ sin(x) sin(Ry) + sin θ sin(Rx) sin(y) , θ ∈ [0, π[ .

It is convenient to factor out sin(x) sin(y), and to consider the family

φθ1,R(x, y) = cos θ UR−1(cos y) + sin θ UR−1(cosx) ,

where Un denotes the Chebyshev polynomial with degree n.

Remark. — When R is even, due to natural symmetries, it suffices to
consider the values θ ∈ [0, π4 ] .

3.1. New ingredients

To complete Stern’s proofs, we introduce two key ingredients, and a
technical one:

• the analysis of critical zeros,
• the analysis of the trace of the nodal set on the boundary of the
square,

VOLUME 32 (2014-2015)
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• separation lemmas.

As a by-product, we obtain qualitative versions of Stern’s results, and a
better understanding of the bifurcations of nodal sets in the family.

A critical zero of Φθ is a point (x, y) such that Φθ(x, y) = 0 and d(x,y)Φθ =
0. The local structure of the nodal set in a neighborhood of a critical zero is
determined by Bers’ theorem. In dimension two, up to C1 diffeomorphism,
the nodal set in the neighborhood of a zero of order k is the same as that
of a homogeneous harmonic polynomial of degree k, see [14].

Remarks.

(i) In full generality, the preceding result holds at critical zeros of
eigenfunctions in the interior of a 2-dimensional domain. Since the
Dirichlet eigenfunctions of the square extend to the whole plane,
the same property holds at boundary points as well (one has then
to include the sides of the square in the nodal set).

(ii) In their books Pockels and Courant–Hilbert do not say anything
about the choice of the parameters for the pictures they produce.
It is interesting to note that some of the parameters correspond
precisely to the occurrence of critical zeros.

(iii) T. Hoffmann-Ostenhof pointed out to us the Master degree thesis
(Diplom Arbeit) of J. Leydold [29] which is based on a precise
analysis of critical zeros.

The interior critical zeros of the function Φθ1,R are given by the equations,

(3.3)


cos θ UR−1(cos y) + sin θ UR−1(cosx) = 0 ,
sin θ U ′R−1(cosx) = 0 ,
cos θ U ′R−1(cos y) = 0 .

They correspond to self-intersections of the nodal set. It follows that the
only possible interior critical zeros are the points of the form (qi, qj) where
the cos qi are the zeros of the polynomial U ′R−1(t). Furthermore, a given
critical zero is associated with a unique value of the parameter θ ∈ [0, π[.
As a consequence, the function Φθ has no interior critical zero, except

for a finite set of values of θ.

The trace of the nodal set N(Φθ1,R) on the boundary of the square is
determined by the equation

(3.4) cos θ UR−1(cos y) + sin θ UR−1(cosx) = 0 ,

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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where we have to fix x = 0 or x = π, and solve an equation in y; resp.
where we have to fix y = 0 or y = π, and solve an equation in x. The
points obtained in this manner are points at which an interior nodal arc
hits the boundary. They are always critical zeros of order at least two.
When they are of order at least three, they correspond to points in the
boundary hit by at least two interior nodal arcs. Such higher order zeros
are determined by the zeros of U ′R−1(t).

The vertices of the square are treated separately. Using properties of
the Chebyshev polynomials, one can prove the following properties for the
functions Φθ.

• The vertices are critical zeros of order two or four.
• The boundary critical zeros, away from the vertices, are of order
two or three.

• The interior critical zeros are of order two.
• The fixed points are not critical zeros. At these points, the nodal
set consists of a regular arc which is transversal to the horizontal
and vertical lines.

Based on the preceding results, Figures 3.1–3.3 give the possible nodal
patters in the white squares, respectively at the vertices, at the boundary
or in the interior. Note that the configurations (Ae), (Ce) and (De) in
Figure 3.2, and (A) and (B) in Figure 3.3 are stable under small variations
of θ.

Figure 3.1. R even, nodal patterns at the vertices. From left to right:
θ 6= π/4 and 3π/4 ; θ = π/4 ; θ = 3π/4

As a consequence there are only finitely many possible forms for the nodal
sets of Φθ. Changes can only occur for the values of θ corresponding to the
existence of critical zeros. Figure 3.4 illustrates the case of the eigenvalue
λ1,8 .

VOLUME 32 (2014-2015)
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Figure 3.2. R even, nodal patterns on the boundary

i

Figure 3.3. Interior nodal patterns

3.2. Detailed proof in the case λ1,4

In this section, we give a detailed proof in the particular case of λ1,4 .
We work with the family of functions,

(3.5) Φθ1,4(x, y) := cos θ sin(x) sin(4y) + sin θ sin(4x) sin(y) ,

which we shall simply denote by Φθ.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Figure 3.4. Typical nodal sets for λ1,8

We have the symmetries, Φπ
2−θ(x, y) = Φθ(y, x) and Φθ(π − x, y) =

−Φπ−θ(x, y), so that it suffices to restrict to θ ∈ [0, π4 ].

Trace of the nodal set N(Φθ) on the boundary. — Assuming that θ ∈
[0, π4 ], we find that the points at which the nodal set hits the boundary are
located on the sides {x = 0}, respectively {x = π}, and that they are given
by the equations,

cos θ U3(cos y) + 4 sin θ = 0 ,

and
cos θ U3(cos y)− 4 sin θ = 0 ,

respectively.

VOLUME 32 (2014-2015)



16 PIERRE BÉRARD & BERNARD HELFFER

There is one critical value of θ, namely θc = arccos( 1
3

√
2
3 ). When θ < θc ,

the trace consists of three points on each side (zeros of order 2); when
θ = θc , there are two points on each side (one zero of order 2, and one of
order 3); when θ > θc , there is one point on each side (a zero of order 2).
Figure 3.5 displays the checkerboard, the fixed points and the boundary
points in the three cases.

Figure 3.5. Trace of N(Φθ) on the boundary

Note that the first and third configurations are stable under small vari-
ations of θ.

Interior critical zeros. — The only possible interior critical zeros are
the points (x, y) such that x, y = arccos

√
1
6 or π − arccos

√
1
6 . They only

occur for two critical values of θ, π4 and 3π
4 . On the boundary these values

of y correspond to the critical zeros of order 3. The corresponding critical
values of the parameter θ ∈ [0, π4 ] are θc (two critical zeros of order 3 on the
boundary, no interior critical zero), and π

4 (no critical zero on the boundary,
two critical zeros at the vertices, and two interior critical zeros). Figure 3.6
displays the checkerboard, the fixed points and the possible critical zeros.
It turns out that the dotted horizontal lines through the possible critical

zeros provide partial barriers for the nodal set. This is the content of the
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Figure 3.6. Checkerboard, fixed points, critical zeros

following separation result. We look at the intersection of the nodal set
N(Φθ) with the lines {y = arccos

√
1
6} and {y = π − arccos

√
1
6}. This

amounts to solving the equation

U3(cosx) = 4tan θc
tan θ .

This equation has no solution when 0 6 θ < θc ; a unique solution (x = 0),
when θ = θc ; a unique solution in ]0, π[, when θc < θ < π

4 ; exactly two
distinct solutions in ]0, π[, when θ = π

4 (the critical zeros). From these prop-
erties, one can deduce the course of the nodal sets. The following figures
illustrate these three cases.
Let us for example consider the first case, θ < θc . Recall that a nodal

arc can only cross the edges of the small white squares at the vertices, and
cannot cross the horizontal dotted lines (separation lemma). Start from
the highest boundary point on the left side of the square. The nodal arc
issued from this point has to leave the white smaller square at its south-east
corner. From there, it cannot go below the dotted line, so that it must end
up at the highest boundary point on the right side of the square. Looking
at the arcs which are issued from the other boundary points, we see that
the nodal set contains the three curves which appear in Figure 3.7, right
sub-figure in the bottom row. Any other connected component of the nodal
set would not meet the boundary of the square, would not contain any of
the fixed points, and would therefore be entirely contained within a small
white square. We could therefore find a nodal domain entirely contained in
a small white square, leading to a contradiction by domain monotonicity
of Dirichlet eigenvalues. The cases θ = θc and θc < θ < π

4 can be treated
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Figure 3.7. Case θ < θc

Figure 3.8. Case θ = θc
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Figure 3.9. Case θc < θ < π
4

Figure 3.10. Case θ = π
4
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similarly. For the case θ = π
4 , we first notice that the nodal set contains the

anti-diagonal of the square, that the only boundary critical zeros are the
two vertices, and that there are exactly two interior critical zeros located
on the anti-diagonal. We can then apply the above reasoning starting from
one of the two interior critical zeros, following a nodal arc orthogonal to
the anti-diagonal.

3.3. Stern’s result for the square revisited

The above methods allow us to give a more precise version of Stern’s
results for the square membrane.

Theorem 3.1. — For r ∈ N•, consider the family Φ1,2r(x, y, θ) of Dirich-
let eigenfunctions.

Φθ1,2r(x, y) := cos θ sin x sin(2ry) + sin θ sin(2rx) sin y .

Then we have:
(1) For θ = π

4 , the nodal set of Φθ consists of the anti-diagonal, and of
(r−1) disjoint simple closed curves containing all the fixed points,
each of them crossing the diagonal at exactly two points.

(2) For θ 6= π
4 , and θ close enough to π

4 , the nodal set of Φθ consists
of a regular simple connected curve containing all the fixed points,
whose extremities are located on the boundary of the square. This
curve divides the square into two connected components.

Sketch of the proof. — One first determines the nodal set of the eigen-
function Φπ

4 . For this purpose,
• one shows that the critical zeros are the points (qi, π − qi);
• the nodal set contains the anti-diagonal; starting from a critical
zero, orthogonally to the anti-diagonal, one can follow the nodal
set and show the existence of the (r−1) simple closed curves (here,
one uses a separation lemma and the local structure of the nodal
set), see Figure 2.1;

• one concludes by showing that the nodal set cannot contain any
other connected component, indeed such a component would con-
tain no fixed point, leading to a contradiction (energy argument).

If 0 < |θ − π
4 | � 1, the function Φθ has no interior critical zero, and

only two critical zeros (of order 2) on the boundary. One can then conclude
using a local analysis of the deformation of the nodal set in a neighborhood
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of the critical zeros, the separation lemma (or a continuity argument), and
the energy argument to exclude connected components in the interior of
the small squares of the checkerboard.

Remark. — The above argument actually holds in any J \ {π4 }, where
J is any open interval containing π

4 and no other critical value of the
parameter θ.

Figure 3.11. Deformation of the nodal sets for λ9 = λ1,4
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Figure 3.12. Deformation of the nodal sets for λ23 = λ1,6

4. Stern’s results for the sphere

The methods developed in Section 3 can be applied to the eigenfunctions
of the Laplace–Beltrami operator on the two sphere S2 .

We only illustrate the results by some figures, referring to [8] for the
details. In the figures, the nodal sets are viewed in the exponential map at
the north pole (0, 0, 1).

4.1. The sphere S2, two nodal domains

Consider the family

Φθ1(x, y, z) := cos θ=(x+ iy)` + sin θ Z`(x, y, z) ,
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where Z` is the zonal spherical harmonic of degree ` (with respect to the
z-axis).

The two functions =(x+ iy)` and Z` give rise to a kind of checkerboard
which can be colored according to the sign of the product (the checker pat-
terns actually consist of spherical triangles and quadrilaterals). As in the
case of the square, we have fixed points (points at which both functions
vanish simultaneously) which are regular points of the family of eigenfunc-
tions. It is easy to show that for θ positive, small enough, the function Φθ1
has no critical zero, so that its nodal set is a regular 1-submanifold of the
sphere. To distinguish between the possible local nodal patterns, we prove
a separation lemma, using the meridians which bisect the nodal domains
of the function =(x + iy)` as barriers. Using the same kind of arguments
as in the case of the square, one can determine the nodal set of Φθ1 for θ
positive small enough.
Figure 4.1 illustrates the difference between odd and even degree har-

monics, in the cases ` = 3 and ` = 4 . The figures display the nodal sets of
=(x+ iy)` (meridians) and Z`(x, y, z) (latitude circles), the checkerboards,
the fixed points, and the nodal set of Φθ1 for θ positive and small enough.

Figure 4.1. Sphere, eigenvalue `(`+ 1), ` = 3 and 4

The simplest interesting case is ` = 3 . The nodal set of =(x + iy)3 is
the union of six meridians. The nodal set of Z3(x, y, z) is the union of
three latitude circles. There is only one critical value θc of θ in the interval
]0, π3 [. When θ 6= θc in this interval, the function Φθ1 has no critical zero.
Figure 4.2 displays the nodal set Φθ1, for θ < θc (left), 0 < θ = θc (center),
and θc < θ < π

3 (right).
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Figure 4.2. Sphere, eigenvalue `(`+ 1), ` = 3

The Figures 4.3 and 4.4 display Maple numerical computations of the
nodal sets of Φθ1 for θ positive small enough, in the cases ` = 3, 4, 5 and 6 .

Figure 4.3. Sphere, eigenvalue `(`+ 1), ` = 3 and 4
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Figure 4.4. Sphere, eigenvalue `(`+ 1), ` = 5 and 6

4.2. The sphere S2, three nodal domains

According to H. Lewy [28, Introduction], any even spherical harmonic of
positive degree has at least three nodal domains.

For ` = 2r, α > 0 small enough, and µ > 0, consider the family of
spherical harmonics

hµ(ϑ, ϕ) = sin2r(ϑ) sin(2rϕ) + µ sinϑP ′2r(cosϑ) sin(ϕ− α) .

Figure 4.5 illustrates the construction of spherical harmonics of even
degree with exactly three nodal domains, in the case ` = 4 .
Figure 4.6 provides Maple numerical computations in the cases ` = 4

and 6 .
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Figure 4.5. Sphere, ` = 4, checkerboard and nodal set for 0 < µ,α� 1

4.3. Spherical harmonics with a prescribed number of nodal
domains

In her thesis, Stern states two other interesting results [4](tags [K3],
[K4], families of spherical harmonics (3) and (5) respectively). They can
be proved rigorously using the same arguments as in the preceding sub-
sections.

Theorem 4.1. — Let d be any given integer greater than or equal to
3. If

(1) d ≡ 3 (mod 4), or if
(2) d is even,

then, there exists an infinite sequence of eigenvalues of the 2-sphere, tend-
ing to infinity, and associated spherical harmonics with exactly d nodal
domains.

Remark. — One can also prove that any integer d is achieved at least
once as number of nodal domains by some spherical harmonics. It is however
not clear whether any d ≡ 1 (mod 4) can be achieved infinitely many times
for different eigenvalues.
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Figure 4.6. Sphere, eigenvalue `(`+ 1), ` = 4, 6

5. Spherical harmonics on S2, with many nodal domains

For the sphere, J. Leydold [30] has conjectured that the maximum num-
ber µm(`) of nodal domains of a spherical harmonic of degree ` satisfies,

(5.1) µm(`) 6


1
2(`+ 1)2, when ` is odd,

1
2`(`+ 2), when ` is even,

where the values in the right-hand side correspond to decomposed spherical
harmonics in spherical coordinates. He proved the conjecture for ` 6 6.
He also constructed spherical harmonics without critical zero and “many”
nodal domains (the maximum number which is conjectured, divided by
two), see also [18]. The above methods give a simple approach for the
construction of such examples. This is illustrated by Figure 5.1. The idea is
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Figure 5.1. Sphere, eigenvalue `(`+ 1), ` = 2m , m = 1, 2 and 3

to work in spherical coordinates, and to start from a decomposed spherical
harmonic whose nodal set consists of meridians and latitude circles (in
blue in the figure), so that it has as many nodal domains as possible.
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Figure 5.2. Sphere, eigenvalue `(`+ 1), ` = 4k + 3, k = 1

Such a spherical harmonic has many critical zeros as well (at the north
and south poles, and at the intersections between meridians and latitude
circles). A first perturbation (by a spherical harmonic whose nodal set
consists of meridians, in red in the figure) eliminates all the critical zeros
except the poles. Another perturbation (by a zonal harmonic) eliminates
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the critical zeros at the poles. The nodal sets of the perturbations appear
in black in Figure 5.1 (the first column displays the nodal sets after the first
perturbation, the second column displays the nodal sets after the second
perturbation). Figure 5.2 illustrates another behaviour: the figures in the
first line display the nodal sets after the first perturbation; the figures in the
second and third lines display the nodal sets after the second perturbation,
with a positive or negative perturbation parameter (the crossings open-up
differently). We refer to [8] for more details.

6. The 2D quantum harmonic oscillator

For the 2-dimensional harmonic oscillator, one can prove results similar
to the results of the previous sections. It turns out that some of these results
were given by J. Leydold in his unpublished Master degree thesis [29]. In
his memoir, Leydold proves the following optimal result. Let Hn be the n-
th eigenspace of the isotropic quantum harmonic oscillator, associated with
the eigenvalue 2(n + 1). It has dimension (n + 1). If n = 4k, k > 1, there
exists an eigenfunction in Hn with exactly three nodal domains, and this
lower bound is the best possible. If n 6= 4k, there exists an eigenfunction
in Hn with exactly two nodal domains.

In this context, one can describe the evolution of nodal sets for some
families of eigenfunctions, see [7]. One can for example consider the family
of eigenfunctions

Ψθ
0,n(x, y) := exp

(
−(x2 + y2)/2

)
(cos θHn(x) + sin θHn(y)) ,

where n is an integer and x, y ∈ R2. One can determine the values of θ for
which critical zeros occur and, as for the square and the sphere, describe
how the nodal sets change along the θ-path. Figure 6.1 displays a typical
situation (with n = 7).
Using decomposed eigenfunctions in polar coordinates, one can also con-

struct regular eigenfunctions of the harmonic oscillator with many nodal
domains, as shown in Figure 6.2, see [7].
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Figure 6.1. Harmonic oscillator, bifurcations for the family [0, 7]
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Figure 6.2. Harmonic oscillator, n = 4k, k = 2, 3

7. The rectangular flat 2-tori

In this section, we consider the rectangular 2-tori, T2
a,b := R2/ (aZ

⊕
bZ),

with the flat metric g0. A complete set of complex eigenfunctions is given
by the family {

exp
(

2iπ
(
m
x

a
+ n

y

b

)) ∣∣∣ m,n ∈ Z
}
,

with associated eigenvalues 4π2
(
m2

a2 + n2

b2

)
. In [19], the authors mention

that the family sin(2πmx+2πy) provides an example of an infinite sequence
of eigenfunctions of T2

1,1 with exactly two nodal domains. They refer to [23],
where this family is used to construct a metric g on T2, an infinite sequence
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of eigenvalues for the Laplacian ∆g, and associated eigenfunctions whose
number of critical points remains bounded.
In this section, for the sake of completeness, we prove the following ele-

mentary result.

Proposition 7.1. — If m,n are relatively prime integers, then the
eigenfunction

Sm,n(x, y) := sin
(

2π
(
m
x

a
+ n

y

b

))
has exactly two nodal domains, and its nodal set consists of two simple
disjoint closed curves on T2

a,b. If the integers m,n have greatest common
divisor d > 2, then the eigenfunction Sm,n has 2d nodal domains, and its
nodal set consists of 2d simple pairwise disjoint closed curves on T2

a,b.

Remarks.
(i) Note that the eigenfunctions sin

(
2π
(
mx
a + nyb

))
have no critical

zeros, so that their nodal sets are 1-dimensional submanifolds of
T2
a,b, i.e. a union of pairwise disjoint circles.

(ii) In [26], C. Léna proves that any non-constant eigenfunction of the
flat torus (T2

a,b, g0) has an even number of nodal domains when-
ever (a, b) = (1, 1) or (a, b) is such that

(
a
b

)2 is not rational. For
Courant-sharp eigenvalues on the 2-torus, see also [26, 25]. The
above proposition implies that for all even positive integer 2d, there
exist infinite sequences of eigenfunctions on the flat torus T2

a,b with
exactly 2d nodal domains. Note that Léna also proves that there
is a flat 2-torus, and an eigenfunction on this torus with exactly
three nodal domains. It is not clear whether there is an infinite
sequence of eigenfunctions with exactly three nodal domains.

Proof. — It turns out that, without loss of generality, one can assume
that a = b = 1 and that m,n are positive. Let π : R2 → T2 denote the
projection map. For m,n positive integers, and for α ∈ R, define the sets

Fm,n,α :=
⋃
k∈Z

{
(x, y) ∈ R2 | mx+ ny = α+ k

}
⊂ R2 , and

cm,n,α := π(Fm,n,α) ⊂ T2 .

Claim 7.2. — For any fixed m and n, the sets cm,n,α and cm,n,β are
disjoint unless α − β ≡ 1 (mod 1), in which case they coincide. Further-
more,the set cm,n,α is connected if and only if m,n are relatively prime.

VOLUME 32 (2014-2015)



34 PIERRE BÉRARD & BERNARD HELFFER

Proof of the claim. — The first assertion is clear. Note that cm,n,α is
connected if and only if the parallel lines in Fm,nα ‘meet modulo 1’, i.e.

∀ k, ` ∈ Z ,∀ x, y ∈ R2 such that mx+ ny = α+ k , ∃ x′, y′ ∈ R2

such that x′ ≡ x (mod 1) , x′ ≡ x (mod 1) and mx′ + ny′ = α+ ` .

Assume the above condition is met. Take k = 0, and ` = 1, and write
x′ = x+ p and y′ = y + q, for p, q ∈ Z. Then one finds that mp+ nq = 1,
so that m and n are relatively prime. Conversely, assume that m and n

are relatively prime, so that there exist p, q ∈ Z with mp + nq = 1. Write
mx+ny = α+k = α+`−(`−k) and use the fact that (`−k)(mp+nq) = `−k
to conclude. �

Claim 7.3. — If the integers m and n are relatively prime, then cm,nα
is a regular simple closed curve (a connected 1-dimensional submanifold)
of T2.

Proof of the claim. — Notice that the set Fm,n,α∩[0, 1]×[0, 1] is compact
(finite union of closed segments). Since π is a covering map, the claim
follows. �

Case gcd(m,n) = 1. — Notice that the nodal set of Sm,n is given by

S−1
m,n({0}) = cm,n,0 ∪ cm,n, 1

2
,

and that these two curves are disjoint.
When 0 < α < 1

2 , the curve cm,n,α in entirely contained in the set
{Sm,n > 0}. Similarly, when 1

2 < α < 1, the curve cm,n,α in entirely
contained in the set {Sm,n < 0}. According to Claim 7.2, this implies that
the function Sm,n has exactly two nodal domains. This proves the first
assertion in Proposition 7.1.

Case gcd(m,n) = d > 2 . — Write m = dm′ and n = dn′. The nodal
set of Sm,n is given by the image under π of the set Fm,n,0 ∩ Fm,n, 1

2
. For

β ∈ {0, 1
2} and k ∈ Z, the condition

mx+ ny = β + k

can be written as
m′x+ n′y = β + j

d
+ `

for 0 6 j 6 d−1 and ` ∈ Z . Using Claims 7.2 and 7.3, we conclude that the
nodal set of Sm,n consists of 2d pairwise disjoint connected 1-submanifolds
in T2, cm′,n′, jd

and cm′,n′, 1
2 + j

d
, for 0 6 j 6 d − 1. Sweeping the torus

by curves cm′,n′,α as above, we find that the function Sm,n has 2d nodal
domains. This proves the second assertion of Proposition 7.1. �
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Remark. — As a matter of fact, one can prove a much more general
result, see [20, Section 7], in particular Lemma 7.4.

Figure 7.1 shows the nodal sets of the eigenfunction (2π(mx+ ny)) re-
spectively for the pair (3, 2) (left picture) and (6, 4), viewed in the fun-
damental domain [0, 1]× [0, 1] ⊂ R2 of the torus T2. Figure 7.2 shows the
nodal set of the eigenfunction (2π(mx+ ny)) for the pair (2, 1), represented
in R3 through the usual map T2 → R3 given by

(x, y) 7→
((

2 + cos(2πy)
)

cos(2πx),
(
2 + cos(2πy)

)
sin(2πx), sin(2πy)

)
.

Figure 7.1. Nodal domains of S3,2 and S6,4 , viewed in the fundamental
domain of the torus T2

Figure 7.2. Nodal set of S2,1 , viewed in R3
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