Institut Fourier - Université de Grenoble I

Actes du séminaire de Théorie spectrale et géométrie

Vincent Borrelli, Saïd Jabrane, Francis LaZarus \& Boris Thibert
The Nash-Kuiper process for curves
Volume 30 (2011-2012), p. 1-19.
<http://tsg.cedram.org/item?id=TSG_2011-2012
\qquad 30 _1_0>

[^0]L'accès aux articles du Séminaire de théorie spectrale et géométrie (http://tsg.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://tsg.cedram.org/legal/).

cedram

THE NASH-KUIPER PROCESS FOR CURVES

Vincent Borrelli, Saïd Jabrane, Francis Lazarus \& Boris Thibert

Abstract

A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.

Résumé. - Un plongement strictement court est un plongement d'une variété riemannienne dans un espace Euclidien qui réduit strictement les distances. À partir d'un tel plongement, le procédé de Nash-Kuiper construit une suite d'applications convergeant vers un plongement isométrique. Dans cet article, nous donnons une description du procédé de Nash-Kuiper dans le cas des courbes. Nous établissons une formule explicite pour l'application normale limite et nous effectuons sa décomposition en série de Fourier. Nous nous intéressons ensuite à la régularité holdérienne de l'application limite.

An isometric immersion of a Riemannian manifold into an Euclidean space is a $C^{1} \operatorname{map} f:\left(M^{m}, g\right) \longrightarrow \mathbb{E}^{q}=\left(\mathbb{R}^{q},\langle.,\rangle.\right)$ such that $f^{*}\langle.,\rangle=$.$g .$ Such a map preserves the length of curves that is:

$$
\operatorname{Length}(f \circ \gamma)=\text { Length }(\gamma)
$$

for every rectifiable curve $\gamma:[a, b] \longrightarrow M^{m}$. In a local coordinate system $x=\left(x_{1}, \ldots, x_{m}\right)$ the isometric condition gives rise to a system of $s_{m}=$ $\frac{m(m+1)}{2}$ equations

$$
1 \leqslant i \leqslant j \leqslant n, \quad\left\langle\frac{\partial f}{\partial x_{i}}(x), \frac{\partial f}{\partial x_{j}}(x)\right\rangle=g_{x}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) .
$$

Thus generically, isometric maps are expected to exist -at least locallyif the target space has dimension greater than s_{m}. In 1926, Janet [11] proved that any analytic Riemannian surface $\left(M^{2}, g\right)$ admit local isometric analytic immersions in $\mathbb{E}^{s_{2}}$. Shortly after, this result was generalized by

Cartan [5] for analytic Riemannian manifold of dimension m : local isometric analytic maps do exist if the dimension of the target Euclidean space is at least s_{m}. Thirty years after the result of Janet, J. Nash showed in an outstanding article [15] that every C^{k} Riemannian manifold ($3 \leqslant k \leqslant$ $+\infty)$ can be mapped C^{k} isometrically into an Euclidean space \mathbb{E}^{q} with $q=3 s_{m}+4 m$ if M^{m} is compact and $q=(m+1)\left(3 s_{m}+4 m\right)$ if not. This result was then improved by Gromov [9] and Günther [10] who proved that $q=\max \left\{s_{m}+2 m, s_{m}+m+5\right\}$ is enough for the compact case.
Another amazing result of J . Nash is the discovery that, in a C^{1} setting, the barrier formed by the Janet dimension can be completely destroyed: in the compact case, if a Riemannian manifold admits an immersion into some $\mathbb{E}^{q}, q \geqslant m+1$, then it admits a C^{1} isometric immersion into the same Euclidean space (Nash [14] proved the case $q \geqslant m+2$ and Kuiper [13] the case $q=m+1$). As a consequence every compact Riemannian surface admits a C^{1} isometric immersion in \mathbb{E}^{3} but in general, for obvious curvature reasons, the immersion can not be enhanced to be C^{2}.
Beyond the breaking of the dimensional barrier, there is another phenomenon which is utterly baffling in the Nash-Kuiper result: not only C^{1} isometric maps do exist but they are plentiful! In fact, there is a C^{1} isometric map near every strictly short map. A map $f_{0}:\left(M^{m}, g\right) \longrightarrow \mathbb{E}^{q}$ is called strictly short if it strictly shortens distances, that is, if the difference $g-f_{0}^{*}\langle.,$.$\rangle is$ a metric. The Nash-Kuiper approach reveals that if f_{0} is a strictly short embedding, then for every $\epsilon>0$ there exists a C^{1} isometric embedding $f:\left(M^{m}, g\right) \longrightarrow \mathbb{E}^{q}$ such that

$$
\left\|f-f_{0}\right\|_{C^{0}} \leqslant \epsilon
$$

where $\|.\|_{C^{0}}$ denotes the supremum norm over M^{m} (this manifold is assumed to be compact for the simplicity of the presentation). For instance, for every $\epsilon>0$, there is a C^{1} isometric embedding of the unit sphere inside a ball of radius ϵ.
Recently [4], we have converted the Nash-Kuiper proof into an algorithm, using the Gromov convex integration theory ([9], [16], [7]). We have implemented this algorithm and produced numerical pictures of a C^{1} isometric embedding f_{∞} of the square flat torus $\mathbb{E}^{2} / \mathbb{Z}^{2}$ inside \mathbb{E}^{3} that is C^{0} close to a strictly short embedding f_{0} of $\mathbb{E}^{2} / \mathbb{Z}^{2}$ as a torus of revolution. Our algorithm generates a sequence of maps

$$
f_{0}, \quad f_{1,1}, f_{1,2}, f_{1,3}, \quad f_{2,1}, f_{2,2}, f_{2,3}, \quad \ldots
$$

defined recursively that C^{1} converges toward f_{∞}. The geometry of the limit map consists merely of the behavior of its tangent planes or, equivalently,
of the properties of its Gauss map $\mathbf{n}_{\infty}: \mathbb{E}^{2} / \mathbb{Z}^{2} \longrightarrow \mathbb{S}^{2} \subset \mathbb{E}^{3}$. From the algorithm, one can extract a formal expression of that Gauss map as an infinite product of corrugation matrices applied to the initial Gauss map of f_{0}. One major obstacle to the understanding of \mathbf{n}_{∞} lies in the inherent complexity of the coefficients of these corrugation matrices. The main theorem of [4] (the Corrugation Theorem) describes their asymptotic behaviour.
In this article, we propose to study the normal map of isometric maps resulting from a convex integration process in the simpler situation of isometric immersions of the circle \mathbb{E} / \mathbb{Z} into \mathbb{E}^{2}. In this case, the isometric problem in itself is totally trivial but the way the Nash-Kuiper process solves it, produces a sequence of curves

$$
f_{0}, f_{1}, f_{2}, \ldots
$$

whose limit f_{∞} has a non trivial geometry. Of course, in that one dimensional setting, some of the difficulties inherent to the dimension two vanish. In particular, if the initial curve $f_{0}: \mathbb{E} / \mathbb{Z} \longrightarrow \mathbb{E}^{2} \simeq \mathbb{C}$ is parametrized with constant speed and is radially symmetric (see the definition below) all computations can be completely carried out and lead to an explicit formula for the normal map \mathbf{n}_{∞} of the limit curve f_{∞}.

Theorem 1. - Let \mathbf{n}_{k} be the normal map of f_{k}. We have

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{k}(x)=e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)} \mathbf{n}_{k-1}(x)
$$

where $\left.\alpha_{k} \in\right] 0, \frac{\pi}{2}[$ is the amplitude of the loop used in the convex integration to build f_{k-1} from f_{k} and $N_{k} \in 2 \mathbb{N}^{*}$ is the number of corrugations of f_{k} (precise definitions below). In particular, the normal map \mathbf{n}_{∞} of f_{∞} has the following expression

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{\infty}(x)=\left(\prod_{k=1}^{+\infty} e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)}\right) \mathbf{n}_{0}(x)
$$

The above expression of the normal map \mathbf{n}_{∞} is reminiscent of a Riesz product, that is a product of the form

$$
h(x)=\prod_{k=1}^{+\infty}\left(1+\alpha_{k} \cos \left(2 \pi N_{k} x\right)\right)
$$

It is a fact that an exponential growth of N_{k}, known as Hadamard's lacunary condition, results in a fractional Hausdorff dimension of the Riesz measure ${ }^{(1)} \mu:=h(x) \mathrm{d} x[12]$.

[^1]The normal map \mathbf{n}_{∞} can be thought of as a 1-periodic map from \mathbb{R} to \mathbb{C}. In $\S 3$ we perform its Fourier series expansion. Its spectrum, whose structure is very similar to the spectrum of a Riesz product, is obtained as a limit of an iterative process starting with the spectrum of the initial map \mathbf{n}_{0}. Precisely, let

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{k}(x)=\sum_{p \in \mathbb{Z}} a_{p}(k) e^{2 i \pi p x}
$$

denotes the Fourier series expansion of the normal map \mathbf{n}_{k}. We derive from the above theorem the following inductive formula ($c f$. Lemma 3):

Fourier series expansion of \mathbf{n}_{k}.- We have

$$
\forall p \in \mathbb{Z}, \quad a_{p}(k)=\sum_{n \in \mathbb{Z}} u_{n}(k) a_{p-n N_{k}}(k-1)
$$

where $u_{n}(k)=i^{n} J_{n}\left(\alpha_{k}\right)$.
In the above formula, J_{n} denotes the Bessel function of order n (see [1] or [17]):

$$
\alpha \longmapsto J_{n}(\alpha)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n u-\alpha \sin u) \mathrm{d} u
$$

The Fourier expansion of n_{k} gives the key to understand the construction of the spectrum $\left(a_{p}(k)\right)_{p \in \mathbb{Z}}$ from the spectrum $\left(a_{p}(k-1)\right)_{p \in \mathbb{Z}}$. The k-th spectrum is obtained by collecting an infinite number of shifts of the previous spectrum. The n-th shift is of amplitude $n N_{k}$ and weighted by $u_{n}(k)=i^{n} J_{n}\left(\alpha_{k}\right)$. Since

$$
\left|J_{n}\left(\alpha_{k}\right)\right| \downarrow 0
$$

the weight is decreasing with n (see the figure of $\S 3$).
In the Nash-Kuiper process there is a infinite number of degrees of freedom in the construction of the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$. In particular, given any sequence of positive numbers $\left(\delta_{k}\right)_{k \in \mathbb{N}}$ increasing toward 1 , the process produces a sequence such that

$$
\left\|f_{k}^{\prime}-f_{k-1}^{\prime}\right\|_{C^{0}} \leqslant C^{t e} \sqrt{\delta_{k}-\delta_{k-1}}
$$

Thus, if

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty
$$

the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ is C^{1} converging toward a C^{1} limit f_{∞}. Moreover if

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}} N_{k}<+\infty
$$

then f_{∞} is C^{2} (see Proposition 5). Regarding the intermediary regularities, we prove the following:

Theorem 2. - Assume that

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty \quad \text { and } \quad \sum \sqrt{\delta_{k}-\delta_{k-1}} N_{k}=+\infty
$$

Let $0<\eta<1$ and $S_{k}:=\sum_{l=1}^{k} \sqrt{\delta_{l}-\delta_{l-1}} N_{l}$. If

$$
\sum\left(\delta_{k}-\delta_{k-1}\right)^{\frac{1-\eta}{2}} S_{k}^{\eta}<+\infty
$$

then f_{∞} is $C^{1, \eta}$.
In the simplified one dimensional approach followed in this article, the sequence $\left(N_{k}\right)_{k \in \mathbb{N}}$ can be chosen freely. This is no longer possible in the general case: some constraints appear that force the N_{k} s to be increasing. The control of the growth of the $N_{k} \mathrm{~s}$ is then the key to understand the $C^{1, \eta}$ regularity of the limit map. In the original proof of Nash, the chosen sequence for δ_{k} was $1-2^{-(k+1)}$. For such a choice, the numerical result we have obtained for the square flat torus seems to suggest that the sequence $\left(N_{k}\right)_{k \in \mathbb{N}}$ is exponentially growing (see also the theoretical arguments of [6]). This gives the motivation for the following corollary.

Corollary 3. - Let $0<\gamma<1$ and $\delta_{k}:=1-e^{-\gamma(k+1)}$. If there exists $\beta>0$ such that

$$
\forall k \in \mathbb{N}, \quad N_{k} \leqslant N_{0} e^{\beta k}
$$

then f_{∞} is $C^{1, \eta}$ for any $\eta>0$ such that

$$
\eta<\frac{\gamma}{2 \beta}
$$

The question of the $C^{1, \eta}$ regularity of isometric maps resulting from the Nash-Kuiper process is addressed in [2], [3] and [6]. The optimal $C^{1, \eta}$ regularity of an isometric immersion of a Riemannian surface in \mathbb{E}^{3} is still an open question.

1. The convex integration process for curves

The convex integration process.- Let $f_{0}:[0,1] \rightarrow \mathbb{R}^{2}$ be a C^{∞} map and let

$$
\begin{aligned}
& h:[0,1] \longrightarrow \\
& C^{\infty}(\mathbb{R} / \mathbb{Z}, \mathbb{C}) \\
& x \longmapsto
\end{aligned} h_{(x, .)}
$$

be a C^{∞} family of loops such that

$$
\forall x \in[0,1], \quad \int_{0}^{1} h(x, s) \mathrm{d} s=f_{0}^{\prime}(x)
$$

Let $N \in \mathbb{N}^{*}$ the any natural number. We define a new $C^{\infty} \operatorname{map} f:[0,1] \longrightarrow$ \mathbb{R}^{2} by the formula

$$
\forall x \in[0,1], \quad f(x):=f_{0}(0)+\int_{0}^{x} h(s,\{N s\}) \mathrm{d} s
$$

where $\{N s\}$ denotes the fractional part of $N s$. We call such a formula giving a new map f from the data of f_{0} and h a convex integration. We sometimes write

$$
f:=I C\left(f_{0}, h, N\right)
$$

The new map f has a derivative whose image obviously lies inside the image of h since

$$
\forall x \in[0,1], \quad f^{\prime}(x)=h(x,\{N x\})
$$

Moreover, f remains C^{0} close to f_{0}. Indeed, it can be shown that

$$
\left\|f-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)
$$

(see [4] for instance).
Curves with given speeds.- Let $f_{0}:[0,1] \longrightarrow \mathbb{E}^{2} \simeq \mathbb{C}$ be a regular curve $\left(\forall x \in[0,1], \quad f_{0}^{\prime}(x) \neq 0\right)$ and let $r:[0,1] \longrightarrow \mathbb{R}_{+}^{*}$ be any C^{∞} map such that

$$
\forall x \in[0,1], \quad r(x)>\left\|f_{0}^{\prime}(x)\right\|
$$

Let h defined by

$$
h(x, s):=r(x)\left(\cos (\alpha(x) \cos 2 \pi s) \mathbf{t}_{0}(x)+\sin (\alpha(x) \cos 2 \pi s) \mathbf{n}_{0}(x)\right)
$$

with $\mathbf{t}_{0}:=\frac{f_{0}^{\prime}}{\left\|f_{0}^{\prime}\right\|}, \mathbf{n}_{0}:=i \mathbf{t}_{0}$ and $\left.\alpha(x) \in\right] 0, \kappa[$ is such that

$$
r(x) J_{0}(\alpha(x))=\left\|f_{0}^{\prime}(x)\right\|
$$

where J_{0} denotes the Bessel function of the first kind and of order 0 and $\kappa \simeq$ 2.4 denotes the first zero of J_{0}. Since the Bessel function J_{0} is decreasing on the interval $[0, \kappa]$ and $J_{0}(0)=1$, there is a unique $\alpha(x)$ that solves the above implicite equation. Note that

$$
\int_{0}^{1} h(x, s) \mathrm{d} s=r(x) J_{0}(\alpha(x)) \mathbf{t}_{0}(x)
$$

therefore the above implicit condition on $\alpha(x)$ implies that the average of $h(x,$.$) is f_{0}^{\prime}(x)$. The map f obtained by convex integration from f_{0} and h has speed $\left\|f^{\prime}\right\|$ equal to the given function r and is arbitrarily C^{0} close to f_{0}.

Closed curves with given speeds.- If f_{0} is defined over \mathbb{E} / \mathbb{Z} rather than $[0,1]$ the curve f obtained from f_{0} and h by convex integration is
not closed in general. This defect can be easily corrected by the following modification of the convex integration formula:

$$
\forall x \in[0,1], \quad f(x):=f_{0}(0)+\int_{0}^{x} h(s,\{N s\}) \mathrm{d} s-x \int_{0}^{1} h(s,\{N s\}) \mathrm{d} s
$$

For short we write $f:=\widetilde{I C}\left(f_{0}, h, N\right)$. The C^{0} closeness implies that

$$
\left|\int_{0}^{1} h(x, s) \mathrm{d} s\right|=O\left(\frac{1}{N}\right)
$$

so that the correction can be made arbitrarily small. We still have $\left\|f-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)$ but now $\left\|f^{\prime}\right\|$ is only approximately equal to $r(x)$, precisely

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad\left\|f^{\prime}(x)\right\|=\left\|h(x,\{N x\})-\int_{0}^{1} h(s,\{N s\}) \mathrm{d} s\right\|
$$

and therefore, for all $x \in \mathbb{E} / \mathbb{Z}$, we have $\left|\left\|f^{\prime}(x)\right\|-r(x)\right|=O\left(\frac{1}{N}\right)$.
Nash and Kuiper process.- In the spirit of the Nash and Kuiper proof, the way to obtain a map $f: \mathbb{E} / \mathbb{Z} \longrightarrow \mathbb{E}^{2} \simeq \mathbb{C}$ with speed the given function r is to produce a sequence of closed curves $\left(f_{k}\right)_{k \in \mathbb{N}^{*}}$ by iteratively applying the modifying convex integration formula so that to reduce step by step the isometric default $r-\left\|f_{0}^{\prime}\right\|$.
Let $\left(\delta_{k}\right)_{k \in \mathbb{N}^{*}}$ be a sequence of increasing positive number converging toward 1, we set

$$
\forall k \in \mathbb{N}^{*}, \forall x \in \mathbb{E} / \mathbb{Z}, \quad r_{k}^{2}(x):=\left\|f_{0}^{\prime}(x)\right\|^{2}+\delta_{k}\left(r^{2}(x)-\left\|f_{0}^{\prime}(x)\right\|^{2}\right)
$$

Note that for every $x \in \mathbb{E} / \mathbb{Z}$, the sequence $r_{k}(x)$ is increasing toward $r(x)$. We define f_{k} to be $\widetilde{I C}\left(f_{k-1}, h_{k}, N_{k}\right)$ with

$$
h_{k}(x, s):=r_{k}(x) e^{i \alpha_{k}(x) \cos 2 \pi s} \mathbf{t}_{k-1}(x)
$$

where $\alpha_{k}(x)=J_{0}^{-1}\left(\frac{\left\|f_{k-1}^{\prime}(x)\right\|}{r_{k}(x)}\right)$ and \mathbf{t}_{k-1} is the normalized derivative of f_{k-1}. Each f_{k} has a speed which is approximately r_{k} :

$$
\left|\left\|f_{k}^{\prime}(x)\right\|-r_{k}(x)\right|=O\left(\frac{1}{N_{k}}\right)
$$

Since the sequence $r_{k}(x)$ is strictly increasing for every $x \in \mathbb{E} / \mathbb{Z}$, the number N_{k} can be chosen large enough such that

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad r_{k+1}(x)>\left\|f_{k}(x)\right\|
$$

This is crucial to define f_{k+1} as $\widetilde{I C}\left(f_{k}, h_{k+1}, N_{k+1}\right)$. If the sequence $\left(\delta_{k}\right)_{k \in \mathbb{N}^{*}}$ is chosen so that

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty
$$

and if $\left(N_{k}\right)_{k \in \mathbb{N}^{*}}$ is rapidly diverging then the sequence $f_{k}:=\widetilde{I C}\left(f_{k-1}, h_{k}, N_{k}\right)$ is C^{1} converging toward a C^{1} limit f_{∞} with speed $\left\|f_{\infty}^{\prime}\right\|=r$. This is proven further in the text in the particular case of closed curves with constant speed. The general case, slightly more technical in nature, is left to the reader.

Closed curves with constant speed.- From now on, in order to get the most pleasant computations we consider the simplified case where $r \equiv 1$ and $f_{0}: \mathbb{E} / \mathbb{Z} \rightarrow \mathbb{E}^{2}$ is a C^{∞} map such that:

- (Cond 1) it is of constant speed $r_{0}:=\left\|f_{0}^{\prime}\right\|<1$
- (Cond 2$)$ it is radially symmetric, that is: $f_{0}^{\prime}\left(x+\frac{1}{2}\right)=-f_{0}^{\prime}(x)$.

In all what follows, we will also assume that the Nash-Kuiper sequence of C^{∞} maps derived from f_{0} :

$$
f_{k}:=\widetilde{I C}\left(f_{k-1}, h_{k}, N_{k}\right), \quad k \in \mathbb{N}^{*}
$$

is such that $h_{k}(x, s)=r_{k} e^{i \alpha_{k}(x) \cos 2 \pi s} \mathbf{t}_{k-1}(x)$ and $N_{k} \in 2 \mathbb{N}^{*}$. Note that (Cond 1) implies that every function $r_{k}=\sqrt{r_{0}^{2}+\delta_{k}\left(1-r_{0}^{2}\right)}$ is constant.

Proposition 1. - For every $k \in \mathbb{N}^{*}, f_{k}$ is of constant speed r_{k} and radially symmetric. In particular,

$$
f_{k}=I C\left(f_{k-1}, h_{k}, N_{k}\right)
$$

The functions α_{k} are also constant and equal to $J_{0}^{-1}\left(\frac{r_{k-1}}{r_{k}}\right)$.
Proof. - By induction. Assume that f_{k-1} satisfies (Cond 1) and (Cond 2). In particular f_{k-1} is of constant speed r_{k-1} and thus the function $\alpha_{k}=J_{0}^{-1}\left(\frac{r_{k-1}}{r_{k}}\right)$ is constant. Since $N_{k} \in 2 \mathbb{N}^{*}$, we have

$$
h_{k}\left(x+\frac{1}{2},\left\{N_{k}\left(x+\frac{1}{2}\right)\right\}\right)=-h_{k}\left(x,\left\{N_{k} x\right\}\right)
$$

and consequently

$$
\int_{0}^{1} h_{k}(s,\{N s\}) \mathrm{d} s=0
$$

It ensues that

$$
I C\left(f_{k-1}, h_{k}, N_{k}\right)=\widetilde{I C}\left(f_{k-1}, h_{k}, N_{k}\right)
$$

and therefore f_{k} is of constant speed $\left\|f_{k}^{\prime}(x)\right\|=\left\|h_{k}(x,\{N x\})\right\|=r_{k}$. It is also radially symmetric since $f_{k}(x)=h\left(x,\left\{N_{k} x\right\}\right)$.

Figure 1.1. The convex integration process applied to circle (left f_{0}, center f_{1}, right f_{∞})

2. C^{1} convergence

It turns out that the sequence $\left(\delta_{k}\right)_{k \in \mathbb{N}}$ mainly determines the sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$.

Lemma 1 (Amplitude Lemma). - We have

$$
\alpha_{k} \sim \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}}
$$

where \sim denotes the equivalence of sequences. We also have

$$
\alpha_{k} \leqslant \frac{1}{r_{0}} \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}}
$$

Proof. - By definition $\alpha_{k}=J_{0}^{-1}\left(\frac{r_{k-1}}{r_{k}}\right)$. Recall that the Taylor expansion of $J_{0}(\alpha)$ up to order 2 is

$$
w=1-\frac{\alpha^{2}}{4}+o\left(\alpha^{2}\right)
$$

Let $y=1-w$ and $X=\alpha^{2}$, we have $y=\frac{X}{4}+o(X)$ thus $X=4 y+o(y)$ and so $X \sim 4 y$. We finally get

$$
\alpha \sim 2 \sqrt{1-w} \quad \text { and } \quad \alpha_{k} \sim 2 \sqrt{1-\frac{r_{k-1}}{r_{k}}} .
$$

Since $r_{0}^{2}+\left(1-r_{0}^{2}\right)=1$, we have

$$
r_{k}^{2}=r_{0}^{2}+\delta_{k}\left(1-r_{0}^{2}\right)=1+\left(\delta_{k}-1\right)\left(1-r_{0}^{2}\right)
$$

so

$$
r_{k}^{2}-r_{k-1}^{2}=\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right)
$$

and

$$
1-\frac{r_{k-1}^{2}}{r_{k}^{2}}=\frac{\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right)}{1-\left(1-\delta_{k}\right)\left(1-r_{0}^{2}\right)} \sim\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right)
$$

In an other hand

$$
1-\frac{r_{k-1}^{2}}{r_{k}^{2}}=\left(1-\frac{r_{k-1}}{r_{k}}\right)\left(1+\frac{r_{k-1}}{r_{k}}\right) \sim 2\left(1-\frac{r_{k-1}}{r_{k}}\right) .
$$

Thus

$$
\left(1-\frac{r_{k-1}}{r_{k}}\right) \sim \frac{1}{2}\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right) .
$$

and

$$
\alpha_{k} \sim 2 \sqrt{1-\frac{r_{k-1}}{r_{k}}} \sim \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}} .
$$

The Taylor expansion of J_{0} up to order 4 shows that

$$
w \leqslant 1-\frac{\alpha^{2}}{4}+\frac{\alpha^{4}}{64}=\left(1-\frac{\alpha^{2}}{8}\right)^{2}
$$

(because it is alternating) and hence

$$
\alpha_{k}^{2} \leqslant 8\left(1-\sqrt{\frac{r_{k-1}}{r_{k}}}\right) .
$$

Thus

$$
\begin{aligned}
\alpha_{k}^{2} & \leqslant \frac{8}{\sqrt{r_{k}}}\left(\sqrt{r_{k}}-\sqrt{r_{k-1}}\right) \\
& \leqslant \frac{8}{\sqrt{r_{k}}\left(\sqrt{r_{k}}+\sqrt{r_{k-1}}\right)}\left(r_{k}-r_{k-1}\right) \\
& \leqslant \frac{8}{\sqrt{r_{k}}\left(\sqrt{r_{k}}+\sqrt{r_{k-1}}\right)\left(r_{k}+r_{k-1}\right)}\left(r_{k}^{2}-r_{k-1}^{2}\right) \\
& \leqslant \frac{2}{r_{0}^{2}}\left(r_{k}^{2}-r_{k-1}^{2}\right)
\end{aligned}
$$

since $r_{0}<r_{k-1}<r_{k}$. We deduce

$$
\alpha_{k} \leqslant \frac{1}{r_{0}} \sqrt{2\left(r_{k}^{2}-r_{k-1}^{2}\right)}=\frac{1}{r_{0}} \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}}
$$

Let $\left(A_{k}\right)_{k \in N^{*}}$ be the sequence of functions defined by

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad A_{k}(x):=\sum_{l=1}^{k} \alpha_{l} \cos \left(2 \pi N_{l} x\right)
$$

where as above $N_{l} \in 2 \mathbb{N}^{*}$.
Lemma 2. - For every $x \in \mathbb{E} / \mathbb{Z}$, we have:

$$
f_{k}^{\prime}(x)=e^{i A_{k}(x)} \frac{r_{k}}{r_{0}} f_{0}^{\prime}(x)
$$

Proof. - Let $\mathbf{n}_{k-1}:=i \mathbf{t}_{k-1}$. From

$$
\begin{aligned}
f_{k}^{\prime}(x) & =r_{k}\left(\cos \left(\alpha_{k} \cos \left(2 \pi N_{k} x\right)\right) \mathbf{t}_{k-1}(x)+\sin \left(\alpha_{k} \cos \left(2 \pi N_{k} x\right)\right) \mathbf{n}_{k-1}(x)\right) \\
& =r_{k} e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)} \frac{1}{r_{k-1}} f_{k-1}^{\prime}(x)
\end{aligned}
$$

we deduce by induction : $f_{k}^{\prime}(x)=e^{i A_{k}(x)} \frac{r_{k}}{r_{0}} f_{0}^{\prime}(x)$.
Proposition 2. - If $\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty$ then
i) the sequence $\left(A_{k}\right)_{k \in \mathbb{N}}$ is normally converging and $A_{\infty}:=\lim _{k \rightarrow+\infty} A_{k}$ is continuous.
ii) the sequence $\left(f_{k}\right)_{k \in \mathbb{N}^{*}}$ is C^{1} converging toward $f_{\infty}:=\lim _{k \rightarrow+\infty} f_{k}$ and

$$
\forall x \in \mathbb{R} / \mathbb{Z}, \quad f_{\infty}^{\prime}(x)=e^{i A_{\infty}(x)} \frac{1}{r_{0}} f_{0}^{\prime}(x)
$$

Proof. - From the Amplitude Lemma we deduce that

$$
\sum \alpha_{k}<+\infty
$$

thus the sequence $\left(A_{k}\right)_{k \in \mathbb{N}}$ is normally converging and

$$
A_{\infty}:=\lim _{k \rightarrow+\infty} A_{k}
$$

is continuous. Moreover, from the relation

$$
f_{k}^{\prime}(x)=e^{i A_{k}(x)} \frac{r_{k}}{r_{0}} f_{0}^{\prime}(x)
$$

we also deduce that $\left(f_{k}^{\prime}\right)_{k \in \mathbb{N}}$ is normally converging toward

$$
e^{i A_{\infty}(x)} \frac{1}{r_{0}} f_{0}^{\prime}(x)
$$

Since $\left(f_{k}(0)\right)_{k \in \mathbb{N}}$ obviously converges, we obtain that the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ is C^{1} converging toward $f_{\infty}:=\lim _{k \rightarrow+\infty} f_{k}$.

Corollary 1. - Let $\gamma>0$ and $\delta_{k}:=1-e^{-\gamma(k+1)}$. Then sequence $\left(\delta_{k}\right)_{k \in \mathbb{N}^{*}}$ is increasing toward 1 and $\sqrt{\delta_{k}-\delta_{k-1}} \sim \sqrt{\delta_{0}} e^{-\frac{\gamma}{2} k}$. In particular, for any choice of the $N_{k} s$ in $2 \mathbb{N}^{*}$, the limit map f_{∞} is C^{1}.

3. The normal map

From now on, we assume

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty
$$

so that the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ is C^{1} converging toward its limit f_{∞}. The following theorem is a straightforward consequence of the results of the preceding section:

Theorem 1. - Let \mathbf{n}_{k} be the normal map of f_{k}. We have

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{k}(x)=e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)} \mathbf{n}_{k-1}(x)
$$

In particular, the normal map \mathbf{n}_{∞} of f_{∞} has the following expression

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{\infty}(x)=e^{i A_{\infty}(x)} \mathbf{n}_{0}(x)
$$

We deduce from this theorem the following result about Fourier expansion of \mathbf{n}_{k}.

Lemma 3 (Fourier expansion of \mathbf{n}_{k}). - For all $k \in \mathbb{N}$ we denote by

$$
\forall x \in \mathbb{E} / \mathbb{Z}, \quad \mathbf{n}_{k}(x)=\sum_{p \in \mathbb{Z}} a_{p}(k) e^{2 i \pi p x}
$$

the Fourier expansion of \mathbf{n}_{k}. We have

$$
\forall p \in \mathbb{Z}, \quad a_{p}(k)=\sum_{n \in \mathbb{Z}} u_{n}(k) a_{p-n N_{k}}(k-1)
$$

where $u_{n}(k)=i^{n} J_{n}\left(\alpha_{k}\right)\left(J_{n}\right.$ denotes the Bessel function of order $\left.n\right)$.
Proof. - From the Jacobi-Anger identity

$$
e^{i z \cos \theta}=\sum_{n=-\infty}^{+\infty} i^{n} J_{n}(z) e^{i n \theta}
$$

we deduce

$$
e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)}=\sum_{n=-\infty}^{+\infty} i^{n} J_{n}\left(\alpha_{k}\right) e^{2 i \pi n N_{k} x}=\sum_{n=-\infty}^{+\infty} u_{n}(k) e^{2 i \pi n N_{k} x} .
$$

Since the Fourier coefficients of a product of two fonctions are given by the discrete convolution product of their coefficients, the product

$$
\mathbf{n}_{k}(x)=e^{i \alpha_{k} \cos \left(2 \pi N_{k} x\right)} \mathbf{n}_{k-1}(x)
$$

can be written

$$
\begin{aligned}
\mathbf{n}_{k}(x) & =\left(\sum_{n=-\infty}^{+\infty} u_{n}(k) e^{2 i \pi n N_{k} x}\right)\left(\sum_{p=-\infty}^{+\infty} a_{p}(k-1) e^{2 i \pi p x}\right) \\
& =\sum_{p=-\infty}^{+\infty}\left(\sum_{n=-\infty}^{+\infty} u_{n}(k) a_{p-n N_{k}}(k-1)\right) e^{2 i \pi p x} .
\end{aligned}
$$

Therefore

$$
a_{p}(k)=\sum_{n=-\infty}^{+\infty} u_{n}(k) a_{p-n N_{k}}(k-1)
$$

Figure 3.1. A schematic picture of the various spectra $\left(a_{p}(k)\right)_{p \in \mathbb{Z}}$ with $N_{k}=b^{k}$.

Remark. - The analogy with Riesz products suggests that the Hausdorff dimension of the graph of the normal map \mathbf{n}_{∞} could be fractional. Note that the relevant part of this map is the 1-periodic function

$$
\mathbb{R} \ni x \longmapsto A_{\infty}(x)=\sum_{k=1}^{+\infty} \alpha_{k} \cos \left(2 \pi N_{k} x\right) \in \mathbb{R}
$$

In the simple case where $\alpha_{k}=a^{k}$ and $N_{k}=b^{k}$ with $0<a<1<b$, the $\operatorname{map} A_{\infty}$ is a Weiestrass function ${ }^{(2)}$. If $a b>1$, it is known that its graph has a fractional Hausdorff dimension. The exact value of this dimension is still an open question. It is believed to be equal to $2+\frac{\ln a}{\ln b}$ (see [8]).

4. $C^{1, \eta}$ regularity

Proposition 3. - We have

$$
\left\|f_{k}^{\prime}-f_{k-1}^{\prime}\right\|_{C^{0}} \leqslant C t e_{1} \sqrt{\delta_{k}-\delta_{k-1}}
$$

with Cte $_{1}=\sqrt{7\left(1-r_{0}^{2}\right)}$.

[^2]Proof. - For every point $x \in \mathbb{E} / \mathbb{Z}$, we have

$$
\left\|f_{k}^{\prime}-f_{k-1}^{\prime}\right\|^{2}=\left\|f_{k}^{\prime}\right\|^{2}+\left\|f_{k-1}^{\prime}\right\|^{2}-2\left\|f_{k}^{\prime}\right\|\left\|f_{k-1}^{\prime}\right\| \cos \left(\alpha_{k} \cos 2 \pi N_{k} x\right)
$$

since $\alpha_{k} \cos 2 \pi N_{k} x$ is the angle between $f_{k}^{\prime}(x)$ and $f_{k-1}^{\prime}(x)$. An upper bound for this angle is $\alpha_{k}=J_{0}^{-1}(w)$ where $\left.w=r_{k-1} / r_{k} \in\right] 0,1[$ since

$$
r_{k}=\left\|f_{k}^{\prime}(x)\right\| \quad \text { and } \quad r_{k-1}=\left\|f_{k-1}^{\prime}(x)\right\| .
$$

Recall that from the Amplitude Lemma we have the following inequality

$$
\frac{\alpha_{k}^{2}}{2} \leqslant 4(1-\sqrt{w})
$$

By using the upper bound α_{k}, we obtain

$$
\begin{aligned}
\left\|f_{k}^{\prime}-f_{k-1}^{\prime}\right\|^{2} & \leqslant r_{k}^{2}+r_{k-1}^{2}-2 r_{k-1} r_{k} \cos \alpha_{k} \\
& \leqslant r_{k}^{2}-r_{k-1}^{2}+2 r_{k-1}\left(r_{k-1}-r_{k} \cos \alpha_{k}\right)
\end{aligned}
$$

Since

$$
\cos \alpha_{k} \geqslant 1-\frac{\alpha_{k}^{2}}{2}
$$

we have

$$
\begin{aligned}
r_{k-1}\left(r_{k-1}-r_{k} \cos \alpha_{k}\right) & \leqslant r_{k-1}^{2}-r_{k} r_{k-1}+r_{k-1} r_{k} \frac{\alpha_{k}^{2}}{2} \\
& \leqslant r_{k-1}^{2}-r_{k} r_{k-1}+4 r_{k-1} r_{k}\left(1-\sqrt{\frac{r_{k-1}}{r_{k}}}\right) \\
& \leqslant r_{k-1}^{2}+3 r_{k-1} r_{k}-4 r_{k-1} \sqrt{r_{k} r_{k-1}} \\
& \leqslant r_{k-1}^{2}+3 r_{k}^{2}-4 r_{k-1} \sqrt{r_{k-1}^{2}} \quad\left(\text { since } r_{k-1}<r_{k}\right) \\
& \leqslant 3\left(r_{k}^{2}-r_{k-1}^{2}\right) .
\end{aligned}
$$

Therefore

$$
\left\|f_{k}^{\prime}-f_{k-1}^{\prime}\right\|^{2} \leqslant 7\left(\left\|f_{k}^{\prime}\right\|^{2}-\left\|f_{k-1}^{\prime}\right\|^{2}\right)
$$

Now

$$
\begin{aligned}
\left\|f_{k}^{\prime}\right\|^{2}-\left\|f_{k-1}^{\prime}\right\|^{2} & =r_{k}^{2}-r_{k-1}^{2} \\
& =\left(\delta_{k}-\delta_{k-1}\right)\left(1-r_{0}^{2}\right)
\end{aligned}
$$

Finally

$$
\left\|f_{k}^{\prime}-f_{k-1}^{\prime}\right\|_{C^{0}} \leqslant C t e_{1} \sqrt{\delta_{k}-\delta_{k-1}}
$$

with Cte $_{1}=\sqrt{7\left(1-r_{0}^{2}\right)}$.
For every $k \in \mathbb{N}$, we denote by $M_{k}(g)$ the supremum over \mathbb{E} / \mathbb{Z} of the k-th derivative $g^{(k)}$ of $g: \mathbb{E} / \mathbb{Z} \longrightarrow \mathbb{C}$ (if $k=0$, it is understood that $g^{(0)}=g$) and we define $\|g\|_{C^{k}}$ to be the sum $M_{0}(g)+\ldots+M_{k}(g)$.

Corollary 2. - We have

$$
\left\|f_{k}-f_{k-1}\right\|_{C^{1}} \leqslant 2 C t e_{1} \sqrt{\delta_{k}-\delta_{k-1}}
$$

with Cte $_{1}=\sqrt{7\left(1-r_{0}^{2}\right)}$.

Proof. - From the theorem we deduce by a mere integration

$$
\left\|f_{k}-f_{k-1}\right\|_{C^{0}} \leqslant C t e_{1} \sqrt{\delta_{k}-\delta_{k-1}}
$$

thus the result since

$$
\left\|f_{k}-f_{k-1}\right\|_{C^{1}}=\left\|f_{k}-f_{k-1}\right\|_{C^{0}}+M_{1}\left(f_{k}-f_{k-1}\right)
$$

Proposition 4. - For every $x \in \mathbb{E} / \mathbb{Z}$, we have

$$
f_{k}^{\prime \prime}(x)=\left(-2 \pi \alpha_{k} N_{k} \sin 2 \pi N_{k} x+r_{k-1} \operatorname{scal}_{k-1}(x)\right) i r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)
$$

where scal ${ }_{k}$ denotes the signed curvature of f_{k}. Moreover

$$
r_{k} \operatorname{scal}_{k}(x)=r_{0} \operatorname{scal}_{0}(x)-2 \pi \sum_{l=1}^{k} \alpha_{l} N_{l} \sin \left(2 \pi N_{l} x\right)
$$

Proof. - We have

$$
\begin{aligned}
f_{k}^{\prime \prime}(x)= & \frac{\partial}{\partial x}\left(r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)\right) \\
= & \frac{\partial}{\partial x}\left(r_{k}\left(\cos \left(\alpha_{k} \cos 2 \pi N_{k} x\right) \mathbf{t}_{k-1}(x)+\sin \left(\alpha_{k} \cos 2 \pi N_{k} x\right) \mathbf{n}_{k-1}(x)\right)\right. \\
= & \frac{r_{k}}{r_{k-1}} \frac{\partial}{\partial x}\left(\cos \left(\alpha_{k} \cos 2 \pi N_{k} x\right) f_{k-1}^{\prime}(x)+\sin \left(\alpha_{k} \cos 2 \pi N_{k} x\right) i f_{k-1}^{\prime}(x)\right) \\
= & -2 i \pi \alpha_{k} N_{k} \sin \left(2 \pi N_{k} x\right) r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x) \\
& +\frac{r_{k}}{r_{k-1}}\left(\cos \left(\alpha_{k} \cos 2 \pi N_{k} x\right) f_{k-1}^{\prime \prime}(x)+\sin \left(\alpha_{k} \cos 2 \pi N_{k} x\right) i f_{k-1}^{\prime \prime}(x)\right)
\end{aligned}
$$

Since f_{k-1} is of constant speed r_{k-1} we have

$$
f_{k-1}^{\prime \prime}(x)=r_{k-1} \operatorname{scal}_{k-1}(x) i f_{k-1}^{\prime}(x)
$$

therefore

$$
\begin{aligned}
f_{k}^{\prime \prime}(x)= & -2 i \pi \alpha_{k} N_{k} \sin \left(2 \pi N_{k} x\right) r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x) \\
& +r_{k} r_{k-1} \operatorname{scal}_{k-1}(x) i e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)
\end{aligned}
$$

Finally,

$$
f_{k}^{\prime \prime}(x)=\left(-2 \pi \alpha_{k} N_{k} \sin 2 \pi N_{k} x+r_{k-1} \operatorname{scal}_{k-1}(x)\right) i r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)
$$

Because f_{k} is of constant arc length we also have

$$
f_{k}^{\prime \prime}(x)=r_{k} \operatorname{scal}_{k}(x) i f_{k}^{\prime}(x)=r_{k} \operatorname{scal}_{k}(x) i r_{k} e^{i \alpha_{k} \cos 2 \pi N_{k} x} \mathbf{t}_{k-1}(x)
$$

From this we deduce

$$
r_{k} \operatorname{scal}_{k}(x)=r_{k-1} \operatorname{scal}_{k-1}(x)-2 \pi \alpha_{k} N_{k} \sin \left(2 \pi N_{k} x\right)
$$

and by induction

$$
r_{k} s c a l_{k}(x)=r_{0} s c a l_{0}(x)-2 \pi \sum_{l=1}^{k} \alpha_{l} N_{l} \sin \left(2 \pi N_{l} x\right)
$$

Proposition 5. - If $\sum_{k \in \mathbb{N}^{*}} \sqrt{\delta_{k}-\delta_{k-1}} N_{k}<+\infty$ then f_{∞} is C^{2}.
Proof. - Since we already know that the sequence $\left(f_{k}\right)_{k \in \mathbb{N}} C^{1}$ converges, it is enough to prove that $\left(f_{k}^{\prime \prime}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence. From

$$
f_{k}^{\prime \prime}(x)=r_{k} \operatorname{scal}_{k}(x) i f_{k}^{\prime}(x)
$$

we deduce

$$
\begin{aligned}
\left\|f_{k}^{\prime \prime}(x)-f_{k-1}^{\prime \prime}(x)\right\|_{C^{0}} \leqslant & \left\|r_{k} \operatorname{scal}_{k}(x) f_{k}^{\prime}(x)-r_{k-1} \operatorname{scal}_{k-1}(x) f_{k-1}^{\prime}(x)\right\|_{C^{0}} \\
\leqslant & \left\|r_{k-1} \operatorname{scal}_{k-1}(x) f_{k}^{\prime}(x)-r_{k-1} \operatorname{scal}_{k-1}(x) f_{k-1}^{\prime}(x)\right\|_{C^{0}} \\
& +\left|r_{k} \operatorname{scal}_{k}(x)-r_{k-1} \operatorname{scal}_{k-1}(x)\right|\left\|f_{k}^{\prime}(x)\right\|_{C^{0}} \\
\leqslant & r_{k-1}\left|\operatorname{scal}_{k-1}(x)\right|\left\|f_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\|_{C^{0}} \\
& +r_{k}\left|r_{k} \operatorname{scal}_{k}(x)-r_{k-1} \operatorname{scal}_{k-1}(x)\right| .
\end{aligned}
$$

Since

$$
r_{k} \operatorname{scal}_{k}(x)=r_{0} s c a l_{0}(x)-2 \pi \sum_{l=1}^{k} \alpha_{l} N_{l} \sin \left(2 \pi N_{l} x\right)
$$

we have

$$
\left|r_{k} \operatorname{scal}_{k}(x)-r_{k-1} \operatorname{scal}_{k-1}(x)\right| \leqslant 2 \pi \alpha_{k} N_{k}
$$

and

$$
r_{k}\left|\operatorname{scal}_{k}(x)\right| \leqslant r_{0}\left|\operatorname{scal}_{0}(x)\right|+2 \pi \sum_{l \in \mathbb{N}^{*}} \alpha_{l} N_{l}
$$

In particular the $r_{k}\left|\operatorname{scal}_{k}(x)\right|$ are uniformly bounded by

$$
M:=\left\|r_{0} \operatorname{scal}_{0}(x)\right\|_{C^{0}}+2 \pi \sum_{k \in \mathbb{N}^{*}} \alpha_{k} N_{k}
$$

Note that $M<+\infty$. Indeed $\alpha_{k} \sim \sqrt{2\left(1-r_{0}^{2}\right)} \sqrt{\delta_{k}-\delta_{k-1}}$ therefore

$$
\sum_{k \in \mathbb{N}^{*}} \sqrt{\delta_{k}-\delta_{k-1}} N_{k}<+\infty \quad \Longrightarrow \quad \sum_{k \in \mathbb{N}^{*}} \alpha_{k} N_{k}<+\infty
$$

We deduce

$$
\left\|f_{k}^{\prime \prime}(x)-f_{k-1}^{\prime \prime}(x)\right\|_{C^{0}} \leqslant M\left\|f_{k}^{\prime}(x)-f_{k-1}^{\prime}(x)\right\|_{C^{0}}+2 \pi \alpha_{k} N_{k}
$$

Let $p<q$, we thus have

$$
\begin{aligned}
\left\|f_{q}^{\prime \prime}(x)-f_{p}^{\prime \prime}(x)\right\|_{C^{0}} & \leqslant M \sum_{k=p}^{q} \sqrt{\delta_{k}-\delta_{k-1}}+2 \pi \sum_{k=p}^{q} \alpha_{k} N_{k} \\
& \leqslant M \sum_{k=p}^{\infty} \sqrt{\delta_{k}-\delta_{k-1}}+2 \pi \sum_{k=p}^{\infty} \alpha_{k} N_{k}
\end{aligned}
$$

Hence $\left(f_{k}^{\prime \prime}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence.

Theorem 2. - Assume that

$$
\sum \sqrt{\delta_{k}-\delta_{k-1}}<+\infty \quad \text { and } \quad \sum \sqrt{\delta_{k}-\delta_{k-1}} N_{k}=+\infty
$$

Let $0<\eta<1$ and $S_{k}:=\sum_{l=1}^{k} \sqrt{\delta_{l}-\delta_{l-1}} N_{l}$. If

$$
\sum\left(\delta_{k}-\delta_{k-1}\right)^{\frac{1-\eta}{2}} S_{k}^{\eta}<+\infty
$$

then f_{∞} is $C^{1, \eta}$.
Proof. - Let $0<\eta<1$. We are going to use the interpolation inequality

$$
\|f\|_{C^{1, \eta}} \leqslant C^{t e}\|f\|_{C^{1}}^{1-\eta}\|f\|_{C^{2}}^{\eta}
$$

to show that $\left(\left\|f_{k}-f_{k-1}\right\|_{C^{1, \eta}}\right)_{k \in \mathbb{N}^{*}}$ is a Cauchy sequence. From the above sections, we have

$$
\left\|f_{k}-f_{k-1}\right\|_{C^{1}} \leqslant 2 C t e_{1} \sqrt{\delta_{k}-\delta_{k-1}}
$$

and

$$
\begin{aligned}
M_{2}\left(f_{k}-f_{k-1}\right) & \leqslant M_{2}\left(f_{k}\right)+M_{2}\left(f_{k-1}\right) \\
& \leqslant M_{0}\left(r_{k} \operatorname{scal}_{k}\right) M_{1}\left(f_{k}\right)+M_{0}\left(r_{k-1} \operatorname{scal}_{k-1}\right) M_{1}\left(f_{k}\right) \\
& \leqslant M_{0}\left(\operatorname{scal}_{k}\right)+M_{0}\left(\operatorname{scal}_{k-1}\right) \\
& \leqslant 2 M_{0}\left(\operatorname{scal}_{0}\right)+4 \pi \sum_{l=1}^{k} \alpha_{l} N_{l}
\end{aligned}
$$

From the Amplitude Lemma we deduce

$$
\begin{aligned}
M_{2}\left(f_{k}-f_{k-1}\right) & \leqslant 2 M_{0}\left(\text { scal }_{0}\right)+\frac{4 \pi \sqrt{2\left(1-r_{0}^{2}\right)}}{\frac{r_{0}}{2\left(1-r_{0}^{2}\right)}} \sum_{l=1}^{k} \sqrt{\delta_{l}-\delta_{l-1}} N_{l} \\
& \leqslant 2 M_{0}\left(s c a l_{0}\right)+\frac{4 \pi \sqrt{2}}{r_{0}}{ }_{l} .
\end{aligned}
$$

So

$$
\left\|f_{k}-f_{k-1}\right\|_{C^{2}} \leqslant 2 C t e_{1} \sqrt{\delta_{k}-\delta_{k-1}}+2 M_{0}\left(s^{c a l_{0}}\right)+\frac{4 \pi \sqrt{2\left(1-r_{0}^{2}\right)}}{r_{0}} S_{k}
$$

Since $\lim _{k \rightarrow+\infty} S_{k}=+\infty$, for k large enough we have

$$
\left\|f_{k}-f_{k-1}\right\|_{C^{2}} \leqslant C t e_{2} S_{k}
$$

for some constant Cte_{2}. We now have

$$
\left\|f_{k}-f_{k-1}\right\|_{C^{1}}^{1-\eta}\left\|f_{k}-f_{k-1}\right\|_{C^{2}}^{\eta} \leqslant C t e_{3}\left(\delta_{k}-\delta_{k-1}\right)^{\frac{1-\eta}{2}} S_{k}^{\eta}
$$

with Cte $_{3}=\left(2 C t e_{1}\right)^{1-\eta} C t e_{2}^{\eta}$.

Corollary 3. - Let $0<\gamma<1$ and $\delta_{k}:=1-e^{-\gamma(k+1)}$. If there exists $\beta>0$ such that

$$
\forall k \in \mathbb{N}, \quad N_{k} \leqslant N_{0} e^{\beta k}
$$

then f_{∞} is $C^{1, \eta}$ for any $\eta>0$ such that

$$
\eta<\frac{\gamma}{2 \beta}
$$

Proof. - We have

$$
\delta_{k}-\delta_{k-1}=\delta_{0} e^{-\gamma k}
$$

thus

$$
\begin{aligned}
S_{k}=\sum_{l=1}^{k} \sqrt{\delta_{l}-\delta_{l-1}} N_{l} & \leqslant \sqrt{\delta_{0}} N_{0} \sum_{l=1}^{k} e^{\left(\beta-\frac{\gamma}{2}\right) l} \\
& <\sqrt{\delta_{0}} N_{0} e^{\beta-\frac{\gamma}{2}} \frac{1-e^{\left(\beta-\frac{\gamma}{2}\right)(k+1)}}{1-e^{\beta-\frac{\gamma}{2}}}
\end{aligned}
$$

Suppose first that $\beta>\frac{\gamma}{2}$. We then have :

$$
S_{k} \leqslant C t e_{4} e^{\left(\beta-\frac{\gamma}{2}\right) k} .
$$

Finally

$$
\left(\delta_{k}-\delta_{k-1}\right)^{\frac{1-\eta}{2}} S_{k}^{\eta} \leqslant C t e_{5} e^{-\gamma \frac{1-\eta}{2} k} e^{\eta\left(\beta-\frac{\gamma}{2}\right) k}
$$

Now

$$
-\gamma \frac{1-\eta}{2}+\eta\left(\beta-\frac{\gamma}{2}\right)<0
$$

if and only if

$$
\eta<\frac{\gamma}{2 \beta}
$$

Therefore, under that condition

$$
\sum\left(\delta_{k}-\delta_{k-1}\right)^{\frac{1-\eta}{2}} S_{k}^{\eta}<+\infty
$$

hence the corollary in the case where $\beta>\frac{\gamma}{2}$. We left to the reader the easier case $\beta \leqslant \frac{\gamma}{2}$.

BIBLIOGRAPHY

[1] M. Abramowitz \& I. Stegun, Handbook of Mathematical Functions, Dover, 1965.
[2] J. Borisov, " $C^{1, \alpha}$-isometric immersions of Riemmannian spaces", Dokl. Akad. Nauk. SSSR 163 (1965), p. 11-13, translation in Soviet. Math. Dokl. 6 (1965), 869-871.
[3] , "Irregular $C^{1, \beta}$-surfaces with an analytic metric", Siberian Math. J. 45 (2004), p. 19-52.
[4] V. Borrelli, S. Jabrane, F. Lazarus \& B. Thibert, "Flat tori in threedimensional space and convex integration", PNAS 2012, vol. 109, p. 7218-7223.
[5] E. Cartan, "Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien", Ann. Soc. Pol. Math. 6 (1927), p. 1-7.
[6] S. Conti, C. De Lellis \& S. L., "H-principle and rigidity for $C^{1, \alpha}$-isometric embeddings", to appear in the Proceedings of the Abel Symposium 2010, arXiv:0905.0370v1.
[7] Y. Eliahsberg \& N. Mishachev, Introduction to the h-principle, Graduate Studies in Mathematics, vol. 48, AMS, Providence, 2002.
[8] K. Falconer, Fractal Geometry, Wiley, 2003.
[9] M. Gromov, Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, SpringerVerlag, Berlin, 1986.
[10] M. Günther, "On the pertubation problem associated to isometric embeddings of Riemannian manifolds", Ann. Global Anal. Geom. 7 (1989), p. 69-77.
[11] M. Janet, "Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien", Ann. Soc. Pol. Math. 5 (1926), p. 38-43.
[12] J.-P. Kahane, "Jacques Peyrière et les produits de Riesz", arXiv.org/abs/ 1003.4600 v 1 .
[13] N. Kuiper, "On C^{1}-isometric imbeddings", Indag. Math. 17 (1955), p. 545-556.
[14] J. Nash, "C ${ }^{1}$-isometric imbeddings", Ann. of Math. (2) 60 (1954), p. 383-396.
[15] - "The imbedding problem for Riemannian manifolds", Ann. of Math. (1) 63 (1956), p. 20-63.
[16] D. Spring, Convex Integration Theory, Bikhauser, 1998.
[17] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1995.

Vincent Borrelli \& Saïd Jabrane
Institut Camille Jordan, Université Lyon I, Villeurbanne, France borrelli@math.univ-lyon1.fr
jabrane@math.univ-lyon1.fr
Francis Lazarus
CNRS,
GIPSA-Lab,
Université de Grenoble, France
Francis.Lazarus@gipsa-lab.grenoble-inp.fr
Boris Thibert
Laboratoire Jean Kuntzmann, Université de Grenoble, France
boris.thibert@imag.fr

[^0]: © Institut Fourier, 2011-2012, tous droits réservés.

[^1]: ${ }^{(1)}$ Let $\operatorname{dim}_{\text {sup }} \mu$ (resp. $\operatorname{dim}_{\mathrm{inf}} \mu$) denotes the supremum (resp. the infimum) of the Hausdorff dimension of the Borel sets of positive μ-measure. If $d=\operatorname{dim}_{\mathrm{sup}} \mu=\operatorname{dim}_{\mathrm{inf}} \mu$ then the measure μ is said to have Hausdorff dimension d.

[^2]: ${ }^{(2)} C f$. Lemma 1 and the lines above Corollary 3 in the introductory part of this article for a motivation for such choice for α_{k} and N_{k}.

