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THE NASH-KUIPER PROCESS FOR CURVES

Vincent Borrelli, Saïd Jabrane, Francis Lazarus & Boris Thibert

Abstract. — A strictly short embedding is an embedding of a Riemannian
manifold into an Euclidean space that strictly shortens distances. From such an
embedding, the Nash-Kuiper process builds a sequence of maps converging toward
an isometric embedding. In that paper, we describe this Nash-Kuiper process in the
case of curves. We state an explicit formula for the limit normal map and perform
its Fourier series expansion. We then adress the question of Holder regularity of
the limit map.

Résumé. — Un plongement strictement court est un plongement d’une variété
riemannienne dans un espace Euclidien qui réduit strictement les distances. À par-
tir d’un tel plongement, le procédé de Nash-Kuiper construit une suite d’applica-
tions convergeant vers un plongement isométrique. Dans cet article, nous donnons
une description du procédé de Nash-Kuiper dans le cas des courbes. Nous établis-
sons une formule explicite pour l’application normale limite et nous effectuons sa
décomposition en série de Fourier. Nous nous intéressons ensuite à la régularité
holdérienne de l’application limite.

An isometric immersion of a Riemannian manifold into an Euclidean
space is a C1 map f : (Mm, g) −→ Eq = (Rq, 〈., .〉) such that f∗〈., .〉 = g.

Such a map preserves the length of curves that is:

Length(f ◦ γ) = Length(γ)

for every rectifiable curve γ : [a, b] −→ Mm. In a local coordinate system
x = (x1, ..., xm) the isometric condition gives rise to a system of sm =
m(m+1)

2 equations

1 6 i 6 j 6 n,
〈
∂f

∂xi
(x), ∂f

∂xj
(x)
〉

= gx

(
∂

∂xi
,
∂

∂xj

)
.

Thus generically, isometric maps are expected to exist –at least locally–
if the target space has dimension greater than sm. In 1926, Janet [11]
proved that any analytic Riemannian surface (M2, g) admit local isometric
analytic immersions in Es2 . Shortly after, this result was generalized by
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2 V. BORRELLI, S. JABRANE, F. LAZARUS & B. THIBERT

Cartan [5] for analytic Riemannian manifold of dimensionm: local isometric
analytic maps do exist if the dimension of the target Euclidean space is
at least sm. Thirty years after the result of Janet, J. Nash showed in an
outstanding article [15] that every Ck Riemannian manifold (3 6 k 6
+∞) can be mapped Ck isometrically into an Euclidean space Eq with
q = 3sm + 4m if Mm is compact and q = (m + 1)(3sm + 4m) if not. This
result was then improved by Gromov [9] and Günther [10] who proved that
q = max{sm + 2m, sm +m+ 5} is enough for the compact case.
Another amazing result of J. Nash is the discovery that, in a C1 setting,
the barrier formed by the Janet dimension can be completely destroyed:
in the compact case, if a Riemannian manifold admits an immersion into
some Eq, q > m + 1, then it admits a C1 isometric immersion into the
same Euclidean space (Nash [14] proved the case q > m + 2 and Kuiper
[13] the case q = m + 1). As a consequence every compact Riemannian
surface admits a C1 isometric immersion in E3 but in general, for obvious
curvature reasons, the immersion can not be enhanced to be C2.

Beyond the breaking of the dimensional barrier, there is another phenome-
non which is utterly baffling in the Nash-Kuiper result: not only C1 isomet-
ric maps do exist but they are plentiful! In fact, there is a C1 isometric map
near every strictly short map. A map f0 : (Mm, g) −→ Eq is called strictly
short if it strictly shortens distances, that is, if the difference g − f∗0 〈., .〉 is
a metric. The Nash-Kuiper approach reveals that if f0 is a strictly short
embedding, then for every ε > 0 there exists a C1 isometric embedding
f : (Mm, g) −→ Eq such that

‖f − f0‖C0 6 ε

where ‖.‖C0 denotes the supremum norm over Mm (this manifold is as-
sumed to be compact for the simplicity of the presentation). For instance,
for every ε > 0, there is a C1 isometric embedding of the unit sphere inside
a ball of radius ε.
Recently [4], we have converted the Nash-Kuiper proof into an algorithm,
using the Gromov convex integration theory ([9], [16], [7]). We have imple-
mented this algorithm and produced numerical pictures of a C1 isometric
embedding f∞ of the square flat torus E2/Z2 inside E3 that is C0 close
to a strictly short embedding f0 of E2/Z2 as a torus of revolution. Our
algorithm generates a sequence of maps

f0, f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, ...

defined recursively that C1 converges toward f∞. The geometry of the limit
map consists merely of the behavior of its tangent planes or, equivalently,
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NASH-KUIPER PROCESS FOR CURVES 3

of the properties of its Gauss map n∞ : E2/Z2 −→ S2 ⊂ E3. From the algo-
rithm, one can extract a formal expression of that Gauss map as an infinite
product of corrugation matrices applied to the initial Gauss map of f0. One
major obstacle to the understanding of n∞ lies in the inherent complexity
of the coefficients of these corrugation matrices. The main theorem of [4]
(the Corrugation Theorem) describes their asymptotic behaviour.
In this article, we propose to study the normal map of isometric maps
resulting from a convex integration process in the simpler situation of iso-
metric immersions of the circle E/Z into E2. In this case, the isometric
problem in itself is totally trivial but the way the Nash-Kuiper process
solves it, produces a sequence of curves

f0, f1, f2, ...

whose limit f∞ has a non trivial geometry. Of course, in that one dimen-
sional setting, some of the difficulties inherent to the dimension two vanish.
In particular, if the initial curve f0 : E/Z −→ E2 ' C is parametrized with
constant speed and is radially symmetric (see the definition below) all com-
putations can be completely carried out and lead to an explicit formula for
the normal map n∞ of the limit curve f∞.

Theorem 1. — Let nk be the normal map of fk. We have

∀x ∈ E/Z, nk(x) = eiαk cos(2πNkx)nk−1(x)

where αk ∈]0, π2 [ is the amplitude of the loop used in the convex integration
to build fk−1 from fk and Nk ∈ 2N∗ is the number of corrugations of fk
(precise definitions below). In particular, the normal map n∞ of f∞ has
the following expression

∀x ∈ E/Z, n∞(x) =
(+∞∏
k=1

eiαk cos(2πNkx)

)
n0(x).

The above expression of the normal map n∞ is reminiscent of a Riesz
product, that is a product of the form

h(x) =
+∞∏
k=1

(1 + αk cos(2πNkx)).

It is a fact that an exponential growth of Nk, known as Hadamard’s la-
cunary condition, results in a fractional Hausdorff dimension of the Riesz
measure(1) µ := h(x)dx [12].

(1)Let dimsupµ (resp. diminfµ) denotes the supremum (resp. the infimum) of the Haus-
dorff dimension of the Borel sets of positive µ-measure. If d = dimsupµ = diminfµ then
the measure µ is said to have Hausdorff dimension d.
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4 V. BORRELLI, S. JABRANE, F. LAZARUS & B. THIBERT

The normal map n∞ can be thought of as a 1-periodic map from R to C. In
§3 we perform its Fourier series expansion. Its spectrum, whose structure
is very similar to the spectrum of a Riesz product, is obtained as a limit
of an iterative process starting with the spectrum of the initial map n0.

Precisely, let
∀x ∈ E/Z, nk(x) =

∑
p∈Z

ap(k)e2iπpx

denotes the Fourier series expansion of the normal map nk. We derive from
the above theorem the following inductive formula (cf. Lemma 3):

Fourier series expansion of nk.– We have

∀p ∈ Z, ap(k) =
∑
n∈Z

un(k)ap−nNk(k − 1)

where un(k) = inJn(αk).
In the above formula, Jn denotes the Bessel function of order n (see [1] or
[17]):

α 7−→ Jn(α) = 1
π

∫ π

0
cos(nu− α sin u)du.

The Fourier expansion of nk gives the key to understand the construc-
tion of the spectrum (ap(k))p∈Z from the spectrum (ap(k − 1))p∈Z. The
k-th spectrum is obtained by collecting an infinite number of shifts of the
previous spectrum. The n-th shift is of amplitude nNk and weighted by
un(k) = inJn(αk). Since

|Jn(αk)| ↓ 0
the weight is decreasing with n (see the figure of §3).
In the Nash-Kuiper process there is a infinite number of degrees of free-
dom in the construction of the sequence (fk)k∈N. In particular, given any
sequence of positive numbers (δk)k∈N increasing toward 1, the process pro-
duces a sequence such that

‖f ′k − f ′k−1‖C0 6 Cte
√
δk − δk−1.

Thus, if ∑√
δk − δk−1 < +∞

the sequence (fk)k∈N is C1 converging toward a C1 limit f∞. Moreover if∑√
δk − δk−1Nk < +∞

then f∞ is C2 (see Proposition 5). Regarding the intermediary regularities,
we prove the following:

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



NASH-KUIPER PROCESS FOR CURVES 5

Theorem 2. — Assume that∑√
δk − δk−1 < +∞ and

∑√
δk − δk−1Nk = +∞.

Let 0 < η < 1 and Sk :=
∑k
l=1
√
δl − δl−1Nl. If∑

(δk − δk−1)
1−η

2 Sηk < +∞

then f∞ is C1,η.

In the simplified one dimensional approach followed in this article, the
sequence (Nk)k∈N can be chosen freely. This is no longer possible in the
general case: some constraints appear that force the Nks to be increasing.
The control of the growth of the Nks is then the key to understand the
C1,η regularity of the limit map. In the original proof of Nash, the chosen
sequence for δk was 1− 2−(k+1). For such a choice, the numerical result we
have obtained for the square flat torus seems to suggest that the sequence
(Nk)k∈N is exponentially growing (see also the theoretical arguments of
[6]). This gives the motivation for the following corollary.

Corollary 3. — Let 0 < γ < 1 and δk := 1− e−γ(k+1). If there exists
β > 0 such that

∀k ∈ N, Nk 6 N0e
βk

then f∞ is C1,η for any η > 0 such that

η <
γ

2β .

The question of the C1,η regularity of isometric maps resulting from the
Nash-Kuiper process is addressed in [2], [3] and [6]. The optimal C1,η reg-
ularity of an isometric immersion of a Riemannian surface in E3 is still an
open question.

1. The convex integration process for curves

The convex integration process.– Let f0 : [0, 1] → R2 be a C∞ map
and let

h : [0, 1] −→ C∞(R/Z,C)
x 7−→ h(x, .)

be a C∞ family of loops such that

∀x ∈ [0, 1],
∫ 1

0
h(x, s)ds = f ′0(x).

VOLUME 30 (2011-2012)



6 V. BORRELLI, S. JABRANE, F. LAZARUS & B. THIBERT

Let N ∈ N∗ the any natural number. We define a new C∞ map f : [0, 1] −→
R2 by the formula

∀x ∈ [0, 1], f(x) := f0(0) +
∫ x

0
h(s, {Ns})ds

where {Ns} denotes the fractional part of Ns. We call such a formula
giving a new map f from the data of f0 and h a convex integration. We
sometimes write

f := IC(f0, h,N).
The new map f has a derivative whose image obviously lies inside the image
of h since

∀x ∈ [0, 1], f ′(x) = h(x, {Nx}).
Moreover, f remains C0 close to f0. Indeed, it can be shown that

‖f − f0‖C0 = O

(
1
N

)
(see [4] for instance).

Curves with given speeds.– Let f0 : [0, 1] −→ E2 ' C be a regular
curve (∀x ∈ [0, 1], f ′0(x) 6= 0) and let r : [0, 1] −→ R∗+ be any C∞ map
such that

∀x ∈ [0, 1], r(x) > ‖f ′0(x)‖.
Let h defined by

h(x, s) := r(x) (cos(α(x) cos 2πs)t0(x) + sin(α(x) cos 2πs)n0(x))

with t0 := f ′0
‖f ′0‖

, n0 := it0 and α(x) ∈ ]0, κ[ is such that

r(x)J0(α(x)) = ‖f ′0(x)‖

where J0 denotes the Bessel function of the first kind and of order 0 and κ '
2.4 denotes the first zero of J0. Since the Bessel function J0 is decreasing
on the interval [0, κ] and J0(0) = 1, there is a unique α(x) that solves the
above implicite equation. Note that∫ 1

0
h(x, s)ds = r(x)J0(α(x))t0(x)

therefore the above implicit condition on α(x) implies that the average of
h(x, .) is f ′0(x). The map f obtained by convex integration from f0 and
h has speed ‖f ′‖ equal to the given function r and is arbitrarily C0 close
to f0.

Closed curves with given speeds.– If f0 is defined over E/Z rather
than [0, 1] the curve f obtained from f0 and h by convex integration is

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



NASH-KUIPER PROCESS FOR CURVES 7

not closed in general. This defect can be easily corrected by the following
modification of the convex integration formula:

∀x ∈ [0, 1], f(x) := f0(0) +
∫ x

0
h(s, {Ns})ds− x

∫ 1

0
h(s, {Ns})ds.

For short we write f := ĨC(f0, h,N). The C0 closeness implies that∣∣∣∣∫ 1

0
h(x, s)ds

∣∣∣∣ = O

(
1
N

)
so that the correction can be made arbitrarily small. We still have
‖f − f0‖C0 = O

( 1
N

)
but now ‖f ′‖ is only approximately equal to r(x),

precisely

∀x ∈ E/Z, ‖f ′(x)‖ =
∥∥∥∥h(x, {Nx})−

∫ 1

0
h(s, {Ns})ds

∥∥∥∥
and therefore, for all x ∈ E/Z, we have |‖f ′(x)‖ − r(x)| = O

( 1
N

)
.

Nash and Kuiper process.– In the spirit of the Nash and Kuiper proof,
the way to obtain a map f : E/Z −→ E2 ' C with speed the given function
r is to produce a sequence of closed curves (fk)k∈N∗ by iteratively applying
the modifying convex integration formula so that to reduce step by step
the isometric default r − ‖f ′0‖.
Let (δk)k∈N∗ be a sequence of increasing positive number converging to-
ward 1, we set

∀k ∈ N∗,∀x ∈ E/Z, r2
k(x) := ‖f ′0(x)‖2 + δk

(
r2(x)− ‖f ′0(x)‖2) .

Note that for every x ∈ E/Z, the sequence rk(x) is increasing toward r(x).
We define fk to be ĨC(fk−1, hk, Nk) with

hk(x, s) := rk(x)eiαk(x) cos 2πstk−1(x)

where αk(x) = J−1
0

(
‖f ′k−1(x)‖
rk(x)

)
and tk−1 is the normalized derivative of

fk−1. Each fk has a speed which is approximately rk:

|‖f ′k(x)‖ − rk(x)| = O

(
1
Nk

)
.

Since the sequence rk(x) is strictly increasing for every x ∈ E/Z, the num-
ber Nk can be chosen large enough such that

∀x ∈ E/Z, rk+1(x) > ‖fk(x)‖.

This is crucial to define fk+1 as ĨC(fk, hk+1, Nk+1). If the sequence (δk)k∈N∗
is chosen so that ∑√

δk − δk−1 < +∞

VOLUME 30 (2011-2012)



8 V. BORRELLI, S. JABRANE, F. LAZARUS & B. THIBERT

and if (Nk)k∈N∗ is rapidly diverging then the sequence fk :=ĨC(fk−1, hk, Nk)
is C1 converging toward a C1 limit f∞ with speed ‖f ′∞‖ = r. This is proven
further in the text in the particular case of closed curves with constant
speed. The general case, slightly more technical in nature, is left to the
reader.

Closed curves with constant speed.– From now on, in order to get the
most pleasant computations we consider the simplified case where r ≡ 1
and f0 : E/Z→ E2 is a C∞ map such that:

• (Cond 1) it is of constant speed r0 := ‖f ′0‖ < 1
• (Cond 2) it is radially symmetric, that is: f ′0(x+ 1

2 ) = −f ′0(x).
In all what follows, we will also assume that the Nash-Kuiper sequence of
C∞ maps derived from f0:

fk := ĨC(fk−1, hk, Nk), k ∈ N∗

is such that hk(x, s) = rke
iαk(x) cos 2πstk−1(x) and Nk ∈ 2N∗. Note that

(Cond 1) implies that every function rk =
√
r2

0 + δk(1− r2
0) is constant.

Proposition 1. — For every k ∈ N∗, fk is of constant speed rk and
radially symmetric. In particular,

fk = IC(fk−1, hk, Nk).

The functions αk are also constant and equal to J−1
0

(
rk−1
rk

)
.

Proof. — By induction. Assume that fk−1 satisfies (Cond 1) and
(Cond 2). In particular fk−1 is of constant speed rk−1 and thus the function
αk = J−1

0

(
rk−1
rk

)
is constant. Since Nk ∈ 2N∗, we have

hk(x+ 1
2 , {Nk(x+ 1

2)}) = −hk(x, {Nkx})

and consequently ∫ 1

0
hk(s, {Ns})ds = 0.

It ensues that

IC(fk−1, hk, Nk) = ĨC(fk−1, hk, Nk)

and therefore fk is of constant speed ‖f ′k(x)‖ = ‖hk(x, {Nx})‖ = rk. It is
also radially symmetric since fk(x) = h(x, {Nkx}). �

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



NASH-KUIPER PROCESS FOR CURVES 9

· · ·

Figure 1.1. The convex integration process applied to circle (left f0,
center f1, right f∞)

2. C1 convergence

It turns out that the sequence (δk)k∈N mainly determines the sequence
(αk)k∈N.

Lemma 1 (Amplitude Lemma). — We have

αk ∼
√

2(1− r2
0)
√
δk − δk−1

where ∼ denotes the equivalence of sequences. We also have

αk 6
1
r0

√
2(1− r2

0)
√
δk − δk−1.

Proof. — By definition αk = J−1
0 ( rk−1

rk
). Recall that the Taylor expan-

sion of J0(α) up to order 2 is

w = 1− α2

4 + o(α2).

Let y = 1−w and X = α2, we have y = X
4 + o(X) thus X = 4y+ o(y) and

so X ∼ 4y. We finally get

α ∼ 2
√

1− w and αk ∼ 2
√

1− rk−1

rk
.

Since r2
0 + (1− r2

0) = 1, we have

r2
k = r2

0 + δk(1− r2
0) = 1 + (δk − 1)(1− r2

0)

so
r2
k − r2

k−1 = (δk − δk−1)(1− r2
0)

and

1−
r2
k−1
r2
k

= (δk − δk−1)(1− r2
0)

1− (1− δk)(1− r2
0) ∼ (δk − δk−1)(1− r2

0).

VOLUME 30 (2011-2012)
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In an other hand

1−
r2
k−1
r2
k

=
(

1− rk−1

rk

)(
1 + rk−1

rk

)
∼ 2

(
1− rk−1

rk

)
.

Thus (
1− rk−1

rk

)
∼ 1

2(δk − δk−1)(1− r2
0).

and

αk ∼ 2
√

1− rk−1

rk
∼
√

2(1− r2
0)
√
δk − δk−1.

The Taylor expansion of J0 up to order 4 shows that

w 6 1− α2

4 + α4

64 =
(

1− α2

8

)2

(because it is alternating) and hence

α2
k 6 8

(
1−

√
rk−1

rk

)
.

Thus
α2
k 6

8
√
rk

(√
rk −

√
rk−1

)
6

8
√
rk(√rk +√rk−1) (rk − rk−1)

6
8

√
rk(√rk +√rk−1)(rk + rk−1)

(
r2
k − r2

k−1
)

6
2
r2

0

(
r2
k − r2

k−1
)

since r0 < rk−1 < rk. We deduce

αk 6
1
r0

√
2(r2

k − r2
k−1) = 1

r0

√
2(1− r2

0)
√
δk − δk−1. �

Let (Ak)k∈N∗ be the sequence of functions defined by

∀x ∈ E/Z, Ak(x) :=
k∑
l=1

αl cos(2πNlx)

where as above Nl ∈ 2N∗.

Lemma 2. — For every x ∈ E/Z, we have:

f ′k(x) = eiAk(x) rk
r0
f ′0(x).

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Proof. — Let nk−1 := itk−1. From
f ′k(x) = rk(cos(αk cos(2πNkx))tk−1(x) + sin(αk cos(2πNkx))nk−1(x))

= rke
iαk cos(2πNkx) 1

rk−1
f ′k−1(x)

we deduce by induction : f ′k(x) = eiAk(x) rk
r0
f ′0(x). �

Proposition 2. — If
∑√

δk − δk−1 < +∞ then
i) the sequence (Ak)k∈N is normally converging andA∞ := limk→+∞Ak

is continuous.
ii) the sequence (fk)k∈N∗ is C1 converging toward f∞ := limk→+∞ fk

and
∀ x ∈ R/Z, f ′∞(x) = eiA∞(x) 1

r0
f ′0(x).

Proof. — From the Amplitude Lemma we deduce that∑
αk < +∞

thus the sequence (Ak)k∈N is normally converging and

A∞ := lim
k→+∞

Ak

is continuous. Moreover, from the relation

f ′k(x) = eiAk(x) rk
r0
f ′0(x)

we also deduce that (f ′k)k∈N is normally converging toward

eiA∞(x) 1
r0
f ′0(x).

Since (fk(0))k∈N obviously converges, we obtain that the sequence (fk)k∈N
is C1 converging toward f∞ := limk→+∞ fk. �

Corollary 1. — Let γ > 0 and δk := 1 − e−γ(k+1). Then sequence
(δk)k∈N∗ is increasing toward 1 and

√
δk − δk−1 ∼

√
δ0e
− γ2 k. In particular,

for any choice of the Nks in 2N∗, the limit map f∞ is C1.

3. The normal map

From now on, we assume∑√
δk − δk−1 < +∞

so that the sequence (fk)k∈N is C1 converging toward its limit f∞. The
following theorem is a straightforward consequence of the results of the
preceding section:

VOLUME 30 (2011-2012)



12 V. BORRELLI, S. JABRANE, F. LAZARUS & B. THIBERT

Theorem 1. — Let nk be the normal map of fk. We have

∀x ∈ E/Z, nk(x) = eiαk cos(2πNkx)nk−1(x)

In particular, the normal map n∞ of f∞ has the following expression

∀x ∈ E/Z, n∞(x) = eiA∞(x)n0(x).

We deduce from this theorem the following result about Fourier expansion
of nk.

Lemma 3 (Fourier expansion of nk). — For all k ∈ N we denote by

∀x ∈ E/Z, nk(x) =
∑
p∈Z

ap(k)e2iπpx

the Fourier expansion of nk. We have

∀p ∈ Z, ap(k) =
∑
n∈Z

un(k)ap−nNk(k − 1)

where un(k) = inJn(αk) (Jn denotes the Bessel function of order n).

Proof. — From the Jacobi-Anger identity

eiz cos θ =
+∞∑

n=−∞
inJn(z)einθ

we deduce

eiαk cos(2πNkx) =
+∞∑

n=−∞
inJn(αk)e2iπnNkx =

+∞∑
n=−∞

un(k)e2iπnNkx.

Since the Fourier coefficients of a product of two fonctions are given by the
discrete convolution product of their coefficients, the product

nk(x) = eiαk cos(2πNkx)nk−1(x)

can be written

nk(x) =
( +∞∑
n=−∞

un(k)e2iπnNkx

)( +∞∑
p=−∞

ap(k − 1)e2iπpx

)

=
+∞∑
p=−∞

( +∞∑
n=−∞

un(k)ap−nNk(k − 1)
)
e2iπpx.

Therefore

ap(k) =
+∞∑

n=−∞
un(k)ap−nNk(k − 1).

�
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Figure 3.1. A schematic picture of the various spectra (ap(k))p∈Z with
Nk = bk.

Remark. — The analogy with Riesz products suggests that the Haus-
dorff dimension of the graph of the normal map n∞ could be fractional.
Note that the relevant part of this map is the 1-periodic function

R 3 x 7−→ A∞(x) =
+∞∑
k=1

αk cos(2πNkx) ∈ R.

In the simple case where αk = ak and Nk = bk with 0 < a < 1 < b , the
map A∞ is a Weiestrass function(2) . If ab > 1, it is known that its graph
has a fractional Hausdorff dimension. The exact value of this dimension is
still an open question. It is believed to be equal to 2 + ln a

ln b (see [8]).

4. C1,η regularity

Proposition 3. — We have

‖f ′k − f ′k−1‖C0 6 Cte1
√
δk − δk−1

with Cte1 =
√

7(1− r2
0).

(2) Cf. Lemma 1 and the lines above Corollary 3 in the introductory part of this article
for a motivation for such choice for αk and Nk.
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Proof. — For every point x ∈ E/Z, we have

‖f ′k − f ′k−1‖2 = ‖f ′k‖2 + ‖f ′k−1‖2 − 2‖f ′k‖‖f ′k−1‖ cos(αk cos 2πNkx)

since αk cos 2πNkx is the angle between f ′k(x) and f ′k−1(x). An upper bound
for this angle is αk = J−1

0 (w) where w = rk−1/rk ∈ ]0, 1[ since

rk = ‖f ′k(x)‖ and rk−1 = ‖f ′k−1(x)‖.

Recall that from the Amplitude Lemma we have the following inequality
α2
k

2 6 4(1−
√
w).

By using the upper bound αk, we obtain
‖f ′k − f ′k−1‖2 6 r2

k + r2
k−1 − 2rk−1rk cosαk

6 r2
k − r2

k−1 + 2rk−1(rk−1 − rk cosαk).
Since

cosαk > 1− α2
k

2
we have

rk−1(rk−1 − rk cosαk) 6 r2
k−1 − rkrk−1 + rk−1rk

α2
k

2
6 r2

k−1 − rkrk−1 + 4rk−1rk

(
1−

√
rk−1

rk

)
6 r2

k−1 + 3rk−1rk − 4rk−1
√
rkrk−1

6 r2
k−1 + 3r2

k − 4rk−1

√
r2
k−1 (since rk−1 < rk)

6 3(r2
k − r2

k−1).
Therefore

‖f ′k − f ′k−1‖2 6 7
(
‖f ′k‖2 − ‖f ′k−1‖2) .

Now
‖f ′k‖2 − ‖f ′k−1‖2 = r2

k − r2
k−1

= (δk − δk−1)(1− r2
0).

Finally
‖f ′k − f ′k−1‖C0 6 Cte1

√
δk − δk−1

with Cte1 =
√

7(1− r2
0). �

For every k ∈ N, we denote by Mk(g) the supremum over E/Z of the k-th
derivative g(k) of g : E/Z −→ C (if k = 0, it is understood that g(0) = g)
and we define ‖g‖Ck to be the sum M0(g) + ...+Mk(g).

Corollary 2. — We have

‖fk − fk−1‖C1 6 2Cte1
√
δk − δk−1

with Cte1 =
√

7(1− r2
0).
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Proof. — From the theorem we deduce by a mere integration

‖fk − fk−1‖C0 6 Cte1
√
δk − δk−1

thus the result since

‖fk − fk−1‖C1 = ‖fk − fk−1‖C0 +M1(fk − fk−1). �

Proposition 4. — For every x ∈ E/Z, we have

f ′′k (x) = (−2παkNk sin 2πNkx+ rk−1scalk−1(x)) irkeiαk cos 2πNkxtk−1(x)

where scalk denotes the signed curvature of fk. Moreover

rkscalk(x) = r0scal0(x)− 2π
k∑
l=1

αlNl sin(2πNlx).

Proof. — We have

f ′′k (x) = ∂

∂x

(
rke

iαk cos 2πNkxtk−1(x)
)

= ∂

∂x
(rk(cos(αk cos 2πNkx)tk−1(x) + sin(αk cos 2πNkx)nk−1(x))

= rk
rk−1

∂

∂x

(
cos(αk cos 2πNkx)f ′k−1(x) + sin(αk cos 2πNkx)if ′k−1(x)

)
= −2iπαkNk sin(2πNkx)rkeiαk cos 2πNkxtk−1(x)

+ rk
rk−1

(
cos(αk cos 2πNkx)f ′′k−1(x) + sin(αk cos 2πNkx)if ′′k−1(x)

)
Since fk−1 is of constant speed rk−1 we have

f ′′k−1(x) = rk−1scalk−1(x)if ′k−1(x)

therefore
f ′′k (x) = −2iπαkNk sin(2πNkx)rkeiαk cos 2πNkxtk−1(x)

+rkrk−1scalk−1(x)ieiαk cos 2πNkxtk−1(x) .

Finally,

f ′′k (x) = (−2παkNk sin 2πNkx+ rk−1scalk−1(x)) irkeiαk cos 2πNkxtk−1(x).

Because fk is of constant arc length we also have

f ′′k (x) = rkscalk(x)if ′k(x) = rkscalk(x)irkeiαk cos 2πNkxtk−1(x).

From this we deduce

rkscalk(x) = rk−1scalk−1(x)− 2παkNk sin(2πNkx)

and by induction

rkscalk(x) = r0scal0(x)− 2π
k∑
l=1

αlNl sin(2πNlx). �
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Proposition 5. — If
∑
k∈N∗

√
δk − δk−1Nk < +∞ then f∞ is C2.

Proof. — Since we already know that the sequence (fk)k∈N C1 converges,
it is enough to prove that (f ′′k )k∈N is a Cauchy sequence. From

f ′′k (x) = rkscalk(x)if ′k(x)

we deduce
‖f ′′k (x)− f ′′k−1(x)‖C0 6 ‖rkscalk(x)f ′k(x)− rk−1scalk−1(x)f ′k−1(x)‖C0

6 ‖rk−1scalk−1(x)f ′k(x)− rk−1scalk−1(x)f ′k−1(x)‖C0

+|rkscalk(x)− rk−1scalk−1(x)|‖f ′k(x)‖C0

6 rk−1|scalk−1(x)|‖f ′k(x)− f ′k−1(x)‖C0

+rk|rkscalk(x)− rk−1scalk−1(x)|.

Since

rkscalk(x) = r0scal0(x)− 2π
k∑
l=1

αlNl sin(2πNlx)

we have
|rkscalk(x)− rk−1scalk−1(x)| 6 2παkNk

and
rk|scalk(x)| 6 r0|scal0(x)|+ 2π

∑
l∈N∗

αlNl.

In particular the rk|scalk(x)| are uniformly bounded by

M := ‖r0scal0(x)‖C0 + 2π
∑
k∈N∗

αkNk.

Note that M < +∞. Indeed αk ∼
√

2(1− r2
0)
√
δk − δk−1 therefore∑

k∈N∗

√
δk − δk−1Nk < +∞ =⇒

∑
k∈N∗

αkNk < +∞.

We deduce

‖f ′′k (x)− f ′′k−1(x)‖C0 6M‖f ′k(x)− f ′k−1(x)‖C0 + 2παkNk.

Let p < q, we thus have

‖f ′′q (x)− f ′′p (x)‖C0 6 M

q∑
k=p

√
δk − δk−1 + 2π

q∑
k=p

αkNk

6 M

∞∑
k=p

√
δk − δk−1 + 2π

∞∑
k=p

αkNk.

Hence (f ′′k )k∈N is a Cauchy sequence. �
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Theorem 2. — Assume that∑√
δk − δk−1 < +∞ and

∑√
δk − δk−1Nk = +∞.

Let 0 < η < 1 and Sk :=
∑k
l=1
√
δl − δl−1Nl. If∑

(δk − δk−1)
1−η

2 Sηk < +∞

then f∞ is C1,η.

Proof. — Let 0 < η < 1.We are going to use the interpolation inequality

‖f‖C1,η 6 Cte‖f‖1−η
C1 ‖f‖ηC2

to show that (‖fk − fk−1‖C1,η )k∈N∗ is a Cauchy sequence. From the above
sections, we have

‖fk − fk−1‖C1 6 2Cte1
√
δk − δk−1

and

M2(fk − fk−1) 6 M2(fk) +M2(fk−1)
6 M0(rk scalk)M1(fk) +M0(rk−1 scalk−1)M1(fk)
6 M0(scalk) +M0(scalk−1)

6 2M0(scal0) + 4π
k∑
l=1

αlNl.

From the Amplitude Lemma we deduce

M2(fk − fk−1) 6 2M0(scal0) + 4π
√

2(1−r2
0)

r0

∑k
l=1
√
δl − δl−1Nl

6 2M0(scal0) + 4π
√

2(1−r2
0)

r0
Sk.

So

‖fk − fk−1‖C2 6 2Cte1
√
δk − δk−1 + 2M0(scal0) + 4π

√
2(1− r2

0)
r0

Sk.

Since limk→+∞ Sk = +∞, for k large enough we have

‖fk − fk−1‖C2 6 Cte2Sk.

for some constant Cte2. We now have

‖fk − fk−1‖1−η
C1 ‖fk − fk−1‖ηC2 6 Cte3(δk − δk−1)

1−η
2 Sηk

with Cte3 = (2Cte1)1−ηCteη2 . �
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Corollary 3. — Let 0 < γ < 1 and δk := 1− e−γ(k+1). If there exists
β > 0 such that

∀k ∈ N, Nk 6 N0e
βk

then f∞ is C1,η for any η > 0 such that

η <
γ

2β .

Proof. — We have
δk − δk−1 = δ0e

−γk

thus

Sk =
k∑
l=1

√
δl − δl−1Nl 6

√
δ0N0

k∑
l=1

e(β− γ2 )l

<
√
δ0N0e

β− γ2
1− e(β−

γ
2 )(k+1)

1− eβ− γ2
Suppose first that β > γ

2 . We then have :

Sk 6 Cte4e
(β− γ2 )k.

Finally
(δk − δk−1)

1−η
2 Sηk 6 Cte5e

−γ 1−η
2 keη(β− γ2 )k.

Now
−γ 1− η

2 + η
(
β − γ

2

)
< 0

if and only if
η <

γ

2β .

Therefore, under that condition∑
(δk − δk−1)

1−η
2 Sηk < +∞

hence the corollary in the case where β >
γ

2 . We left to the reader the

easier case β 6 γ

2 . �
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