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ON ALMOST-RIEMANNIAN SURFACES

Roberta Ghezzi

Abstract. — An almost-Riemannian structure on a surface is a generalized
Riemannian structure whose local orthonormal frames are given by Lie bracket
generating pairs of vector fields that can become collinear. The distribution gen-
erated locally by orthonormal frames has maximal rank at almost every point of
the surface, but in general it has rank 1 on a nonempty set which is generically
a smooth curve. In this paper we provide a short introduction to 2-dimensional
almost-Riemannian geometry highlighting its novelties with respect to Riemann-
ian geometry. We present some results that investigate topological, metric and
geometric aspects of almost-Riemannian surfaces from a local and global point of
view.
Résumé. — Une structure presque riemannienne sur une surface est une struc-

ture riemannienne généralisée où les repères orthonormaux locaux sont donnés par
des paires de champs de vecteurs qui peuvent être parallèles, mais dont l’algèbre
de Lie engendrée a dimension 2 en tout point. En presque tout point de la sur-
face, la distribution engendrée localement par ces repères a rang maximal, mais
en général il existe un lieu, génériquement une courbe lisse, où la distribution a
rang 1. Dans cet article on fournit une courte introduction à la géométrie presque-
riemannienne de dimension 2, en soulignant les phénomènes nouveaux par rapport
à la géométrie riemannienne. On présente quelques résultats décrivant des aspect
topologiques, métriques et géométriques des surfaces presque riemanniennes d’un
point de vue local et global.

1. Introduction

The purpose of this paper is to present a generalization of Riemann-
ian geometry that naturally arises in the framework of control theory. A
Riemannian distance on a smooth surface M can be seen as the minimum-
time function of an optimal control problem where admissible velocities are
vectors of norm one. The control problem can be written locally as

q̇ = uX(q) + vY (q) , u2 + v2 6 1 ,(1.1)

Keywords: almost-Riemannian geometry, geodesics, Grushin plane, Lipschitz classifica-
tion, Pontryagin maximum principle, Gauss-Bonnet formula.
Math. classification: 49J15, 53CXX, 34K35.



16 ROBERTA GHEZZI

where {X,Y } is a local orthonormal frame. Almost-Riemannian structures
(ARSs for short) generalize Riemannian ones by allowing X and Y to be
collinear at some points. In this case the corresponding Riemannian metric
has singularities, but under generic conditions the distance is well-defined.
For instance, if the two generators satisfy the Hörmander condition(1) (see
for instance [4, 10, 25, 30]), system (1.1) is completely controllable and the
minimum-time function still defines a continuous distance on the surface.
Let us denote by ∆(q) the linear span of the two vector fields of a local or-

thonormal frame at a point q. Where ∆(q) is 2-dimensional, the correspond-
ing metric is Riemannian. Where ∆(q) is 1-dimensional, the corresponding
Riemannian metric is not well defined, but thanks to the Hörmander con-
dition one can still define the Carnot-Caratheodory distance between two
points, which happens to be finite and continuous. Generically, the singular
set Z = {q ∈ M | dim(∆(q)) = 1} is a 1-dimensional embedded submani-
fold and there are three types of points: Riemannian points, Grushin points
where ∆(q) is 1-dimensional and dim(∆(q) + [∆,∆](q)) = 2 and tangency
points where dim(∆(q) + [∆,∆](q)) = 1 and the missing direction is ob-
tained with one more Lie bracket. Generically, the following properties are
satisfied: at Grushin points ∆(q) is transversal to Z, at tangency points
∆(q) is tangent to Z and tangency points are isolated.
Almost-Riemannian structures on surfaces were introduced in the con-

text of hypoelliptic operators [22, 23]. They appeared in problems of popu-
lation transfer in quantum systems [19, 16, 18] and they have applications
to orbital transfer in space mechanics [11, 12].

The presence of a singular set enriches almost-Riemannian structures
with several novelties with respect to the Riemannian case. The aim of
this paper is to present and discuss some of these aspects, mainly from a
geometric point of view.

For instance, as it happens in sub-Riemannian geoemetry, spheres cen-
tered at points of the singular set are never smooth and the asymptotic of
the Carnot–Caratheodory distance is highly non-isotropic, see Section 4.2.
Moreover, cut loci accumulate at singular points, even in a non-smooth way,
see [13, 17]. From the local point of view, the relations between curvature
and conjugate points change, as the presence of a singular set permits the
conjugate locus to be nonempty even if the Gaussian curvature is negative,

(1)The Hörmander condition for a family F ⊂ Vec(M) of vector fields states that for
every q ∈M LieqF = TqM .
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ON ALMOST-RIEMANNIAN SURFACES 17

where it is defined. From the global point of view, the relations between cur-
vature and topology of the surface change as well. Indeed, Gauss–Bonnet-
type formulas for ARSs were obtained [7, 21, 6], where the role of the
topology of the surface is instead played by the topology of the compo-
nents in which the singular set split the surface and by the contributions
at tangency points, see Section 5.1. As a consequence, there exist ARSs
on surfaces not necessarily parallelizable for which the integral of the cur-
vature (suitably defined) vanishes, when in the Riemannian case the total
curvature can vanish only on the torus. Also, the location of the singular
set and of tangency points plays a fundamental role when studying the Lip-
schitz equivalence class of the Carnot–Caratheodory, see [15]. In particular,
if in the Riemannian case all distances on the same surface are Lipschitz
equivalent, in the almost-Riemannian case this is no longer true and the
Lipschitz classification is finer than the differential one. Other interesting
phenomena, not considered here, concerning the heat and the Schrödinger
equation with the Laplace–Beltrami operator on an almost-Riemannian
surfaces were studied in [20]. In that paper it was proven that the singular
set acts as a barrier for the heat flow and for a quantum particle, even if
geodesics can pass through the singular set without singularities.
The structure of the paper is the following. In Section 2 we recall the

precise definition of almost-Riemannian structure on a surface and fix some
notations. In Section 3 we provide examples: the Grushin plane, for which
we compute the optimal synthesis, and an example on the 2-sphere. Sec-
tion 4 deals with local results. First in Section 4.1 we study local orthonor-
mal frames and state a result that classifies the types of points. Then,
in Section 4.2 we focus on local properties around tangency points such
as the asymptotic of the distance as well as the cut and conjugate lo-
cus. Section 4.3 discusses functional invariants, i.e., functions that allow
to recognize locally isometric structures. In Section 5 we address global
problems. First we present in Section 5.1 several generalizations of the
Gauss-Bonnet formula in the almost-Riemannian context. (For generaliza-
tions of Gauss–Bonnet formula in related contexts, see also [3, 27, 28].)
In Section 5.2 a characterization of ARSs using the topology of the vector
bundle defining the structure is stated. Finally, in Section 5.3 we anal-
yse almost-Riemannian surfaces from a metric point of view presenting a
classification result with respect to Lipschitz equivalence. We conclude in
Section 6 by some open questions.

VOLUME 29 (2010-2011)



18 ROBERTA GHEZZI

2. Basic definitions and notations

Let M be a smooth connected surface without boundary and denote by
Vec(M) the module of smooth vector fields on M . Throughout the paper,
unless specified, objects are smooth, i.e., of class C∞.

Definition 2.1. — An almost-Riemannian structure (ARS for short)
on a surface M is a triple (E, f, 〈·, ·〉), where (i) E is a Euclidean bundle
of rank two over M (i.e. a vector bundle whose fibre is equipped with a
smoothly-varying scalar product 〈·, ·〉q); (ii) f : E → TM is a morphism of
vector bundles such that f(Eq) ⊆ TqM ; (iii) for every q ∈M Lieq∆ = TqM ,
where

∆ = {f ◦ σ | σ section of E}.

ARSs on surfaces can be seen as a first generalization of Riemannian
structures towards sub-Riemannian ones. Indeed, recall that a (constant
rank) sub-Riemannian structure on a manifold N is given by (D, g), where
D ⊂ TN is a sub-bundle of rank k < dimN such that LieqD = TqN for
every q ∈ N and g is a Riemannian metric on D. When dimN = 2, the only
possibility for a sub-bundle to be Lie bracket generating is that D = TN ,
i.e., there do not exist constant rank sub-Riemannian structures. Hence, in
this case one needs to consider rank-varying modules ∆ ⊂ VecN instead of
sub-bundles D ⊂ TN .
Let S = (E, f, 〈·, ·〉) be an ARS on a surface M . The Lie bracket gener-

ating assumption in Definition 2.1, jointly with the fact that dimM = 2,
implies that for each vector field X ∈ ∆ there exists a unique section σ of
E such that X = f ◦ σ.

Denote by ∆(q) the linear subspace {V (q) | V ∈ ∆} = f(Eq) ⊆ TqM .
The set

Z = {q ∈M | dim ∆(q) < 2}
is called singular set and coincides with the set of points q ∈ M at which
f|Eq is not injective, i.e., dim ∆(q) = 1.
A property (P ) defined for 2-ARSs is said to be generic if for every rank-

2 vector bundle E over M , (P ) holds for every f in an open and dense
subset of the set of morphisms of vector bundles from E to TM inducing
the identity on M , endowed with the C∞-Whitney topology.

The Euclidean structure 〈·, ·〉 on E induces a symmetric positive definite
bilinear form G(·, ·) on the submodule ∆ as G(V,W ) = 〈σV , σW 〉, where
σV , σW are the unique sections such that V = f ◦ σV ,W = f ◦ σW . At
points q where f|Eq is an isomorphism G acts as a tensor, i.e., G(V,W )|q
depends only on V (q),W (q). This is no longer true at points belonging to

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ON ALMOST-RIEMANNIAN SURFACES 19

Z, which is generically a smooth embedded submanifold of dimension 1.
By definition, an ARS is Riemannian if and only if f is an isomorphism of
vector bundles or, equivalently, the singular set is empty.
If (σ1, σ2) is an orthonormal frame for 〈·, ·〉 on an open subset U of M ,

an orthonormal frame for S on U is given by (f ◦ σ1, f ◦ σ2).
For every q ∈ M and every v ∈ ∆(q) define Gq(v) = inf{〈u, u〉q | u ∈

Eq, f(u) = v}. If q /∈ Z, then Gq(v) = G(V, V )|q, for any vector field V

such that V (q) = v. If q ∈ Z then we have the inequality

G(V, V )|q > Gq(V (q)).

An absolutely continuous curve γ : [0, T ]→M is admissible for S if there
exists a measurable essentially bounded function [0, T ] 3 t 7→ u(t) ∈ Eγ(t)
such that γ̇(t) = f(u(t)) for almost every t ∈ [0, T ]. Given an admissible
curve γ : [0, T ]→M , the length of γ is

`(γ) =
ˆ T

0

√
Gγ(t)(γ̇(t)) dt.

The Carnot–Caratheodory distance (or almost-Riemannian distance) onM
associated with S is defined as

d(q0, q1) = inf{`(γ) | γ(0) = q0, γ(T ) = q1, γ admissible}.

The finiteness and the continuity of d(·, ·) with respect to the topology ofM
are guaranteed by the Lie bracket generating assumption (see [9, Theorem
5.2]). The Carnot–Caratheodory distance endows M with the structure of
metric space compatible with the topology of M as differential manifold.
Locally, the problem of finding a curve realizing the distance between

two fixed points q0, q1 ∈ M is naturally formulated as the distributional
optimal control problem

q̇ = u1F1(q) + u2F2(q) ui ∈ R ,ˆ T

0

√
u2

1(t) + u2
2(t) dt→ min,

q(0) = q0, q(T ) = q1,

where F1, F2 is a local orthonormal frame for S.
A geodesic for S is an admissible curve γ : [0, T ] → M , such that

Gγ(t)(γ̇(t)) is constant and for every sufficiently small interval [t1, t2] ⊂
[0, T ], γ|[t1,t2] is a minimizer of `. A geodesic for which Gγ(t)(γ̇(t)) is (con-
stantly) equal to one is said to be parameterized by arclength.
Although the metric tensor is singular at points of Z, geodesics are well-

defined and smooth. This can be proved by using classical methods of

VOLUME 29 (2010-2011)



20 ROBERTA GHEZZI

optimal control theory. The Pontryagin Maximum Principle [29] provides
a direct method to find geodesics for an ARS, as the Hörmander condition
ensures the absence of abnormal extremals [7, Proposition 1]. Indeed, it
implies that an admissible curve parameterized by arclength is a geodesic
if and only if it is the projection on M of a solution of the Hamiltonian
system corresponding to the Hamiltonian

(2.1) H(q, p) = 1
2((p · F1(q))2 + (p · F2(q))2), q ∈ U, p ∈ T ∗q U.

lying on the level set H = 1/2, where F1, F2 is a local orthonormal frame
for the structure on an open set U . Notice that H is well defined on the
whole T ∗M , since formula (2.1) does not depend on the choice of the or-
thonormal frame. When looking for a geodesic γ realizing the distance
from a submanifold N (possibly of dimension zero), one should add the
transversality condition p(0) ⊥ Tγ(0)N .
The cut locus CutN from N is the set of points p for which there exists a

geodesic realizing the distance between N and p that loses optimality after
p. It is well known (see for instance [1] for a proof in the three-dimensional
contact case) that, when there are no abnormal extremals, if p ∈ CutN then
one of the following two possibilities happen: (i) p is reached optimally by
more than one geodesic; (ii) p belongs to the first conjugate locus from N

defined as follows. To simplify the notation, assume that all geodesics are
defined on [0,∞[. Define

C0 = {λ = (q, p) ∈ T ∗M | q ∈ N, H(q, p) = 1/2, p ⊥ TqN}

and

exp : C0 × [0,∞[ → M

(λ, t) 7→ π(et ~Hλ)

where π is the canonical projection (q, p) → q and ~H is the Hamiltonian
vector field corresponding to H. The first conjugate time for the geodesic
exp(λ, ·) is

tconj(λ) = min{t > 0, (λ, t) is a critical point of exp}.

and the first conjugate locus from N is {exp(λ, tconj(λ)) | λ ∈ C0}.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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3. Examples

3.1. The Grushin plane

To have a better understanding of the topic, let us study the simplest
case of genuinely almost-Riemannian surface.
Consider the ARS on R2 where

E = R2 × R2, f((x, y), (a, b)) = ((x, y), (a, xb)),

and 〈·, ·〉 is the canonical Euclidean structure on R2. In this case a global
orthonormal frame is given by F1(x, y) = ∂x, F2(x, y) = x∂y and the sin-
gular set is indeed nonempty, being equal to the y-axis. This ARS is called
Grushin plane, named after V.V. Grushin who studied in [23] analytic prop-
erties of the operator ∂2

x+x2∂2
y and of its multidimensional generalizations

(see also [22]).
The bilinear form G(·, ·) in coordinates (x, y) reads(

1 0
0 1

x2

)
,

and the Gaussian cuvature is K(x, y) = − 2
x2 . Note that for every point

outside the singular set the curvature is negative and it diverges to −∞ as
the point approaches Z.
The Grushin plane provides a very illustrative example as geodesics can

be computed explicitly. Indeed, by the Pontryagin Maximum Principle,
geodesics are projection on R2 of solutions of the Hamiltonian system as-
sociated with

H(x, y, px, py) = 1
2(p2

x + x2p2
y).

The system is 
ẋ = px
ẏ = x2py
ṗx = −xp2

y

ṗy = 0
The last equation implies that along a geodesic py(t) ≡ py(0) = a ∈ R. For
a = 0, we obtain

x(t) = x(0) + px(0)t, y(t) ≡ 0, px(t) ≡ px(0),

that is, horizontal half-lines are geodesics. For a 6= 0, the first and the third
equation are the equations for an harmonic oscillator whose solution is

x(t) = x(0) cos(at) + ẋ(0)
a

sin(at)(3.1)

px(t) = −ax(0) sin(at) + ẋ(0) cos(at).

VOLUME 29 (2010-2011)



22 ROBERTA GHEZZI

Using the normalization H = 1/2, the initial covector (px(0), a) satisfies

H(x(0), y(0), px(0), py(0)) = 1
2(p2

x(0) + x2(0)a2) = 1
2 ,

whence
ẋ(0) = px(0) = ±

√
1− x(0)2a2.

Integrating the equation for y(·) we get

y(t) = y(0) + x(0)ẋ(0)
2a + a2x(0)2 + ẋ(0)2

2a t+

+a2x(0)2 − ẋ(0)2

2a sin(2at)− x(0)ẋ(0)
2a cos(2at).(3.2)

Taking (0, 0) as starting point, the normalization condition H = 1/2
implies px(0) = 1 or px(0) = −1. When px(0) = 1, respectively px(0) = −1,
the geodesic enters the region {(x, y) | x > 0}, respectively {(x, y) | x <
0}. Hence, geodesics starting at (0, 0) have the form (x+(t, a), y(t, a)) or
(x−(t, a), y(t, a)), where

x±(t, a) = ±1
a

sin(at), y(t, a) = 1
2at−

1
4a2 sin(2at) a 6= 0,(3.3)

x±(t, 0) = ±t, y(t, 0) = 0, a = 0.(3.4)

Geodesics with a > 0, respectively a < 0, are contained in the half-plane
{(x, y) | y > 0}, respectively {(x, y) | y < 0}. In Figure 3.1a geodesics
for some values of a are portrayed, while Figure 3.1b illustrates the set
of points reached in time t = 1. Notice that this set is non-smooth. Also,
the sphere(2) centered at (0, 0) of radius r = 1 is non-smooth. In contrast
with what would happen in Riemannian geometry, this is the case for every
positive radius, as it happens in constant-rank sub-Riemannian geometry.
However, this is a consequence of the fact that the initial condition belongs
to Z.

Let us compute the cut locus from (0, 0). The geodesics with a = 0 never
lose optimality. Due to the symmetries of the problem, it is easy to see that
the two geodesics (x+(t, a), y(t, a)), (x−(t, a), y(t, a)) are optimal until they
intersect at time t = π/|a|. As a consequence the cut locus from the origin
is the set Cut(0,0) = {(0, α) | α ∈ R\{0}}. Note that Cut(0,0) accumulates
at (0, 0). This is due to the fact that (0, 0) ∈ Z and represents another
difference with the Riemannian case, where Cutp is always separated from
p.

(2)The sphere centered at (x0, y0) of radius r is defined as the boundary of the set
{(x, y) | d((x, y), (x0, y0)) < r}, where d is the Carnot–Caratheodory distance. In gen-
eral, for ARSs this set contains {(x, y) | d((x, y), (x0, y0)) = r} as a proper subset.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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a b

Figure 3.1. Analysis of the Grushin plane at (0, 0). Figure a shows
some geodesics starting at (0, 0) corresponding to a = ±1,±2,±3.
Figure b portraits the set of points whose distance from (0, 0) is equal
to 1

To compute the conjugate locus from the origin, we find critical points of
the map exp defined in Section 2. Using (3.3) one can check that, for a 6= 0,
the first conjugate time on a geodesic (x±(t, a), y(t, a)) coincides with the
first positive root of the equation

at cos(at)− sin(at) = 0.

Therefore the conjugate locus from (0, 0) is the union of two parabolas{
(x, y) | |y| = x2

2

(
1

cos τ sin τ −
1
τ

)}
\ {(0, 0)},

where τ is the first positive number such that tan τ = τ . Note that since
(0, 0) ∈ Z, the conjugate locus accumulates at (0, 0). In particular, even
if the curvature is negative for every point outside Z the conjugate locus
from (0, 0) is non-empty. However, every geodesic reaches its conjugate time
after crossing the singular set, see Figure 3.3a.
One may infer that the existence of conjugate points depends on (0, 0)

belonging to the singular set. However, this is not the case. Indeed, let us
consider (−1, 0) as starting point. Let us parameterize the initial covector as
px(0) = ±

√
1− a2, py(0) = a. When a = 0 the solutions of the Hamiltonian

system are x±(t, 0) = −1 ± t, y(t, 0) ≡ 0. When a 6= 0, using (3.1), (3.2),
the solutions are

x±(t, a) = −a cos(at)±
√

1− a2 sin(at)
a

,

y±(t, a) = ±
√

1− a2

a
(cos(at)2 − 1) + 2at− sin(2at) + 2a2 sin(2at)

4a2 .

VOLUME 29 (2010-2011)



24 ROBERTA GHEZZI

Figure 3.2. The set of points {(x, y) | d((x, y), (−1, 0)) = r}, for r = 1, 10.

For a 6= 0, geodesics starting at (−1, 0) are curves of the form{
(x+, y+), (x+,−y+) when px(0) =

√
1− a2

(x−, y−), (x−,−y−) when px(0) = −
√

1− a2.

As one expects, since the metric is Riemannian at (−1, 0), for r 6 1 the
sphere centered at (−1, 0) of radius r is smooth. This is no longer true for
r > d((−1, 0), (0, 0)) = 1, see Figure 3.2.
To compute the cut locus from (−1, 0), note first that the horizontal

geodesics (x±(t, 0), 0) never lose optimality. On the other hand, when a 6= 0,
one can check that the first time at which a geodesic (x+(t, a), y+(t, a)) in-
tersects another geodesic, namely (x−(t, a), y−(t, a)), is t = π/|a|. Similarly,
the first intersection of (x+(t, a),−y+(t, a)) happens for t = π/|a| with the
geodesic (x−(t, a),−y−(t, a)). Hence, the cut locus from (−1, 0) is the union
of two half-lines

Cut(−1,0) = {(1, α) | α ∈ (−∞,−π/2) ∪ (π/2,+∞)}.

As concerns the conjugate locus, computing critical points of exp it is
easy to show that for each a 6= 0 every geodesic has a positive conjugate
time. Hence, even if the curvature is negative and (−1, 0) /∈ Z, there exist
conjugate points to (−1, 0), see Figure 3.3b. Notice that each geodesic
reaches the conjugate point after crossing at least one time the singular
set.

3.2. An example on the 2-sphere

Consider another example on a compact surface. Let M = S2 ⊂ R3.
Then every pair of vector fields on S2 are linearly dependent on a nonempty
set. Hence, if one wants to study a metric structure defined globally by a

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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a b

Figure 3.3. Geodesics and upper part of first conjugate locus from a
point in Z (Figure a) and from a point outside Z (Figure b)

pair of vector fields on the 2-sphere, then one needs to consider an almost-
Riemannian structure.
Metric structures defined globally by a pair of vector fields on S2 arise

naturally in the context of quantum control (see [19, 16]). Indeed, consider
the ARS on S2 where E is the trivial bundle of rank two over S2 and
the image under f of a global orthonormal frame for 〈·, ·〉 on E is the pair
X(x, y, z) = (y,−x, 0), Y (x, y, z) = (0, z,−y). Then the two generators
are linearly dependent on the intersection of the sphere with the plane
{(x, y, z) | y = 0} (see Figure 3.4).

Figure 3.4. Almost-Riemannian structure on the 2-sphere

In this model, the sphere represents a suitable state space reduction of a
three-level quantum system and the orthonormal generators X and Y are
the infinitesimal rotations along two orthogonal axes, modeling the action
on the system of two lasers in the rotating wave approximation.

VOLUME 29 (2010-2011)
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Note that, as for the Grushin plane, the distribution is transversal to the
singular set at each point. Indeed, this ARS is the compact correspondent
to the Grushin plane.

4. Local results

4.1. Local representations

The first important work studying general properties of ARSs is [7] where
the authors provide the characterization of generic ARSs by means of local
representations.

Definition 4.1. — A local representation of an ARS S at a point
q ∈ M is a pair of vector fields (X,Y ) on R2 such that there exist: (i)
a neighborhood U of q in M , a neighborhood V of (0, 0) in R2 and a dif-
feomorphism ϕ : U → V such that ϕ(q) = (0, 0); (ii) a local orthonormal
frame (F1, F2) of S around q, such that ϕ∗F1 = X, ϕ∗F2 = Y , where ϕ∗
denotes the push-forward.

Under generic assumptions, it turns out that one can always construct a
local representation (X,Y ) where the first vector field is rectified and the
second one has a simple form. The main assumption to obtain such result
is the following. Set ∆1 = ∆ and ∆k+1 = ∆k + [∆,∆k], i.e., ∆k is the
module spanned by Lie brackets of length less than k between elements in
∆. We say that S satisfies condition (H0) if the following properties hold:
(H0) (i) Z is an embedded one-dimensional submanifold of M ;

(ii) the points q ∈M where ∆2(q) is one-dimensional are isolated;
(iii) ∆3(q) = TqM for every q ∈M .

A simple transversality argument allows to show that property (H0) is
generic for 2-ARSs.

Remark 4.2. — Throughout the paper, unless specified, we always deal
with ARSs satisfying (H0).

Theorem 4.3 ([7]). — Given an ARS S on M , for every point q ∈ M
there exist a local representation (X,Y ) of S at q such that (X,Y ) has one
of the forms

(F1) X(x, y) = (1, 0), Y (x, y) = (0, eφ(x,y)),
(F2) X(x, y) = (1, 0), Y (x, y) = (0, xeφ(x,y)),
(F3) X(x, y) = (1, 0), Y (x, y) = (0, (y − x2ψ(x))eξ(x,y)),
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where φ, ξ and ψ are smooth real-valued functions such that φ(0, y) = 0
and ψ(0) 6= 0.

Thanks to Theorem 4.3, for a point q ∈ M there are three possibilities.
First, if ∆(q) = TqM then q is said to be a Riemannian point and S is locally
described by (F1). Second, if ∆(q) is one-dimensional and ∆2(q) = TqM

then we call q a Grushin point and the local description (F2) applies. At
Grushin points ∆(q) is transversal to Z and the Lie bracket between the
two elements of a local orthonormal frame is sufficient to span the tangent
plane TqM . Third, if ∆(q) = ∆2(q) has dimension one and ∆3(q) = TqM

then we say that q is a tangency point and S can be described near q
by (F3). At tangency points the subspace ∆(q) is tangent to Z and the
missing direction is obtained with a Lie bracket of length two between the
two elements of a local orthonormal frame. We also set

T = {q ∈ Z | q tangency point of S}.

Note that condition (ii) in assumption (H0) ensures that tangency points
are isolated, i.e., T is a discrete set.

The idea behind the proof of Theorem 4.3 is that, since ∆(q) is at least
one-dimensional, given a local orthonormal frame for S, one vector field can
always be rectified. Then, to deduce the form of the other vector field one
needs to construct a suitable coordinate system. To do this, the authors
provide a procedure that allows to build a local representation starting from
a smooth parameterized curve c(·) passing through the base point q and
transversal to the distribution at each point. The transversality of c(·) to
the distribution implies that the Carnot–Caratheodory distance from the
support of c(·) is smooth on a neighborhood of q (see [7, Lemma 1]). Given
a point p near q, the first coordinate of p is, by definition, the distance
between p and the chosen curve, with a suitable choice of sign. The second
coordinate of p is the parameter corresponding to the point (on the chosen
curve) that realizes the distance between p and the curve (see Figure 4.1).
Using the inverse of the diffeomorphism defining this coordinate system,
one can build a vector field belonging to ∆ of norm one and then complete it
to a local orthonormal frame. The local orthonormal frame (X,Y ) obtained
through this procedure has the form X = (1, 0), Y = f(x, y)Y , where f is
a smooth function.
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sign = 1

(0, α) (s, α)

(−s′, α′) (0, α′)

c(α)

q = c(0)

c(α′)

s′ s

γ+
α (s)

sign = 1sign = −1

γ−
α′

(s′)

q = (0, 0)

sign = −1

c(·): curve transversal to the distribution

Figure 4.1. The construction of coordinates starting from a parame-
terized curve c :] − ε, ε[→ M . We denote by γ±α the geodesic starting
at c(α), parameterized by arclength, entering the region where sign
= ±1 and such that d(γ±α (s), c(] − ε, ε[)) = s. As the distribution is
transversal to c(·) at each point, the distance from c(]−ε, ε[) is smooth.

4.2. Local analysis at tangency points

ARSs are characterized by the presence of a singular set, which includes
Grushin and tangency points. These two types of points are essentially
different from each other.

At Grushin points, the local situation is described by the Grushin plane
(see Section 3) which is the nilpotent approximation(3) of any ARS at a
Grushin point. The fact that the distribution is transversal to the singular
set in a neighborhood of such points implies that the behaviour of the
almost-Riemannian distance from Z is similar on the two sides of Z, as we
point out in the discussion following Theorem 5.3 (see Section 5.1.1).
At tangency points, the situation is more complicated due to the fact

that the asymptotic of the distance from the singular set is different from
the two sides of the singular set. To see this, let us consider an example.
Take the ARS on R2 having X(x, y) = (1, 0), Y (x, y) = (0, y − x2) as
a global orthonormal frame. In this case, the singular set is the parabola
{(x, y) | y − x2 = 0} (see Figure 4.2) and (0, 0) is a tangency point. Define

(3)The nilpotent approximation of a sub-Riemannian structure at a point is the analogue
of the tangent space of a manifold. For the precise definition and analysis of the subject
see for instance [4, 10, 30].
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Mε as the set of points p ∈ R2 such that d(p,Z) > ε, where d is the almost-
Riemannian distance. ThenMε is split in two connected componentsM>

ε =
Mε ∩ {(x, y) | y − x2 > 0} and M<

ε = Mε ∩ {(x, y) | y − x2 < 0} contained
on the two different sides of Z. It turns out that for small values of ε both
parts of the boundary ofMε are non-smooth in a neighborhood of (0, 0) but
have a corner. Also, the order at which they approach Z as ε goes to zero
is different. Indeed, taking another distance d̄ on R2 associated with any
Riemannian structure(4) , one can check that d̄(M>

ε ,Z) = O(ε2), whereas
d̄(M<

ε ,Z) = O(ε3).

Figure 4.2. The singular set (thick line) and the boundary ofMε (bold
line) in a neighborhood of a tangency point, for the structure on R2

whose orthonormal frame is (1, 0), (0, y − x2) and ε = 0.07

The asymmetric behaviour of the almost-Riemannian distance distin-
guishes tangency points from Grushin points and has various consequences.
It affects the shape of the cut locus from the tangency point, as well as the
shape of the cut locus from Z near the tangency point. Moreover, together
with the asymptotic of the Gaussian curvature, it is to be taken account
of when proposing a notion of integrability with respect to an ARS (see
Section 5.1.2). Let us analyse singular loci around tangency points.
Consider an ARS in a neighborhood of a tangency point. Thanks to

Theorem 4.3, this is equivalent to taking the ARS on R2 whose orthonormal
frame is

X(x, y) = (1, 0), Y (x, y) = (0, (y − x2ψ(x))eξ(x,y)),(4.1)

where ψ, ξ are smooth functions depending on the structure and ψ(0) 6= 0.
It is easy to see that the nilpotent approximation of (4.1) at (0, 0) is the
ARS defined by the orthonormal frame

X̂(x, y) = (1, 0), Ŷ (x, y) = (0,−γx2),(4.2)
(4)For example choose d̄ as the Euclidean distance on R2.
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where γ = ψ(0)eξ(0,0). The singular set of this structure is the y-axis and
at each singular point dim ∆̂(0, y) = 1. Therefore, this structure does not
satisfy condition (ii) in (H0). The optimal synthesis for this ARS was
computed explicitly in [2, 14] in terms of Jacobi elliptic functions. Even
though such synthesis does not reflect qualitative properties of the one for
the generic case (4.1), it can be used to compute the jet of the exponential
map for the ARS (4.1). The development at (0, 0) of the orthonormal frame
in (4.1) truncated at order zero(5) is

(4.3) X̃ = ∂

∂x
, Ỹ = γ(y − x2 − ε′x3) ∂

∂y
,

where ε′ = ψ′(0) + ψ(0)ξx(0, 0). The following proposition computes the
exponential map at the origin for the ARS defined in (4.3). It happens that
higher order terms in the expansion of the elements of the orthonormal
frame in (4.1) do not affect the estimation of the exponential map and,
consequently, the order zero is sufficient to describe the cut and conjugate
loci from the tangency point, at least qualitatively.

Proposition 4.4 ([13]). — Consider the ARS on R2 defined by the
orthonormal frame given in (4.3). The solution of the Hamiltonian system
associated with

H(x, y, px, py) = 1
2(p2

x + γ2(y − x2 − ε′x3)2p2
y)

with initial condition (x, y, px, py)|t=0 = (0, 0,±1, a) with |a| ∼ +∞ can be
expanded as

x(t, η) = η x0(t/η) + η2x1(t/η) + o(η2),
y(t, η) = η3 y0(t/η) + η4y1(t/η) + o(η4),

where η = 1√
|a|

, (x0, y0, p0
x, p

0
y) is the extremal of the nilpotent approxima-

tion(6) with initial condition (x0, y0, p0
x, p

0
y)|t=0 = (0, 0,±1, sign(a)), and

ẋ1 = p1
x,

ẏ1 = γ2(p1
y(x0)4 + 4p0

y(x0)3x1 − 2p0
y((x0)2y0 − ε′(x0)5)),

ṗ1
x = −γ2(4p0

yp
1
y(x0)3 + 6(p0

y)2(x0)2x1 − (p0
y)2(2x0y0 − 5ε′(x0)4)),

ṗ1
y = γ2p0

y
2
x02

,

with initial condition (x1, y1, p1
x, p

1
y)|t=0 = (0, 0, 0, 0).

(5)The coordinate functions (x, y) have weights (1, 3), see [10].
(6) that is, (x0, y0, p0

x, p
0
y) is a solution of the Hamiltonian system associated with H0 =

1/2(p2
x + x4p2

y), see (4.2)
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Proposition 4.4 was used to estimate the conjugate locus from (0, 0) for
the ARS on R2 defined by the orthonormal frame (4.1), see [13, Proposition
5]. There exists a constant α 6= 0 such that the conjugate locus from (0, 0)
accumulates at (0, 0) as the set

{(x, y) | y = αx3} ∪ {(x, y) | y = −αx3} \ {(0, 0)}.

The shape of the cut locus from a tangency point (see Figure 4.3) is
described by the following result.

Proposition 4.5 ([13]). — Let S be an ARS on M and q ∈ M be a
tangency point such that there exists a local representation of the type
(F3) for S at q with the property

ψ′(0) + ψ(0)∂xξ(0, 0) 6= 0.

Then the cut locus from the tangency point accumulates at q as an asym-
metric cusp whose branches are separated locally by Z. In the coordinate
system where the chosen local representation is (F3), the cut locus accu-
mulates as the set

{(x, y) | y > 0, y2 − α1x
3 = 0} ∪ {(x, y) | y < 0, y2 − α2x

3 = 0},

with αi = cie
2ξ(0,0)/(ψ′(0)+ψ(0)∂xξ(0, 0))3, the constants ci being nonzero

and independent on the structure.

Note that both the conjugate locus and Cut(0,0) accumulates at (0, 0)
with tangent direction parallel to the distribution. This is no longer true
for CutZ in a neighborhood of a tangency point. A description of such
locus is given by the following theorem, see also Figure 4.3.

Theorem 4.6 ([17]). — Let S be an ARS on M and q ∈ M be a
tangency point such that there exists a local representation of the type
(F3) for S at q with the property

ε′ = ψ′(0) + ψ(0)∂xξ(0, 0) 6= 0.

Then the cut locus from the singular set Z accumulates at q as the union
of two curves locally separated by Z. One of them is contained in the set
{y > x2ψ(x)}, takes the form

{(−1/2ψ′(0)t+ o(t), t+ o(t)) | t > 0},

and accumulates at q transversally to the distribution. The other one is
contained in the set {y < x2ψ(x)} and takes the form

{(ε′ ω t2 + o(t2),−t3 + o(t3)) | t > 0},
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where ω 6= 0 is a constant depending on the structure. This part of the
cut locus accumulates at q with tangent direction at q belonging to the
distribution.

Figure 4.3. The singular set (dotted line), the cut locus from a tan-
gency point (semidashed line), the cut locus from the singular set
(dashed line), and the set of crests and valleys of K (solid lines) for
the ARS with orthonormal frame F1 = ∂

∂x , F2 = (y − x2 − x3) ∂∂y . In
this case there are three curves in the set of crests and valleys of the
curvature, only one of which is transversal to the distribution.
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4.3. Functional invariants

In a recent paper [17] the authors address the problem of finding normal
forms for ARSs that are completely reduced, in the sense that they de-
pends only on the ARS and not on its local representation. This consists in
finding a canonical choice for a local coordinate system and for a local or-
thonormal frame, i.e., two vector fields X and Y defined in a neighborhood
of the origin on R2. Once a canonical choice of (X,Y ) is provided, the two
components of X and the two components of Y are functional invariants of
the structure, in the sense that locally isometric structures have the same
components. Moreover, they permits to recognize locally isometric struc-
tures: if two structures have the same invariants in a neighborhood of a
point, then they are locally isometric. Notice that the problem of finding a
set of invariants that determines the structure up to local isometries is not
completely trivial even in the simplest case of Riemannian points. See for
instance the discussion in [8, 26]. Indeed even if one is able to fix canonically
a coordinate system, the Gaussian curvature in that coordinate system is
an invariant, but there are non-locally isometric structures having the same
curvature.
A first step in finding normal forms is Theorem 4.3. However, the local

representations corresponding to Riemannian and tangency points are not
completely reduced. Indeed, there exist changes of coordinates and rota-
tions of the frame for which an orthonormal basis has the same expression
as in (F1) (respectively (F3)), but with a different function φ (respectively
with different functions ψ and ξ). Recall that to build the local representa-
tions in Theorem 4.3 a specific procedure based on the choice of a smooth
parameterized curve transversal to the distribution was used. If the param-
eterized curve used in this construction can be canonically built, then one
gets a local representation of the form X = (1, 0), Y = (0, f) which can-
not be further reduced. Hence, f is a functional invariant that completely
determines the structure up to local isometries. In [17], a canonical choice
of the parameterized curve at each point is provided and the properties of
the functional invariant f are studied.
For Riemannian points, a canonical parameterized curve transversal to

the distribution can be easily identified, at least at points where the gradi-
ent of the Gaussian curvature is non-zero: one can use the level set of the
curvature passing from the point, parameterized by arclength. For points
where the gradient of the curvature vanishes, under additional generic con-
ditions, a smooth parameterized canonical curve passing through the point
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can be selected among the crests and valleys of the curvature, see [17,
Sections 4.1.3, 4.1.4].
For Grushin points, a canonical curve transversal to the distribution is

the set Z. This curve has also a natural parameterization and was used in
[7] to get the local representation (F2) that, as a consequence, cannot be
further reduced.

To obtain the local expression (F3), the choice of the smooth parameter-
ized curve was arbitrary and not canonical. The analysis in [17] is aimed at
finding a canonical one and, as a consequence, obtain a functional invariant
at a tangency point that completely determines the structure. The most
natural candidate for such a curve is the cut locus from the tangency point.
Neverthless, by Proposition 4.5 this is not a good choice, as in general the
cut locus from the point is not smooth but has an asymmetric cusp (see
Figure 4.3). Another possible candidate is the cut locus from the singular
set in a neighborhood of the tangency point, but Theorem 4.6 states that
the cut locus from Z is non-smooth in a neighborhood of a tangency point,
see Figure 4.3. A third possibility is to look for curves which are crests or
valleys of the Gaussian curvature and intersect transversally the singular
set at a tangency point. The main result in [17] consists in the proof of the
existence of such a curve. Moreover, this curve admits a canonical regular
parameterization.
An example of a crest of the curvature at a tangency point is shown in

Figure 4.4.

5. Global results

In this section we address global questions for almost-Riemannian sur-
faces. The general context in which all the results can be stated is the one
of totally oriented structures.

Definition 5.1. — An ARS is said to be oriented if E is oriented as
vector bundle. We say that an ARS is totally oriented if both E andM are
oriented. For a totally oriented ARS, M is split into two open sets M+,
M− such that Z = ∂M+ = ∂M−, f : E|M+ → TM+ is an orientation-
preserving isomorphism and f : E|M− → TM− is an orientation reversing-
isomorphism.

Remark 5.2. — Throughout this section we deal with totally oriented
ARS on compact surfaces (satisfying assumption (H0), see Remark 4.2).
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Figure 4.4. The graph of the Gaussian curvature K = −2(3x2+y)
(y−x2)2

for the almost-Riemannian structure on R2 having X(x, y) =
(1, 0), Y (x, y) = (0, y − x2) as orthonormal frame. The curvature has
a crest passing through the tangency point (0, 0)

5.1. Gauss-Bonnet formulas

The first global result for almost-Riemannian surfaces is a Gauss–Bonnet-
type formula proved in [7]. Such theorem gives a first sight of how the
relation between curvature and topology changes in the almost-Riemannian
context. Indeed, not only the topology of the surface shows up in the Gauss-
Bonnet formula, but also the way the singular set embeds in the surface.
Moreover, a central role is played by the topology of the vector bundle, see
Corollary 5.8.
Other generalizations of the Gauss–Bonnet formula can be found in [3] for

contact sub-Riemannian manifolds and in [27, 28] for pseudo-Riemannian
manifolds.

5.1.1. ARSs without tangency points

The Gauss–Bonnet formula for a compact oriented Riemannian surface
M states that

(5.1)
ˆ
M

KdA = 2πχ(M),
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where K is the Gaussian curvature and dA is the volume form associated
with the metric.
The first step to generalize (5.1) to ARSs is to introduce an analogous

of the volume form dA. To this aim, the idea is to take a non-degenerate
volume form ω on E for the Euclidean structure and push it forward on M
using the morphism f. Since f is not an isomorphism on Z, this does not
give rise to a two form on the whole surface M but only on the set M \ Z.
Let dAs = f∗w denote such a form. Then dAs defines on M+ the same
orientation as the one chosen on M , the opposite one on M−.

By construction, dAs ∈ Ω2(M \Z) and it diverges when approaching the
singular set. Also, the Gaussian curvature diverges when approaching to
Z. To overcome these issues and provide a way of integrating KdAs over
M the idea in [7] is to integrate KdAs over the set of points ε-far from the
singular set and then let ε go to zero. More precisely, let

(5.2) Mε = {q ∈M | d(q,Z) > ε},

(where d is the almost-Riemannian distance). Then the Gaussian curvature
is said to be integrable with respect to the ARS if the limit

(5.3) lim
ε→0

ˆ
Mε

KdAs

exists. In this case such limit is denoted by
´
M
KdAs.

It turns out that if there are not tangency points then the limit in (5.3)
exists and can be calculated in terms of the topology of the ARS.

Theorem 5.3 ([7]). — If there are no tangency points, then

(5.4)
ˆ
M

KdAs = 2π(χ(M+)− χ(M−)).

To explain the assumption of absence of tangency points, let us go
through the main ideas in the proof of (5.4). By definition,ˆ

Mε

KdAs =
ˆ
Mε∩M+

KdAs +
ˆ
Mε∩M−

KdAs.

On the sets Mε ∩M± we can apply the classical Gauss–Bonnet formula to
get ˆ

Mε∩M+
KdAs = 2πχ(Mε ∩M+)−

ˆ
∂(Mε∩M+)

kgdσ,

where kg is the geodesic curvature and ∂(Mε∩M+) carries the orientation
induced by Mε ∩M+. Taking account of orientations, similarly we obtainˆ

Mε∩M−
KdAs = −2πχ(Mε ∩M−) +

ˆ
∂(Mε∩M−)

kgdσ.
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Hence letting ε go to zero, to show formula (5.4) it is sufficient to prove
that the contribution at boundaries offset each other, i.e.,

(5.5) lim
ε→0

(ˆ
Mε∩M+

kgdσ −
ˆ
Mε∩M−

kgdσ

)
= 0.

This is the key point where the absence of tangency point is used. Indeed,
under this assumption, the set ∂Mε is shown to be smooth and, moreover,
the contributions at the boundaries have the same order in ε. In next section
we see that this symmetry between the two sides of the singular set is lost
in a neighborhood of a tangency point.
Theorem 5.3 was generalized in [21] to surfaces with boundary. In this

case, the authors define admissible domains as open bounded connected
domains U ⊂ M whose boundary is the finite union of C2-smooth admis-
sible curves and study the convergence of

´
U∩Mε

KdAs as ε goes to zero.
The generalized Gauss–Bonnet formula, proved through the above tech-
niques, takes account of the boundary contributions and some other terms
due to the intersections of ∂U with the singular set. When the intersection
between ∂U and Z is C2-smooth, the formula simplifies to the following
one.

Theorem 5.4 ([21]). — If there are no tangency points and U is an
admissible domain such that ∂U is piecewise C2-smooth and ∂U ∩ Z is
C2-smooth, thenˆ

U

KdAs +
ˆ
∂U

kgdσ = 2π(χ(U+)− χ(U−)).

In the previous statement we haveˆ
U

KdAs = lim
ε→0

ˆ
U∩Mε

KdAs,

ˆ
∂U

KdAs = lim
ε→0

(ˆ
∂U∩∂U+

ε

kgdAs −
ˆ
∂U∩∂U−ε

kgdAs

)
,

where U has the orientation induced as a domain of M and ∂U is oriented
as boundary of U ; U±ε denotes the set U ∩Mε ∩M± and kg denotes the
Gaussian curvature and dσ the arclength parameter(7) .

5.1.2. ARSs with tangency points

Let us present a further generalization of Theorem 5.3 allowing the pres-
ence of tangency point.

(7)Each C2-smooth piece of ∂U is an admissible curve parameterized by arclength
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In this case, two main issues are to be considered when studying the
convergence (5.3). First, around a tangency point the boundary of the
domain of integration is not smooth but has two corners (one on each side
of Z, see Figure 4.2). Second, the Gaussian curvature diverges in a more
complicated way than at Grushin points. Indeed, while at Grushin pointsK
diverges to −∞, at a tangency point K diverges at +∞ on some directions,
and it diverges at −∞ at some other ones (see Figures 4.4, 5.1). Together
with the interaction between different orders in the asymptotic expansion
of the almost-Riemannian distance, these remarks possibly explain why
the limit (5.3) is not shown to converge. Indeed, the compensation between
boundary terms (5.5) appears not to happen around tangency points. This
has been supported by numerical simulations in [6, Section 5.1] for the ARS
on R2 having (1, 0), (y − x2) as orthonormal frame. For this example, the
limit (5.5) appears to diverge near (0, 0) as c/ε, c is a positive constant.

y

x

Z

K < 0

K < 0

K > 0

K → −∞
K → −∞

K →∞

K = 0

Figure 5.1. Behavior ofK for the ARS on R2 whose orthonormal frame
is (1, 0), (0, y− x2): the plane R2 with the singular set (solid line) and
the set of points at which K = 0 (dashed line). See also Figure 4.4 for
the graph of K

To overcome the problem, a new notion of integrability of the curvature
has been provided in [6]. The idea is to integrate the curvature not on
the whole Mε, but on a subset of Mε depending on two other parameters
δ1, δ2. This set is built by taking away fromMε a “rectangular" box for each
tangency point, where δ1, δ2 are the dimensions of the box see Figure 5.2.
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γ−δ2 (δ1)

q

M+

M−

Z

γδ2 (δ1)

w(δ2)

w(−δ2)

γ−δ2 (−δ1)

γδ2 (−δ1)

∆

Figure 5.2. Let q be a tangency point. Take any smooth parameterized
curve c :]− 1, 1[→M such that c(0) = q and ċ(s) /∈ ∆(c(s)). For each
s ∈ (−1, 1), denote by γs the geodesic (parameterized by arclength)
such that γs(0) = c(s) and d(γs(t), w(] − 1, 1[) = |t| for each t suffi-
ciently small. For δ1, δ2 sufficiently small, the rectangle Bqδ1,δ2

is the
subset of M containing the tangency point q and having as boundary
γδ2([−δ1, δ1]) ∪ γ[−δ2,δ2](δ1) ∪ γ−δ2([−δ1, δ1]) ∪ γ[−δ2,δ2](−δ1)

Let Mε,δ1,δ2 = Mε \
⋃
q∈T B

q
δ1,δ2

. Then K is said to be 3-scale integrable
with respect to the ARS if the limit

lim
δ1→0

lim
δ2→0

lim
ε→0

ˆ
Mε,δ1,δ2

KdAs(5.6)

exists. In this case such limit is denoted by
›
M
KdAs.

Note that when there are no tangency points, the limit defined in (5.6)
clearly coincides with the one in (5.3). Besides, the order in which the limits
are taken in (5.6) is important. Indeed, if the order is permuted, then the
result given in Theorem 5.6 does not hold.
To obtain a Gauss–Bonnet formula when tangency points are present,

we need the notion of contribution at tangency points.

Definition 5.5. — Let q be a tangency point. Orient Z as the bound-
ary of M+ (see Figure 5.3). We define the contribution at q as τq = 1,
respectively τq = −1, if the distribution is rotating counterclockwise, re-
spectively clockwise, along Z at q, see Figure 5.3.
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∆ ∆

Z Z
q q

M+ M+

M− M−

τq = −1 τq = 1
Figure 5.3. Tangency points with opposite contributions

The following result generalizes Theorem 5.3 to ARSs with tangency
points.

Theorem 5.6 ([6]). — The Gaussian curvature is 3-scale integrable and

(5.7)
“
M

KdAs = 2π

χ(M+)− χ(M−) +
∑
q∈T

τq

 ,

where T is the set of tangency points of S.

Notice that the construction of Mε,δ1,δ2 depends on the choice of a man-
ifold transversal to Z at each tangency point and on its parameterization.
A canonical choice of this manifold has been provided in [17, Theorem 2],
implying that Mε,δ1,δ2 can be constructed in a intrinsic way. This is also
suggested by the fact that

›
M
KdAs equals a quantity that is intrinsically

associated with the structure, see formula (5.7).
Proof of Theorem 5.6 (sketch). Fix δ1 and δ2 in such a way that the
rectangles Bqδ1,δ2

are pairwise disjoint and Z ∩ ∂Bqδ1,δ2
⊂ [−δ1, δ1] × {δ2},

for every q ∈ T . By construction, ∂Bqδ1,δ2
is admissible and has finite length

for every q ∈ T . Hence we can take Mε \
⋃
q∈T B

q
δ1,δ2

as U in Theorem 5.4.
As a consequence, we have

(5.8) lim
ε→0

ˆ
Mε,δ1,δ2

KdAs +
∑
q∈T

ˆ
∂Bq

δ1,δ2

kgdσs =

= 2π

χ(M+ \
⋃
q∈T

Bqδ1,δ2

)
− χ

(
M− \

⋃
q∈T

Bqδ1,δ2

)
= 2π(χ(M+)− χ(M−)).

If we prove that, for a fixed q ∈ T ,

(5.9) lim
δ1→0

lim
δ2→0

ˆ
∂Bq

δ1,δ2

kgdσs = −2πτq,

then we directly obtain (5.7). To deduce (5.9) consider the local represen-
tation (F3) and assume that {(x, y) | y−x2ψ(x) < 0} ⊂M+, the proof for
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the case {(x, y) | y − x2ψ(x) < 0} ⊂ M− being analogous. On one hand,
one can check that τq = 1. On the other hand, the geodesic curvature along
[−δ1, δ1]×{δ2} and along [−δ1, δ1]×{−δ2} is zero, the two segments being
the support of geodesics. Hence
ˆ
∂Bq

δ1,δ2

kgdσs =
ˆ
{δ1}×[−δ2,δ2]

kgdσs +
ˆ
{−δ1}×[−δ2,δ2]

kgdσs +
4∑
j=1

αj

where the last term is the sum of the values of the angles of the box and
is equal to −2π. Indeed, because of the diagonal form of the metric with
respect to the chosen coordinates, each angle has value −π2 . The first two
terms are well defined and tend to zero when δ2 tends to zero. Hence

lim
δ1→0

lim
δ2→0

ˆ
∂Bq

δ1,δ2

kgdσs = −2π = −2πτq.

�

5.2. A topological classification of ARSs

In this section we present a result that provides a relation among the
topology of the almost-Riemannian surface and the Euler number of the
vector bundle associated with the structure.
Let us recall the notion of Euler number. Given an oriented vector bundle

of rank 2 over a compact connected oriented surface M , the Euler number
of E, denoted by e(E), is the self-intersection number of M in E, where
M is identified with the zero section. To compute e(E), consider a smooth
section σ : M → E transverse to the zero section. Then, by definition,

e(E) =
∑

p|σ(p)=0

i(p, σ),

where i(p, σ) = 1, respectively −1, if dpσ : TpM → Tσ(p)E preserves,
respectively reverses, the orientation. Notice that if we reverse the orien-
tation on M or on E then e(E) changes sign. Hence, the Euler number of
an orientable vector bundle E is defined up to a sign, depending on the
orientations of both E and M . Since reversing the orientation on M also
reverses the orientation of TM , the Euler number of TM is defined unam-
biguously and is equal to χ(M), the Euler characteristic of M . We refer
the reader to [24] for a more detailed discussion of this subject.
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Theorem 5.7 ([6]). — Under the assumptions of Remark 5.2, there
holds

(5.10) χ(M+)− χ(M−) +
∑
q∈T

τq = e(E).

The strategy to prove (5.10) is based on the construction of a section σ
of E having only isolated zeros {p1, . . . , pm} and such that

m∑
i=1

i(pi, σ) = χ(M+)− χ(M−) +
∑
q∈T

τq.

To this aim, the key point is to construct σ in a tubular neighborhood of
Z in such a way that it vanishes only at tangency points (see [6, Lemma
1]) and at each q ∈ T the relation i(q, σ) = τq holds (see [6, Lemma 2]).
Once this is done, it is sufficient to extend σ in a smooth way to the whole
surface. By a transversality argument, this can be done by introducing only
a finite number of isolated zeros whose index sum can be calculated using
Hopf’s Index Formula.

Theorem 5.7 has several implications. First it classifies the ARS with re-
spect to the associated vector bundle. Indeed, the Euler number represents
the only topological invariant of an oriented rank-2 vector bundle over a
compact oriented surface, i.e., it identifies the vector bundle. In particu-
lar, as a direct consequence we get that an ARS is trivializable, i.e., E is
isomorphic to the trivial bundle, if and only if

χ(M+)− χ(M−) +
∑
q∈T

τq = 0.

This generalizes and provides the converse result of [7, Lemma 5] stating
that if tangency point are absent, i.e., T = ∅, and the structure is trivi-
alizable then χ(M+) − χ(M−) = 0. An alternative proof of the fact that
the latter condition is sufficient for the structure to be trivializable can be
found in [5].
Moreover, Theorem 5.7 allows to rewrite the Gauss–Bonnet formula of

Theorem 5.6 as follows.

Corollary 5.8. — For any totally oriented ARS S on a compact sur-
face M , the Gaussian curvature is 3-scale integrable and

(5.11)
“
M

KdAs = 2πe(E).
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Corollary 5.8 encloses previous Gauss–Bonnet formulas: for Riemannian
structures, where f is an isomorphism and |e(E)| = e(TM) = χ(M) (for-
mula (5.1)) and for ARSs without tangency points, where T = ∅ (formula
(5.4)).
When considering Riemannian structures formula (5.11) says that the

total curvature is zero if and only χ(M) = 0, that is, M is diffeomorphic to
the torus. Instead, in the almost-Riemannian context formula (5.11) implies
that if the total curvature is zero then the vector bundle E is trivial. As
a consequence, there exist ARSs on surfaces of positive genus having zero
total curvature, see for example Section 3.2.

5.3. Lipschitz equivalence of ARSs

This section is devoted to the description of how the presence of the
singular set and, in particular, of tangency points affect the distance as-
sociated with the ARS. Namely, we focus our attention on the problem of
Lipschitz equivalence among different almost-Riemannian distances.
A Lipschitz equivalence is a diffeomorphism ϕ : M1 → M2 which is bi-

Lipschitz as a map from the metric space (M1, d1) to (M2, d2), where di
is an almost-Riemannian distance on the surface Mi associated with an
ARS (Ei, fi, 〈·, ·〉i) on Mi. Recall that bi-Lipschitz means that there exists
a constant C > 1 such that

1
C
d2(ϕ(q), ϕ(p)) 6 d1(q, p) 6 C d2(ϕ(q), ϕ(p)), ∀ q, p ∈M1.

In the Riemannian case, all distances on diffeomorphic compact oriented
surfaces are Lipschitz equivalent. In other words the Lipschitz classification
of Riemannian distances on compact oriented surfaces coincides with the
differential one.
In the almost-Riemannian case the Lipschitz classification is finer. This

is clearly due to the presence of a singular set and it is mainly due to how
the singular set splits the surface together with the location of tangency
points with their contributions.

5.3.1. Graph of a totally oriented ARS

It turns out that all the information needed to identify the Lipschitz
equivalence class of an almost-Riemannian distance can be encoded in a
labelled graph that is naturally associated with the structure.
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The vertices of such graph correspond to connected components ofM \Z
and the edges correspond to connected components of Z. The edge corre-
sponding to a connected component W of Z joins the two vertices cor-
responding to the connected components of M \ Z adjacent to W. Every
vertex v corresponding to a component Mv is labelled with a pair of in-
tegers (sign(v), χ(v)), where sign(v) takes into account of the orientation
of Mv (sign(v) = ±1 if Mv ⊂ M±) and χ(v) is the Euler characteristic of
Mv. Every edge e corresponding to a component W ⊂ Z is labelled with
the ordered sequence of signs (modulo cyclic permutations) given by the
contributions at the tangency points belonging to W where the order is
fixed by walking along W oriented as the boundary of M+. In Figure 5.4
we illustrate the algorithm to build the labelled graph associated with an
ARS.

M+

�� ���� ��1,−2

??
??

??
??

??
??

??
??

??
??

??

��
��

��
��

��
��

��
��

��
��

��

M+

�� ���� ��1,−2
(0)

(1)

(0)

??
??

??
??

??
??

??
??

??
??

??

(−1,−1,1,−1)

��
��

��
��

��
��

��
��

��
��

��

Figure 5.4. Algorithm to build the graph

An example of ARS and associated graph is portraited(8) in Figure 5.5.
In this case we consider an ARS on the compact oriented surface of genus 2
where Z is the union of two circles placed as in Figure 5.5a and where there
is only a tangency point of positive contribution on one of them. Then the

(8)Note that in Figure 5.5 we represent only the surface, the singular set and the tangency
points. Here we are not interested in the explicit expression of the morphism f nor on
the vector bundle E.
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graph (Figure 5.5b) must have 3 vertices and 2 edges. The label on vertices
are easily computed. As concerns labels on edges there is only a tangency
point (with positive contribution) on a connected component of Z, whence
only one edge carries a label (1), while the other edge is labelled with (0).

Remark 5.9. — Adding the quantity
∑
v sign(v)χ(v) to the sum of all

the entries in the label of edges, we obtain χ(M+) − χ(M−) +
∑
q∈T τq,

which equals e(E), by Theorem 5.7. Also,
∑
v χ(v) = χ(M). Hence, once

the labelled graph associated with an ARS is given, one recovers directly
the vector bundle and the surface.
Moreover, the labelled graph associated with an ARS depends on the

orientation fixed on E. More precisely, choosing on E the opposite orien-
tation produces the following changes in the labels of the graph. On each
vertex the first entry of the label changes sign. On each edge not only each
entry of the tuple changes sign but also the tuple is reversed in order.(9)

χ = −2
χ = −1χ = 1

τ = 0

a

M+

M+τ = 1 M−

b

(1)

(0)

−1,−2

1, 1

1,−1

Figure 5.5. Example of ARS and associated graph

We say that two labelled graphs associated with two totally oriented
ARSs are equivalent if either they are equal or after possibly changing the
orientation on one vector bundle they are equal. This notion of equivalence
is motivated by this straightforward remark: changing the orientation of the
vector bundle does not affect the almost-Riemannian distance. Moreover,
when two labelled graphs are equivalent, by Remark 5.9 the associated vec-
tor bundles are isomorphic and the underlying surfaces are diffeomorphic.

5.3.2. A classification result

The following result classifies totally oriented ARSs with respect to Lip-
schitz equivalence.
(9)For example if the label of an edge is (−1, 1,−1,−1), changing the orientation on E
the new label becomes (1, 1,−1, 1).
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Theorem 5.10 ([15]). — Two totally oriented almost-Riemannian struc-
tures defined on compact surfaces are Lipschitz equivalent if and only if they
have equivalent graphs.

Theorem 5.10 implies that the Lipschitz equivalence class of an almost-
Riemannian distance on a surface depends only on how the singular set is
embedded in the surface and how the tangency points with their contribu-
tion are located.

In the Riemannian context(10) , the Lipschitz equivalence class of dis-
tances on a given surface is unique or, equivalently, it does not depend on
the bilinear form on the tangent bundle. In a similar way, by Theorem 5.10
we deduce that the Lipschitz equivalence between two distances does not
depend on the bilinear form G defined on ∆ (see Section 2) but only on
the submodule ∆ itself. This is highlightened by the fact that the graph
itself depends only on ∆. In terms of the triple (E, f, 〈·, ·〉) this translates to
the fact that the labelled graph does not depend on the chosen Euclidean
structure 〈·, ·〉, but only on the morphism f. As a consequence, in general
Lipschitz equivalence does not imply isometry.
The main tool in the proof of Theorem 5.10 is a local classification of

ARS by Lispchitz equivalence. Indeed, using the Ball-Box Theorem (see [10,
Corollary 7.35]) it is not hard to show that in a neighborhood of a given
point two ARSs are Lipschitz equivalent if and only if the point is of the
same type (Riemannian, Grushin, tangency) for both structures. Then, to
glue the information on different neighborhoods one needs the topological
classification of surfaces, that is, one uses the information carried by labels
on vertices. To appreciate the role of contributions of tangency points,
recall that in a neighborhood of a tangency point the asymptotic of the
almost-Riemannian distance from Z is different from the two sides of Z,
see Section 4.2. The contribution τq carries the information about which
side is the one with the fastest rate of convergence of Mε (see (5.2)) to Z.

6. Conclusions

In Table 1 we compair Riemannian and almost-Riemannian geometry of
surfaces summing up the main aspects presented in this paper.

(10) If the structure is Riemannian, the associated labelled graph consists of a unique
vertex and has no edges. The label on the vertex is (δ, χ(M)), where δ = 1 if f preserves
the orientation, −1 otherwise.
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RIEMANNIAN ALMOST-RIEMANNIAN

X,Y linearly independent X,Y Lie bracket generating

at each point spheres of small radii are
smooth

at points in Z spheres are never smooth

K < 0 then no conjugate points both Riemannian points and points in
Z have conjugate locus

the cut locus from a point is separeted
from the point

the cut locus from a point in Z accu-
mulates a the point

Lipschitz equivalence ≡ differential
equivalence

Lipschitz equivalence ( differential
equivalence´

M KdA = 2πχ(M)
›
M KdAs = 2πe(E)

trivializable (∃ a global orthonormal
frame) ⇒ torus

trivializable ⇒ torus or Z 6= ∅

Table 6.1. Comparison between Riemannian and almost-Riemannian
geometry.

As one can infer from the present analysis, the most interesting points
of ARSs are tangency points. Even though some contributions have been
done [13, 17], tangency points are far to be deeply understood.
An open question arisen in the proof of Theorem 5.3 is the convergence

or the divergence of the integral of the geodesic curvature on the boundary
of a tubular neighborhood of the singular set, close to a tangency point.
To address this issue one needs to understand whether the domain of inte-
gration or the form to be integrated need to be reconsidered.
The analysis of the Laplace–Beltrami operator in presence of tangency

points has not been considered yet although in [20] the authors conjecture
some properties, based on the case with only Grushin points.
Another interesting problem is whether it is possible to associate with

an ARS a canonical linear connection on E compatible with the Euclidean
structure. To this aim one needs to use properties of the morphism f, as
in general the answer is negative. This could be a step forward towards
an intrinsic notion of integration of the Gaussian curvature on the surface,
as one could study the curvature on the vector bundle. Also, focusing on
the vector bundle rather than on the (tangent bundle to the) surface is a
starting point towards higher dimensions generalizations.
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