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CANONICAL METRICS ON SOME DOMAINS OF Cn

Fabio Zuddas

Abstract. — The study of the existence and uniqueness of a preferred Kähler
metric on a given complex manifoldM is a very important area of research. In this
talk we recall the main results and open questions for the most important canonical
metrics (Einstein, constant scalar curvature, extremal, Kähler-Ricci solitons) in the
compact and the non-compact case, then we consider a particular class of complex
domains D in Cn, the so-called Hartogs domains, which can be equipped with a
natural Kaehler metric g. We show that if g is a Kähler-Einstein, constant scalar
curvature, extremal or a soliton metric then (D, g) is holomorphically isometric to
an open subset of the n-dimensional complex hyperbolic space. If D is bounded,
we also show the same assertion under the assumption that g is a scalar multiple
of the Bergman metric.

The results we present are proved in papers joint with A. Loi and A. J. Di Scala
([11], [20]).

1. Canonical metrics: existence and uniqueness

1.1. The compact case

Let M be a complex manifold, with complex structure J . Let g be a
Kähler metric on M , i.e. a J-invariant Riemannian metric such that the
associated Kähler form ω, defined by ω(v, w) = g(Jv,w), is closed.

In this talk we are interested in those Kähler metrics on M which are
canonical in the sense that they are minima of natural geometric functionals
on M or arise as limits of important geometric flows like the Kähler-Ricci
flow. In order to give the precise definitions, let us fix some notations.

Let Ricg denote the Ricci tensor of (M, g) and let ρω be its Ricci form
defined by ρω(v, w) = Ricg(Jv,w) (we will omit the subscript ω when the
context is clear). If, in a chart endowed with complex coordinates z1, . . . , zn
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144 FABIO ZUDDAS

we have ω = i
2
∑n
α,β=1 gαβ̄dzα∧dz̄β and ρ = i

2
∑n
α,β=1 Ricαβ̄dzα∧dz̄β , the

scalar curvature is given by

(1.1) scalω =
n∑

α,β=1
gβ̄αRicαβ̄ ,

where gβ̄α are the entries of the inverse of (gαβ̄), namely
n∑
α=1
gβ̄αgαγ̄ = δβγ .

If M is compact, we can consider the Calabi functional given by

(1.2) C(ω) = 1
V

∫
M

(scalω)2ωn.

One can see that a Kähler metric ω0 is a critical point for C in some
Kähler class if and only if the (1, 0) part of the gradient of scalω0 is a
holomorphic field. In a chart given by coordinates z1, . . . , zn, this amounts
to say that the field X = gj̄i0

∂scalω0
∂z̄j

∂
∂zi

is holomorphic. If a Kähler metric
has constant scalar curvature (briefly, it is a cscK metric) then it clearly
satisfies this condition (since in this case X = 0), and obviously this is the
unique possibility if M does not have any non-zero holomorphic fields (for
example if the first Chern class c1(M) < 0). In general, Calabi proved in
[2] that there exist critical points of C which are not cscK and he christens
them (nontrivial(1) ) extremal metrics.

The main obstruction to the existence of cscK metrics is given by the
Calabi-Futaki invariant F (X, [ω]) defined by F (X, [ω]) =

∫
M
X(h)ωn,

where h is the solution to the elliptic PDE ∆h = scalω − 1
V

∫
M
scalωω

n

(see, for example, [23] for a proof that it just depends on the class [ω]).
More precisely, the necessary condition for such a metric to exist in the
class [ω] is that F (X, [ω]) = 0 for every holomorphic field X. Conversely, it
is not hard to see that if this last condition is verified, then any extremal
metric is cscK. It follows then that the existence of nontrivial extremal
metrics is an obstruction to the existence of metrics with constant scalar
curvature.

As for uniqueness, we have that any two extremal metrics in a given Käh-
ler class are obtained one from the other via an element of the connected
component Aut0(M) of the automorphism group of M (see [22] and [8]).
We refer the reader interested in the subject of extremal metrics to [15].

(1) The trivial ones being the cscK metrics.
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CANONICAL METRICS ON SOME DOMAINS OF Cn 145

In the case when the first Chern class c1(M) is nonpositive, the existence
of cscK metrics follows from Yau’s results about the existence of Kähler-
Einstein metrics, i.e. the metrics satisfying the Einstein condition

(1.3) ρ = λω

for some real number λ. The starting point to attack this equation is given
by the following simple facts (see, for example, [17]):

(1) the Ricci form admits a particularly simple expression in term of
the metric, namely

(1.4) ρ = −i ∂∂̄ log(det g)

where ∂ and ∂̄ denote the operators which, in any chart given by
coordinates z1, . . . , zn, act on functions as ∂f =

∑n
i=1

∂f
∂zi
dzi and

∂̄f =
∑n
i=1

∂f
∂z̄i
dz̄i;

(2) the cohomology class of the Ricci form is independent of the given
metric: more precisely, we have [ i2πρ] = c1(M), where c1(M) de-
notes the first Chern class of the manifold M .

It follows that a necessary condition for (1.3) to admit a solution is
that the first Chern class is (positive or negative) definite or vanishes. Let
us then make this assumption and fix a Kähler metric g0 such that the
corresponding Kähler form ω0 belongs to c1(M), up to some scalar factor.
By the ∂∂̄-lemma (see, for example, [29]), we have ρ0 = λω0 + i∂∂̄f and
ω = ω0 + i∂∂̄φ for any other Kähler form ω cohomologous to ω0, where f
and φ are globally defined functions on M .

It follows that, always under the assumption thatM is compact, equation
(1.3) can be reduced to the following scalar equation on φ:

(1.5) − log
det(g0 + ∂2φ

∂zj∂z̄k
)

det g0
− λφ+ f = 0.

In his celebrated paper of 1978, Yau ([28]) proves that, if c1(M) 6 0, then
this PDE admits a solution and then he obtains the existence of a Kähler-
Einstein metric on every compact complex manifold having nonpositive first
Chern class (moreover, if c1(M) < 0, then this is unique up to homothety,
while if c1(M) = 0 there is exactly one for each positive (1,1) cohomology
class with a given volume).

On the other hand, it is known that, in the case c1(M) > 0, there ex-
ist manifolds which do not admit any Kähler-Einstein metric. The search
for sufficient conditions or obstructions to the existence of Kähler-Einstein
metrics in this case has opened a wide area of research where the most im-
portant results have been obtained by Futaki, Matsushima, Tian and others
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146 FABIO ZUDDAS

(see, for example, [23]). When a Kähler-Einstein metric exists, anyway, by
a result of Bando and Mabuchi ([1]) it is unique up to the action of the
identity component Aut0(M) of the automorphism group of the manifold.

An alternative approach to Yau’s equation in the study of existence of
Kähler-Einstein metrics consists in considering the so-called normalized
Ricci flow

(1.6)

{
dω(t)
dt = −ρω(t) + λω(t)
ω(0) = ω0

which, following the same arguments as above, can be reduced to a para-
bolic PDE for which the natural questions are: does the flow locally/globally
exist? if so, does it converge to a Kähler-Einstein metric?

In [3], H.D. Cao proves that the flows admits a global solution which, in
the case c1(M) 6 0, converges towards a Kähler-Einstein metric, accord-
ingly with Yau’s results. Conversely, Tian and Zhu ([25]) have proved that
if M is known to admit a Kähler-Einstein metric, then the flows converges
to it, even in the case c1(M) > 0.

Let us also mention the result, recently proved by Cao and Zhu ([4]),
which states that if the starting metric ω0 has strictly positive bisectional
curvature and the Futaki invariant vanishes, then Cao’s method works even
in the case c1(M) > 0 and the flows converges to a Kähler-Einstein metric.

The flow approach naturally leads us to consider another class of metrics
which we will include under the definition of canonical metric, namely the
soliton metrics.

By definition, a pair (ω,X) consisting of a Kähler metric ω and of a real
holomorphic field X on M is called a Kähler-Ricci soliton if it satisfies the
following equation:

(1.7) ρ = λω + LXω

for some real number λ ∈ R, where LX denotes the Lie derivative.
The main result showing the connection between solitons and Ricci flow

has been proved by Tian and Zhu ([25]): letM admit a Kähler-Ricci soliton
(ω,X), and let K be a maximal compact subgroup of the connected Lie
subgroup of Aut0(M) corresponding to the Lie subalgebra of all holomor-
phic fields on M (we may assume that the soliton is K-invariant). Then,
if ω0 is a KX -invariant metric (where KX denotes the one-parameter sub-
group ofK generated by Im(X)) the normalized Ricci flow starting from ω0
converges to the soliton metric ω.

It is worth here recalling that the existence of a non-trivial soliton (i.e.
which is not a Kähler-Einstein metric) is an obstruction to the existence
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CANONICAL METRICS ON SOME DOMAINS OF Cn 147

of a Kähler-Einstein metric, as it can be easily seen by considering again
Futaki’s obstruction (see above for the definition). For some important and
wide classes of complex manifolds (namely, the toric manifolds, see [27]) it
has been proved that if a Kähler-Einstein metric does not exist, then the
manifold admits a non-trivial soliton.

Regarding uniqueness, Tian and Zhu ([24]) have proved that if (ω,X),
(ω′, X ′) are two solitons on M , then there exists σ ∈ Aut0(M) such that
ω = σ∗ω′ and X = (σ−1)∗X ′.

1.2. The non-compact case

The assumption of compactness for the manifold M is essential for the
validity of the methods discussed above (as they rely for example on the
∂∂̄-lemma or the maximum principles for parabolic and elliptic equations)
or even for the definitions to make sense (the Calabi functional is defined
as an integral on M). In the non-compact case we have nevertheless some
remarkable results.

Concerning the existence of Kähler-Einstein metrics, let us mention that
Cheng and Yau ([9]) have proved that every bounded domain of Cn admits
a Kähler-Einstein metric (having negative curvature) provided it is smooth
and strongly pseudoconvex. Let us recall that this means that the Levi
form

L(ρ, z)(X) =
n∑

α,β=1

∂2ρ

∂zα∂z̄β
(z)XαX̄β

is positive definite on

Sρ = {(X1, . . . , Xn) ∈ Cn |
n∑
α=1

∂ρ

∂zα
(z)Xα = 0},

where ρ denotes any defining function of the domain.
In [7], Chau generalizes the flow approach by Cao, extending its results

to the case when M is a noncompact manifold endowed with a metric g
with bounded curvature and satisfying Ricij̄ +gij̄ = ∂2f

∂zi∂z̄j
for some smooth

function f (this last assumption plays in fact the role of c1(M) < 0).
Finally, let us mention the results of C. LeBrun ([18]) giving explicit

examples of complete Ricci-flat, non-flat metrics on Cn.
Concerning the solitons, we refer the reader for example to [14] for the

question of the existence and uniqueness in the noncompact case.
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148 FABIO ZUDDAS

As for extremal metrics(2) , the existence and uniqueness are far from
being understood. For example, only recently in [5] (see also [6]), there has
been shown the existence of a nontrivial extremal and complete Kähler
metric in a complex one-dimensional manifold.

2. Canonical metrics on Hartogs domains

In this section we are going to look more closely to the Einstein, soliton
and extremal equations for some classes of connected, open domains in Cn.

The constructive results shown in the literature, as for instance Le Brun’s
example in [18] mentioned above or Calabi’s first example of nontrivial, ex-
tremal metric ([2]), are mostly concerned with domains given by rotation-
invariant defining equations and metrics given by rotation-invariant poten-
tials, where we say that a function f is rotation-invariant if

f(z1, . . . , zn) = f̃(|z1|2, . . . , |zn|2)

for some real-valued function f̃ defined on some open domain of Rn. The
reason is that, as we shall see below, this assumption makes the PDE’s
arising from the canonical metric condition more symmetric, which in some
cases allows us to reduce them to ordinary differential equations.

A class of domains of Cn which satisfy this assumption and which have
been studied in the literature from different points of view are the so-called
Hartogs domains.

Definition 2.1. — Let x0 ∈ R+ ∪{+∞} and let F : [0, x0)→ (0,+∞)
be a decreasing continuous function, smooth on (0, x0). The Hartogs do-
main DF ⊂ Cn associated to the function F is defined by

DF = {(z0, z1, . . . , zn−1) ∈ Cn | |z0|2 < x0, |z1|2+· · ·+|zn−1|2 < F (|z0|2)}.

The most simple example of Hartogs domain is given by choosing x0 = 1,
F (x) = 1 − x, which yields the ball B(o, 1) ⊆ Cn centered at the ori-
gin o ∈ Cn and of radius one. One can obviously produce a lot of examples,
among which we mention the Spring domain, corresponding to x0 = +∞,
F (x) = e−x, or domains given by functions like F (x) = (c1 + c2x)λ, where
the values of λ, c1, c2 and x0 are chosen in order to satisfy the assumptions
of Definition 2.1.

(2) Since we assume that M is noncompact, we define a metric to be extremal if the
(1, 0) part of the gradient of scalω0 is a holomorphic field.
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CANONICAL METRICS ON SOME DOMAINS OF Cn 149

Every Hartogs domain can be endowed with the natural form of type (1,1)
given by

(2.1) ωF = i
2
∂∂ log 1

F (|z0|2)− |z1|2 − · · · − |zn−1|2
.

Under the assumption that the real function xF ′/F is strictly decreasing,
one shows that ωF is in fact a Kähler form.

For example, in the case when F = 1 − x, we have that ωF is just
the hyperbolic Kähler form, so that (DF , ωF ) is the complex hyperbolic
space CHn.

These domains are interesting both from the mathematical and the phys-
ical point of view (see for example [12] and [19] for the study of some Rie-
mannian properties of gF and the Berezin quantization of (DF , gF ), [10]
and [21] for the construction of global symplectic coordinates on these do-
mains and [26] for the construction of Kähler-Einstein metrics on Hartogs
type domains on symmetric spaces).

In the context of this talk the interest for Hartogs domains comes from
the fact that they yield a lot of examples of noncompact Kähler manifolds
enjoying a priori different geometric properties which can be controlled by
integro-differential conditions on F itself.

As an example of this fact, let us recall that in [11] it was proved that DF
is geodesically complete with respect to the Kähler metric gF associated to
the Kähler form ωF if and only if

(2.2)
∫ √x0

0

√
−
(
xF ′

F

)′
|x=u2 du = +∞

where we define √x0 = +∞ for x0 = +∞.
Turning back to canonical metrics, we have proved that, in the class of

Hartogs domains, thought as domains endowed with the metric gF asso-
ciated to the natural Kähler form ωF , there are no examples of canonical
metrics but the complex hyperbolic space. More precisely, we have the fol-
lowing

Theorem 2.2. — ([20], Theorems 1.1 and 1.2) Let (DF , gF ) be a Har-
togs domain in Cn. If (at least) one of the following assumptions is satisfied:

(1) gF is a Kähler-Einstein metric
(2) gF is a cscK metric
(3) gF is an extremal metric
(4) there exists a holomorphic field X such that (gF , X) is a Kähler-

Ricci soliton

VOLUME 27 (2008-2009)



150 FABIO ZUDDAS

then (DF , gF ) is holomorphically isometric to an open domain of the hy-
perbolic space CHn.

In the case when the domain is bounded (which occurs iff x0 <∞) we can
consider another condition leading to the same conclusion as assumptions
(1)-(4). Indeed, in this case we can consider the space H of the holomorphic
functions f : DF → C such that

∫
DF
|f |2dz <∞, which is a Hilbert space

with respect to the product 〈f, g〉 =
∫
DF
fḡdz. Given an orthonormal basis

{fi} of H, we can define the Bergman kernel of DF by K(z) =
∑
i |fi|2 and

the Bergman metric of DF by gB = i∂∂̄K (see, for example, [29]).
It can be verified that the Bergman metric of the ball B(o, 1) ⊆ Cn is,

up to a real positive constant, the hyperbolic metric which, as we have
remarked above, is the Hartogs metric corresponding to this domain. Like
the properties given by (1)− (4) above, also this one can occur only in this
special case, as stated in the following

Theorem 2.3. — ([11], Theorem 1.3) Let (DF , gF ) be a bounded Har-
togs domain in Cn and let gB denote the Bergman metric of DF . If gB =
λgF for some λ > 0, then (DF , gF ) is holomorphically isometric to an open
domain of the hyperbolic space CHn.

3. Sketch of the proofs of Theorems 2.2 and 2.3

Proof of Theorem 2.2 (1) and (2). — Set

(3.1) A = F (|z0|2)− |z1|2 − · · · − |zn−1|2

and

(3.2) C = F ′2(|z0|2)|z0|2 − (F ′′(|z0|2)|z0|2 + F ′(|z0|2))A.

Then one sees that the matrix h = (gαβ̄) of the metric gF is given by:

(3.3) h = 1
A2



C −F ′z̄0z1 . . . −F ′z̄0zα . . . −F ′z̄0zn−1
−F ′z0z̄1 A+ |z1|2 . . . z̄1zα . . . z̄1zn−1

...
...

...
...

−F ′z0z̄α z1z̄α . . . A+ |zα|2 . . . z̄αzn−1
...

...
...

...
−F ′z0z̄n−1 z1z̄n−1 . . . zαz̄n−1 . . . A+ |zn−1|2


.

By the Laplace expansion along the first row, after a long but straight
calculation we get
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CANONICAL METRICS ON SOME DOMAINS OF Cn 151

(3.4) det(h) = − F
2

An+1

(
xF ′

F

)′
|x=|z0|2 .

Let L(x) = d
dx [x ddx log(xF ′2−F (F ′+F ′′x))]. A straightforward compu-

tation using (3.4) and the definitions gives

Ric00̄ = −L(|z0|2)− (n+ 1)g00̄,(3.5)
Ricαβ̄ = −(n+ 1)gαβ̄ , α > 0(3.6)

so that

scalgF = −L(|z0|2)g0̄0 − (n+ 1)
n−1∑
α,β=0

gβ̄αgαβ̄ = −L(|z0|2)g0̄0 − n(n+ 1),

which can also be written as

(3.7) scalgF = −A
B
FL− n(n+ 1)

where
B = B(|z0|2) = F ′2|z0|2 − F (F ′ + F ′′|z0|2).

Thus, scalgF is constant if and only if AFLB is constant. Since A =
F (|z0|2)− |z1|2 − · · · − |zn−1|2 depends on z1, . . . , zn−1 while LFB depends
only on z0, it must be L = 0, i.e.

d

dx

[
x
d

dx
log(xF ′2 − F (F ′ + F ′′x))

]
x=|z0|2

≡ 0.

By (3.5) it is clear that this is also the condition for the metric to be
Einstein. So we have proved that (1) and (2) of the theorem are equivalent
to an ordinary differential equation for F .

Now, we continue as in the proof of Theorem 4.8 in [19] and conclude
that F (x) = c1 − c2x, x = |z0|2, with c1, c2 > 0, which implies that DF
is holomorphically isometric to an open subset of the complex hyperbolic
space CHn via the map

φ : DF → CHn, (z0, z1, . . . , zn−1) 7→

(
z0√
c1/c2

,
z1√
c1
, . . . ,

zn−1√
c1

)
.

�

Proof of Theorem 2.2 (3). — By definition, the metric gF is an extremal
metric if and only if it satisfies the following system of PDE’s:

(3.8) ∂

∂z̄γ

n−1∑
β=0
gβ̄αF
∂ scalgF
∂z̄β

 = 0,
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152 FABIO ZUDDAS

for every α, γ = 0, . . . , n− 1.
We are going to show that if (3.8) is satisfied then scalgF is in fact

constant and hence by part (2) of the theorem (DF , gF ) is holomorphically
isometric to an open subset of (CHn, ghyp). In order to do that, fix i > 1
and let us consider equation (3.8) for α = 0, γ = i.

By deriving it with respect to z̄i, we get

2F
B
G′z0z

2
i + 2GF

′

B
z0z

2
i = 0

where
G = G(|z0|2) = −L(|z0|2)F (|z0|2)

B(|z0|2)
.

If z0zi 6= 0, this reduces to GF ′ + FG′ = 0 or, equivalently, G = c
F for

some constant c ∈ R. The proof of (3) will thus be completed by showing
that c = 0 since in this case G = 0 on the open and dense subset of DF
consisting of those points such that z0zi 6= 0 and therefore, by (3.7), scalgF
is constant on DF . In order to prove that c = 0, we consider equation (3.8)
for α = i, γ = i and apply the same argument as above, getting

G′F ′|z0|2 +G(F ′ + F ′′|z0|2)
B

= 0,

i.e. (GF ′x)′ = 0, x = |z0|2. Substituting G = c
F in this equality we get

c(F
′x
F )′ = 0, and we have done since (F

′x
F )′ < 0 (this is the condition for

ωF to be Kähler). �

Proof of Theorem 2.2 (4). — We have to prove that a Kähler–Ricci
soliton (gF , X) on a Hartogs domain DF is necessarily trivial (Notice that
the automorphism group of DF is not discrete, see also [16]).

A real holomorphic vector field X is given in the local complex coordi-
nates (z0, . . . , zn−1) by

(3.9) X =
n−1∑
k=0

(
fk
∂

∂zk
+ f̄k

∂

∂z̄k

)
,

for some holomorphic functions fk, k = 0, . . . , n− 1.
By applying both sides of RicgF = λ gF + LXgF to the pair ( ∂∂z0

, ∂∂z̄0
)

and taking into account (3.5) one gets:

(3.10) − L(|z0|2) =

γg00̄ +
n−1∑
k=0

(
fk
∂g00̄
∂zk

+ f̄k
∂g00̄
∂z̄k

)
+
n−1∑
k=0

(
∂fk
∂z0
gk0̄ + ∂f̄k

∂z̄0
g0k̄

)
where γ = λ+ (n+ 1). By (3.3), we have
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(3.11) C̃ =
n−1∑
k=0
Ck(fkz̄k + f̄kzk) + C(φ0 + φ̄0)− F ′

n−1∑
k=1

(
z0z̄k
∂fk
∂z0

+ z̄0zk
∂f̄k
∂z̄0

)
where we have set C̃ = −A2L−γC, Ck = A2 ∂g00̄

∂xk
(xk = |zk|2) and φ0 = ∂f0

∂z0
(A and C are given by (3.1) and (3.2) respectively).

Now, by applying the operator ∂4

∂2zi∂2z̄i
(i = 1, . . . , n − 1) to both sides

of this equation and evaluating at z1 = · · · = zn−1 = 0 we get

(3.12) L = 2xF
′3

F 3 (f0z̄0 + f̄0z0)− 2xF
′2

F 2 (φi + φ̄i),

where φi = ∂fi
∂zi

.
Now, let i = 1, . . . , n − 1. By the same argument applied to the pair

( ∂∂zi ,
∂
∂z̄i

) one gets

(3.13) − γF = −F ′(f0z̄0 + f̄0z0) + F (φi + φ̄i)

and

(3.14) 0 = −F
′

F
(f0z̄0 + f̄0z0) + (φi + φ̄i).

By comparing (3.12) with (3.14), one gets L = 0 and hence, by the proof
of parts (1)-(2), (DF , gF ) is holomorphically isometric to an open subset
of (CHn, ghyp), as required. (Notice that equations (3.13) and (3.14) yield
γ = 0 and then one gets that X is a Killing vector field with respect to
ghyp, as expected). �

Proof of Theorem 2.3. — Recall that the Bergman metric gB on DF
is, by definition, the one given by the Kähler potential log K̃(z0, z; z0, z),
where K̃ is the Bergman kernel of DF .

Notice that A = A(z0, z) = F (|z0|2) − ‖z‖2 is a local defining function
(positively signed) for DF at any boundary point (z0, z) with z0 ∈ B =
{z0 ∈ C | |z0|2 < x0}, and such boundary points are strictly pseudoconvex.
The hypothesis of the theorem and the fact that DF is contractible means
that

log K̃(z0, z) = −λ logA+ 2ReG(z0, z)

for some holomorphic function G on DF ; here and below we will write
just K̃(z0, z) for K̃(z0, z; z0, z). By rotational symmetry of K̃ and A, the
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pluriharmonic function 2ReG must depend only on |z0|2 and ‖z‖2, hence
must be a positive constant, say µ. Thus

(3.15) K̃(z0, z) = µ

A(z0, z)λ
.

On the other hand, by Fefferman’s formula [13] for the boundary singularity
of the Bergman kernel,

(3.16) K̃(z0, z) = a(z0, z)
A(z0, z)n+1 + b(z0, z) logA(z0, z), (z0, z) ∈ DF ,

where a, b ∈ C∞(B × Cn−1) and

(3.17) a(z0, z) = n!
πn
J [A](z0, z),

for z0 ∈ B and ‖z‖2 = F (|z0|2) and where J [A] is the Monge-Ampere
determinant

(3.18) J [A] = (−1)n det

 A
∂A
∂z0

∂zA
∂A
∂z̄0

∂2A
∂z0∂z̄0

∂z( ∂A∂z̄0
)

∂z̄A ∂z̄( ∂A∂z̄0
) ∂z̄∂zA

 .
A direct computation gives

(3.19) J [A] = −F 2 ∂
2 logF
∂z0∂z̄0

.

(which depends only on |z0|2). By comparing (3.15) with (3.16) one gets:

µ = a(z0, z)A(z0, z)λ

A(z0, z)n+1 + b(z0, z)A(z0, z)λ logA(z0, z), (z0, z) ∈ DF ,

which evaluated at ‖z‖2 = F (|z0|2), forces λ = n + 1. Further, by (3.17)
and (3.19), the last expression gives

−F 2 ∂
2 logF
∂z0∂̄z0

= c,

for all z0 ∈ B and ‖z‖2 = F (|z0|2), where c is the negative constant given
by c = −µπ

n

n! (notice that the condition ‖z‖2 = F (|z0|2) is superfluous,
since nothing there depends on z). Feeding this back into formula (3.19)
one gets J [A](z0, z) = c for all (z0, z) ∈ DF , i.e. gF is Kähler-Einstein, and
we are done by Theorem 2.2 (1).
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