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HIGH-ORDER ANGLES IN ALMOST-RIEMANNIAN
GEOMETRY

Ugo Boscain & Mario Sigalotti

Abstract. — Let X and Y be two smooth vector fields on a two-dimensional
manifold M . If X and Y are everywhere linearly independent, then they define a
Riemannian metric on M (the metric for which they are orthonormal) and they
give to M the structure of metric space. If X and Y become linearly dependent
somewhere on M , then the corresponding Riemannian metric has singularities, but
under generic conditions the metric structure is still well defined. Metric structures
that can be defined locally in this way are called almost-Riemannian structures.
The main result of the paper is a generalization to almost-Riemannian structures
of the Gauss-Bonnet formula for domains with piecewise-C2 boundary. The main
feature of such formula is the presence of terms that play the role of high-order
angles at the intersection points with the set of singularities.

1. Introduction

Let M be a two-dimensional smooth manifold and consider a pair of
smooth vector fields X and Y on M . If the pair X, Y is Lie bracket generat-
ing, i.e., if span{X(q), Y (q), [X,Y ](q), [X, [X,Y ]](q), . . .} is full-dimensional
at every q ∈M , then the control system

(1.1) q̇ = uX(q) + vY (q) , u2 + v2 6 1 , q ∈M ,

is completely controllable and the minimum-time function defines a contin-
uous distance d on M . When X and Y are everywhere linear independent
(the only possibility for this to happen is that M is parallelizable), such
distance is Riemannian and it corresponds to the metric for which (X,Y )
is an orthonormal moving frame.

The idea is to study the geometry obtained starting from a pair of vector
fields which may become collinear. Under generic hypotheses, the set Z
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42 UGO BOSCAIN & MARIO SIGALOTTI

(called singular locus) of points of M at which X and Y are parallel is a
one-dimensional embedded submanifold of M (possibly disconnected).

Metric structures that can be defined locally by a pair of vector fields
(X,Y ) through (1.1) are called almost-Riemannian structures. A notion
of orientability can be introduced in a natural way for almost-Riemannian
structures (see Section 2). An example of almost-Riemannian structure
is provided by the Grushin plane, for which M = R2 and the pair of
generating vector fields can be chosen as X(x, y) = (1, 0) and Y (x, y) =
(0, x). (See [3, 4, 5, 6, 7].)

The notion of almost-Riemannian structure was introduced in [1]. That
paper provides a characterization of generic almost-Riemannian structures
by means of local normal forms and presents a generalization of the Gauss-
Bonnet formula (for manifolds without boundary). Let M be compact and
oriented, and endow it with an orientable almost-Riemannian structure.
Denote by K : M \ Z → R the Gaussian curvature and by dAs a signed
volume form associated with the almost-Riemannian structure on M \ Z
(see Section 4 for the precise definition).

Let Mε = {q ∈ M | d(q,Z) > ε}, where d(·, ·) is the distance globally
defined by the almost-Riemannian structure on M . In [1] it was proven
that, under generic assumptions and in the case in which the distribution
generated by X and Y is nowhere tangent to Z, the limit

(1.2) lim
ε↘0

∫
Mε

K(q)dAs

exists and its value is equal to 2π(χ(M+)− χ(M−)), where χ denotes the
Euler characteristic and M+ (respectively, M−) is the subset of M \ Z
on which the orientation defined by dAs coincides with (respectively, is
opposite to) that of M .

In this paper we prove a sharper version of the formula presented above,
for domains having piecewise-C2 boundary of finite length. Let U be an
open connected subset of M whose boundary Γ is piecewise-C2 and of finite
length. Let U±ε = Mε ∩M± ∩ U . Under generic conditions, if we assume
that Γ is C2 in a neighborhood of Z, then the following limits exist and are
finite: ∫

U

KdAs = lim
ε→0

∫
U+

ε ∪U−ε

KdAs,(1.3) ∫
∂U

kgdσs = lim
ε→0

(∫
Γ∩∂U+

ε

kgdσ −
∫

Γ∩∂U−ε

kgdσ

)
,(1.4)
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Gauss-Bonnet formula (for manifolds without boundary). Let M be compact and oriented, and endow it with
an orientable almost-Riemannian structure. Denote by K : M \ Z → R the Gaussian curvature and by dAs a
signed volume form associated with the almost-Riemannian structure on M \ Z (see Section 4 for the precise
definition).

Let Mε = {q ∈ M | d(q,Z) > ε}, where d(·, ·) is the distance globally defined by the almost-Riemannian
structure on M . In [1] it was proven that, under generic assumptions and in the case in which the distribution
generated by X and Y is nowhere tangent to Z, the limit

lim
ε↘0

∫

Mε

K(q)dAs (2)

exists and its value is equal to 2π(χ(M+) − χ(M−)), where χ denotes the Euler characteristic and M+ (re-
spectively, M−) is the subset of M \Z on which the orientation defined by dAs coincides with (respectively, is
opposite to) that of M .

In this paper we prove a sharper version of the formula presented above, for domains having piecewise-C2

boundary of finite length. Let U be an open connected subset of M whose boundary Γ is piecewise-C2 and of
finite length. Let U±

ε = Mε ∩M± ∩ U . Under generic conditions, if we assume that Γ is C2 in a neighborhood
of Z, then the following limits exist and are finite:

∫

U

KdAs = lim
ε→0

∫

U+
ε ∪U−

ε

KdAs, (3)

∫

∂U

kgdσs = lim
ε→0

(
∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−
ε

kgdσ

)

, (4)

where kg denotes the geodesic curvature, dσ is the Riemannian length element, and we interpret each integral
∫

Γ∩∂U±
ε

kgdσ as the sum of the integrals along the smooth portions of Γ ∩ ∂U±
ε , plus the sum of the angles at

the points where Γ is not C1.
Moreover, the following generalization of the Gauss-Bonnet formula with boundary holds true

∫

U

KdAs +

∫

∂U

kgdσs = 2π(χ(U+) − χ(U−)).

(See Section 5.)
If Γ is C1, but not C2 at the intersection points with Z (in particular, cusps at the singularity are allowed,

see Figure 1), then the limits in (3) and (4) need not exist.
Nevertheless the limit

lim
ε→0

(
∫

U+
ε ∪U−

ε

KdAs +

∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−
ε

kgdσ

)

does exist and is equal to

2π(χ(U+) − χ(U−)) +
m

∑

i=1

αi,

where the αi’s are suitably defined high-order angles at the intersection points of Γ with Z. The explicit
expression of the αi’s can be given intrinsecally in terms of the asymptotic behavior of the geodesic curvature
of Γ at the intersection points.

The paper is organized as follows: in Section 2 we introduce the general definition of two-dimensional
almost-Riemannian structure. In Section 3 we recall the classification of local normal forms for generic almost-
Riemannian structures. Section 4 contains the statement of the Gauss-Bonnet formula for almost-Riemannian
manifolds without boundary given in [1]. Finally, in Section 5 the version of the Gauss-Bonnet formula for
domains with boundary is extended to the almost-Riemannian case.

2

U

Z

Figure 1: an admissible domain U .

2 Almost-Riemannian structures

For every smooth manifold M denote by Vec(M) the set of smooth vector fields on M .

Definition 1 Let M be a two-dimensional smooth manifold and consider a family

S = {(Ωµ,Xµ
1 ,Xµ

2 )}µ∈I ,

where {Ωµ}µ∈I is an open covering of M and, for every µ ∈ I, {Xµ
1 ,Xµ

2 } is a family of Vec(M) whose
restriction to Ωµ satisfies the Lie bracket generating condition.

We say that S is an almost-Riemannian structure (ARS for short) if, for every µ, ν ∈ I and for every
q ∈ Ωµ ∩ Ων , there exists an orthogonal matrix Rµ,ν(q) = (Rµ,ν

i,j (q)) ∈ O(2) such that

Xµ
i (q) =

k
∑

j=1

Rµ,ν
i,j (q)Xν

j (q). (5)

We say that two ARSs S1 and S2 on M are equivalent if S1 ∪ S2 is an ARS. Given an open subset Ω of M
and a pair of vector fields (X1,X2), we say that (Ω,X1,X2) is compatible with S if S ∪ {(Ω,X1, . . . ,Xk)} is
equivalent to S.

If S is equivalent to an ARS of the form {(M,X1,X2)}, i.e., for which the cardinality of I is equal to one,
we say that S is trivializable.

If S admits an equivalent ARS such that each Rµ,ν(q) belongs to SO(2), we say that S is orientable.

Given an ARS S, we define an associated distribution ∆ and a quadratic form G on ∆ by the rule

∆(q) = span{Xµ
1 (q), . . . ,Xµ

k (q)}, Gq(v, v) = inf

{

k
∑

i=1

α2
i | v =

k
∑

i=1

αiX
µ
i (q)

}

, q ∈ Ωµ, v ∈ ∆(q).

A curve γ : [0, T ] → M is said to be admissible for S if it is Lipschitz continuous and γ̇(t) ∈ ∆γ(t) for almost
every t ∈ [0, T ]. Given an admissible curve γ : [0, T ] → M , the length of γ is

l(γ) =

∫ T

0

√

Gγ(t)(γ̇(t), γ̇(t)) dt.

3

Figure 1.1. An admissible domain U .

where kg denotes the geodesic curvature, dσ is the Riemannian length el-
ement, and we interpret each integral

∫
Γ∩∂U±ε

kgdσ as the sum of the inte-
grals along the smooth portions of Γ ∩ ∂U±ε , plus the sum of the angles at
the points where Γ is not C1.

Moreover, the following generalization of the Gauss-Bonnet formula with
boundary holds true∫

U

KdAs +
∫

∂U

kgdσs = 2π(χ(U+)− χ(U−)).

(See Section 5.)
If Γ is C1, but not C2 at the intersection points with Z (in particular,

cusps at the singularity are allowed, see Figure 1.1), then the limits in (1.3)
and (1.4) need not exist.

Nevertheless the limit

lim
ε→0

(∫
U+

ε ∪U−ε

KdAs +
∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−ε

kgdσ

)
does exist and is equal to

2π(χ(U+)− χ(U−)) +
m∑

i=1

αi,
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44 UGO BOSCAIN & MARIO SIGALOTTI

where the αi’s are suitably defined high-order angles at the intersection
points of Γ with Z. The explicit expression of the αi’s can be given intrin-
secally in terms of the asymptotic behavior of the geodesic curvature of Γ
at the intersection points.

The paper is organized as follows: in Section 2 we introduce the general
definition of two-dimensional almost-Riemannian structure. In Section 3 we
recall the classification of local normal forms for generic almost-Riemannian
structures. Section 4 contains the statement of the Gauss-Bonnet formula
for almost-Riemannian manifolds without boundary given in [1]. Finally,
in Section 5 the version of the Gauss-Bonnet formula for domains with
boundary is extended to the almost-Riemannian case.

2. Almost-Riemannian structures

For every smooth manifold M denote by Vec(M) the set of smooth vector
fields on M .

Definition 2.1. — Let M be a two-dimensional smooth manifold and
consider a family

S = {(Ωµ, Xµ
1 , X

µ
2 )}µ∈I ,

where {Ωµ}µ∈I is an open covering of M and, for every µ ∈ I, {Xµ
1 , X

µ
2 }

is a family of Vec(M) whose restriction to Ωµ satisfies the Lie bracket
generating condition.

We say that S is an almost-Riemannian structure (ARS for short) if, for
every µ, ν ∈ I and for every q ∈ Ωµ∩Ων , there exists an orthogonal matrix
Rµ,ν(q) = (Rµ,ν

i,j (q)) ∈ O(2) such that

(2.1) Xµ
i (q) =

k∑
j=1

Rµ,ν
i,j (q)Xν

j (q).

We say that two ARSs S1 and S2 on M are equivalent if S1∪S2 is an ARS.
Given an open subset Ω of M and a pair of vector fields (X1, X2), we say
that (Ω, X1, X2) is compatible with S if S ∪{(Ω, X1, . . . , Xk)} is equivalent
to S.

If S is equivalent to an ARS of the form {(M,X1, X2)}, i.e., for which
the cardinality of I is equal to one, we say that S is trivializable.

If S admits an equivalent ARS such that each Rµ,ν(q) belongs to SO(2),
we say that S is orientable.
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Given an ARS S, we define an associated distribution ∆ and a quadratic
form G on ∆ by the rule

∆(q) = span{Xµ
1 (q), . . . , Xµ

k (q)},

Gq(v, v) = inf

{
k∑

i=1

α2
i | v =

k∑
i=1

αiX
µ
i (q)

}
, q ∈ Ωµ, v ∈ ∆(q).

A curve γ : [0, T ] → M is said to be admissible for S if it is Lipschitz
continuous and γ̇(t) ∈ ∆γ(t) for almost every t ∈ [0, T ]. Given an admissible
curve γ : [0, T ] →M , the length of γ is

l(γ) =
∫ T

0

√
Gγ(t)(γ̇(t), γ̇(t)) dt.

The distance induced by S on M is the function

(2.2) d(q0, q1) = inf{l(γ) | γ(0) = q0, γ(T ) = q1, γ admissible}.

It is a standard fact that l(γ) is invariant under reparameterization of the
curve γ. Moreover, if an admissible curve γ minimizes the so-called energy
functional E(γ) =

∫ T

0
Gγ(t)(γ̇(t), γ̇(t)) dt with T fixed (and fixed initial

and final point) then v =
√

Gγ(t)(γ̇(t), γ̇(t)) is constant and γ is also a
minimizer of l(·). On the other hand a minimizer γ of l(·) such that v is
constant is a minimizer of E(·) with T = l(γ)/v.

A geodesic for S is a curve γ : [0, T ] →M such that for every sufficiently
small nontrivial interval [t1, t2] ⊂ [0, T ], γ|[t1,t2] is a minimizer of E(·).
A geodesic for which Gγ(t)(γ̇(t), γ̇(t)) is (constantly) equal to one is said
to be parameterized by arclength.

The finiteness and the continuity of d(·, ·) with respect to the topology
of M are guaranteed by the Lie bracket generating assumption on the ARS.
The distance d(·, ·) gives to M the structure of metric space. The local
existence of minimizing geodesics is a standard consequence of Filippov
Theorem (see for instance [2]). When M is compact any two points of M
are connected by a minimizing geodesic.

Notice that the problem of finding a curve minimizing the energy between
two fixed points q0, q1 ∈ M is naturally formulated as the optimal control
problem

q̇ =
2∑

i=1

uiX
µ
i (q) , ui ∈ R , µ ∈ I(q) = {µ ∈ I | q ∈ Ωµ},(2.3)

∫ T

0

2∑
i=1

u2
i (t) dt→ min, q(0) = q0, q(T ) = q1.(2.4)

VOLUME 25 (2006-2007)



46 UGO BOSCAIN & MARIO SIGALOTTI

Here µ, u1, u2 are seen as controls and T is fixed. It is a standard fact that
this optimal control problem is equivalent to the minimum time problem
with controls u1, u2 satisfying u2

1 + u2
2 6 1. When the ARS is trivializ-

able, the role of µ is empty and (2.3), (2.4) can be rewritten as a classical
distributional control problem with quadratic cost

q̇ =
2∑

i=1

uiXi(q) , ui ∈ R ,

∫ T

0

2∑
i=1

u2
i (t) dt→ min, q(0) = q0, q(T ) = q1.

Given an ARS S, we call singular locus the set Z ⊂ M of points q at
which the dimension of ∆(q) is equal to one. Denote by g the restriction of
the quadratic form G on M \Z. By construction g is a Riemannian metric
satisfying

g(Xµ(q), Xµ(q)) = 1, g(Xµ(q), Y µ(q)) = 0, g(Y µ(q), Y µ(q)) = 1,

for every µ in I and every q ∈ Ωµ \ Z. Denote by dA the Riemannian
density associated with (M \ Z, g), which coincides with |dXµ ∧ dY µ| on
Ωµ \ Z, for every µ ∈ I. Finally, one can define on M \ Z the Gaussian
curvature K associated with g, which is easily expressed in each open set
Ωµ \ Z through the formula (see for instance [2], equation (24.6)) K =
−(αµ)2− (βµ)2 +Xµβµ−Y µαµ, where αµ, βµ : Ωµ \Z → R are (uniquely)
defined by [Xµ, Y µ] = αµXµ + βµY µ, and Xµβµ (respectively, Y µαµ)
denotes the Lie derivative of βµ with respect to Xµ (respectively, of αµ

with respect to Y µ).
A natural tool to study the geodesics of an almost-Riemannian structure

is the necessary condition for optimality given by the Pontryagin Maximum
Principle (see [8]). As a result we obtain the following proposition.

Proposition 2.2. — Define on T ∗M the Hamiltonian

H(λ, q) =
1
2
(〈λ,Xµ(q)〉2 + 〈λ, Y µ(q)〉2), q ∈ Ωµ, λ ∈ T ∗q M.

(Notice that H is well defined on the whole T ∗M , thanks to (2.1).) Consider
the minimization problem

(2.5) q̇ ∈ ∆(q),
∫ T

0

Gq(t)(q̇(t), q̇(t))dt→ min, q(0) = Min, q(T ) = Mfin,

where Min and Mfin are two submanifolds of M and the final time T > 0
is fixed. Then every solution of (2.5) is the projection on M of a trajectory
(λ(t), q(t)) of the Hamiltonian system associated with H satisfying λ(0) ⊥
Tq(0)Min, λ(T ) ⊥ Tq(T )Mfin, and H(λ(t), q(t)) 6= 0.
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Remark 2.3. — The simple form of the statement above follows from
the absence of abnormal minimizers, which follows from the Lie bracket
generating assumption. As a consequence a curve is a geodesic if and only
if it the projection of a normal extremal. Notice that H is constant along
any given solution of the Hamiltonian system. Moreover, H = 1/2 if and
only if q(.) is parameterized by arclength.

3. Normal forms for generic ARSs

We recall in this section some results on the local characterization of
generic ARSs obtained in [1].

Denote by W the C2-Whitney topology defined on Vec(M) and by
(Vec(M),W)2 the product of two copies of Vec(M) endowed with the cor-
responding product topology. We recall that if M is compact then W is the
standard C2 topology.

Definition 3.1. — A property (P ) defined for ARSs is said to be
generic if there exists an open and dense subset O of (Vec(M),W)2 such
that (P ) holds for every ARS admitting an atlas of local orthonormal frames
whose elements belong to O.

Let us introduce the flag of the distribution ∆ by the recursive formula

(3.1) ∆1 = ∆, ∆k+1 = ∆k + [∆,∆k].

The following proposition is a standard corollary of the transversality
theorem. It formulates generic properties of a ARS in terms of the flag of
the distribution ∆.

Proposition 3.2. — Let M be a two-dimensional smooth manifold.
Generically, an ARS S = {(Ωµ, Xµ, Y µ)}µ∈I on M satisfies the following
properties:

(i) Z is an embedded one-dimensional smooth submanifold of M ;
(ii) The points q ∈M at which ∆2(q) is one-dimensional are isolated;

(iii) ∆3(q) = TqM for every q ∈M .

As a consequence of Proposition 3.2, one can classify the local normal
forms of a generic ARS. See [1] for the proof.

Theorem 3.3. — Generically for an ARS S, for every point q ∈ M

there exist a neighborhood U of q and a pair of vector fields (X,Y ) on M

VOLUME 25 (2006-2007)
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such that (U,X, Y ) is compatible with S and, up to a smooth change of
coordinates defined on U , q = (0, 0) and (X,Y ) has one of the forms

(F1)X(x, y) = (1, 0), Y (x, y) = (0, eφ(x,y)),

(F2)X(x, y) = (1, 0), Y (x, y) = (0, xeφ(x,y)),

(F3)X(x, y) = (1, 0), Y (x, y) = (0, (y − x2ψ(x))eξ(x,y)),

where φ, ξ and ψ are smooth real-valued functions such that φ(0, y) = 0
and ψ(0) 6= 0.

Definition 3.4. — Let S be a ARS and assume that the generic condi-
tions (i), (ii), (iii) of Proposition 3.2 hold true. A point q ∈M is said to be
an ordinary point if ∆(q) = TqM , hence, if S is locally described by (F1).
We call q a Grushin point if ∆(q) is one-dimensional and ∆2(q) = TqM ,
i.e., if the local description (F2) applies. Finally, if ∆(q) = ∆2(q) is of di-
mension one and ∆3(q) = TqM we say that q is a tangency point and S can
be described near q by the normal form (F3).

The local behavior of g, K, and dA close to ordinary, Grushin, and
tangency points is described by the following lemma.

Lemma 3.5. — Let X(x, y) = (1, 0) and Y (x, y) = (0, f(x, y)) be two
smooth vector fields on R2. Let D = {(x, y) ∈ R2 | f(x, y) 6= 0} and g be the
Riemannian metric on D having (X,Y ) as an orthonormal frame. Denote
by K the curvature of g and by dA the Riemannian density. We have

g = dx2 +
1
f2
dy2, K =

−2 (∂xf)2 + f ∂2
xf

f2
, dA =

1
|f |

dx dy.

4. A Gauss-Bonnet-like formula for manifolds without
boundary

Let M be an orientable two-dimensional manifold and let S be an ori-
entable ARS on M . Chose a positive oriented atlas of orthonormal frames
{(Ωµ, Xµ, Y µ)}µ∈I . Then there exists a two-form dAs on M \ Z such that
dAs = dXµ ∧ dY µ on Ωµ \ Z for every µ ∈ I.

Fix now an orientation Ξ of M . Recall that the choice of Ξ determines
uniquely a notion of integration on M \ Z with respect to the form dAs.
More precisely, given a dA-integrable function f on Ω ⊂ M , if for every
q ∈ Ω, Ξ and dAs define the same orientation at q (i.e. if Ξ(q) = αdAs(q)
with α > 0), then∫

Ω

f dAs =
∫

(Ω,Ξ)

fdAs =
∫

Ω

f |dAs| =
∫

Ω

fdA.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Let
M± = {q ∈ Ωµ \ Z | µ ∈ I,±Ξ(Xµ, Y ν)(q) > 0}.

Then
∫
Ω
fdAs = ±

∫
Ω
fdA if Ω ⊂M±.

For every ε > 0 let Mε = {q ∈ M | d(q,Z) > ε}, where d(·, ·) is
the almost-Riemannian distance (see equation (2.2)). We say that K is
S-integrable if limε→0

∫
Mε

K dAs exists and is finite. In this case we denote
such limit by

∫
KdAs.

Theorem 4.1. — Let M be a compact oriented two-dimensional man-
ifold without boundary. For a generic oriented ARS on M such that no
tangency point exists, K is S-integrable and∫

KdAs = 2π(χ(M+)− χ(M−)),

where χ denotes the Euler characteristic.

A proof of Theorem 4.1 can be found in [1]. For a generic trivializable
ARS without tangency points one can show, thanks to topological consid-
erations (see [1]), that χ(M+) = χ(M−). As a consequence, one derives
the following result.

Corollary 4.2. — LetM be a compact oriented two-dimensional man-
ifold without boundary. For a generic trivializable ARS on M without tan-
gency points we have

∫
KdAs = 0.

Remark 4.3. — In the results stated above, the hypothesis that there
are not tangency points seems to be essential. Technically, the difficulty
comes when one tries to integrate the Hamiltonian system given by the
Pontryagin Maximum Principle applied to a system written in the normal
form (F3).

It is interesting to notice that the hypotheses of Corollary 4.2 are never
empty, independently of M . Indeed:

Lemma 4.4. — Every compact orientable two-dimensional manifold ad-
mits a trivializable ARS satisfying the generic conditions of Proposition 3.2
and having no tangency points.

5. A Gauss-Bonnet formula on domains with boundary

The Gauss-Bonnet formula on domains with boundary can also be gen-
eralized to almost-Riemannian structures without tangency points.

VOLUME 25 (2006-2007)
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Definition 5.1. — Let U be an open bounded connected subset of M .
We say that U is an admissible domain if Ū contains only ordinary and
Grushin points and if the boundary Γ of U is the union of the supports
of a finite set of curves γ1, . . . , γm satisfying the following conditions: each
γl : [0, T l] →M is C2 on the closed interval [0, T l]; each γl is admissible and
is parameterized by arclength (in particular Γ has finite length); each γl is
oriented according to the orientation on Γ induced by the orientation of M .

Theorem 5.2. — LetM be an orientable smooth two-dimensional man-
ifold and S be an orientable ARS on M . Let U be an admissible domain
of M and denote by γ1, . . . , γm the parameterizations of the boundary Γ
of U as in Definition 5.1. For every ε > 0 define M±

ε = M± ∩Mε and
U±ε = M±

ε ∩ U . Let tj1, . . . , t
j
lj

be the times at which γj crosses Z. Asso-
ciate to each tjl the quantity Σ+(tjl ) as follows: if for ε > 0 small enough the
support of γj |(tj

l
,tj

l
+ε) lies in M+ then Σ+(tjl ) = 1 , if it lies in M−, then

Σ+(tjl ) = −1. Similarly, if for ε > 0 small enough the support of γj |(tj
l
−ε,tj

l
)

lies in M+ then we set Σ−(tjl ) = 1, if it lies in M−, then Σ−(tjl ) = −1.
Denote by kj

g(t) the geodesic curvature of γj at the point γj(t). Define, in
addition,

Υ(Ξ) =
Ξ

2
√

1− Ξ2
+ arccos(Ξ)

and

Ξ±(tjl ) = lim
t→tj

l
±
kj

g(t)|t−t
j
l |, α(tjl ) = Σ−(tjl )Υ(Ξ−(tjl ))+Σ+(tjl )Υ(Ξ+(tjl )).

Then

(5.1) lim
ε→0

(∫
U+

ε ∪U−ε

KdAs +
∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−ε

kgdσ

)
=

2π(χ(U+)− χ(U−))−
m∑

j=1

lj∑
l=1

α(tjl ),

when we interpret each integral
∫
Γ∩∂U±ε

kgdσ as the sum of the integrals
along the smooth portions of Γ ∩ ∂U±ε , plus the sum of the angles at the
points where Γ is not C1.

If, moreover, Γ is C2 in a neighborhood of Z, then

(5.2)
∫

U

KdAs +
∫

∂U

kgdσs = 2π(χ(U+)− χ(U−)),

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



HIGH-ORDER ANGLES IN ALMOST-RIEMANNIAN GEOMETRY 51

where ∫
U

KdAs = lim
ε→0

∫
U+

ε ∪U−ε

KdAs,(5.3) ∫
∂U

kgdσs = lim
ε→0

(∫
Γ∩∂U+

ε

kgdσ −
∫

Γ∩∂U−ε

kgdσ

)
.(5.4)

The existence of all the objects introduced in the statement above is
motivated in the proof of the theorem.

Proof. — First notice that, according to the hypotheses of the theorem,
the set Γ ∩ Z is necessarily finite. Indeed, assume by contradiction that a
connected component of Γ intersects Z infinitely many times. Then there
exists a sequence (tl)l∈N such that γj(tl) ∈ Z and tl → t∞ as l→∞. Since
the length of γj is finite and γ̇j(t) 6= 0 for every t, it easily turns out that
γj is not C2 in a (half-)neighborhood of t∞. �

By suitably cutting U in subdomains and because of mutual cancelations,
we can assume without loss of generality that U is simply connected, that Γ
is C1 and intersects Z twice, and that U \Z has two connected components
(see Figure 5).

Take ε0 > 0 such that for every ε ∈ (0, ε0) the sets U+
ε and U−ε are

diffeomorphic to U+ and U−, respectively.
By applying the standard Gauss-Bonnet formula to U+

ε and U−ε . We
obtain the equalities∫

U±ε

KdA+
∫

Γ∩∂U±ε

kgdσ +
∫

∂Mε∩∂U±ε

kgdσ + θ1,±
ε + θ2,±

ε =

2πχ(U±ε ) = 2πχ(U±)

where the angles θ1,±
ε and θ2,±

ε are defined as in Figure 5.
Therefore,∫

U+
ε ∪U−ε

KdAs +
∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−ε

kgdσ =

2π(χ(U+)− χ(U−)) + θ1,−
ε + θ2,−

ε − θ1,+
ε − θ2,+

ε +

+
∫

∂Mε∩∂U−ε

kgdσ −
∫

∂Mε∩∂U+
ε

kgdσ.

(5.5)

Let Z1 and Z2 be the intersection points of Γ with Z, as in Figure 5. De-
fine Z1,±

ε and Z2,±
ε as the intersections of Γ with ∂M±

ε . Let, moreover, Y 1,±
ε

and Y 2,±
ε be the points of ∂M±

ε at distance ε from Z1 and Z2, respectively.
(The definition is well-posed for ε small enough, see [1, Lemma 1].)
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Theorem 14 Let M be an orientable smooth two-dimensional manifold and S be an orientable ARS on M .
Let U be an admissible domain of M and denote by γ1, . . . , γm the parameterizations of the boundary Γ of U
as in Definition 13. For every ε > 0 define M±

ε = M± ∩Mε and U±
ε = M±

ε ∩U . Let tj1, . . . , t
j
lj

be the times at

which γj crosses Z. Associate to each tjl the quantity Σ+(tjl ) as follows: if for ε > 0 small enough the support

of γj |(tj
l
,tj

l
+ε) lies in M+ then Σ+(tjl ) = 1 , if it lies in M−, then Σ+(tjl ) = −1. Similarly, if for ε > 0 small

enough the support of γj |(tj
l
−ε,tj

l
) lies in M+ then we set Σ−(tjl ) = 1, if it lies in M−, then Σ−(tjl ) = −1.

Denote by kj
g(t) the geodesic curvature of γj at the point γj(t). Define, in addition,

Υ(Ξ) =
Ξ

2
√

1 − Ξ2
+ arccos(Ξ)

and
Ξ±(tjl ) = lim

t→tj
l
±

kj
g(t)|t − tjl |, α(tjl ) = Σ−(tjl )Υ(Ξ−(tjl )) + Σ+(tjl )Υ(Ξ+(tjl )).

Then

lim
ε→0

(
∫

U+
ε ∪U−

ε

KdAs +

∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−
ε

kgdσ

)

= 2π(χ(U+) − χ(U−)) −
m

∑

j=1

lj
∑

l=1

α(tjl ), (11)

when we interpret each integral
∫

Γ∩∂U±
ε

kgdσ as the sum of the integrals along the smooth portions of Γ∩ ∂U±
ε ,

plus the sum of the angles at the points where Γ is not C1.
If, moreover, Γ is C2 in a neighborhood of Z, then

∫

U

KdAs +

∫

∂U

kgdσs = 2π(χ(U+) − χ(U−)), (12)

where
∫

U

KdAs = lim
ε→0

∫

U+
ε ∪U−

ε

KdAs, (13)

∫

∂U

kgdσs = lim
ε→0

(
∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−
ε

kgdσ

)

. (14)

The existence of all the objects introduced in the statement above is motivated in the proof of the theorem.

Proof. First notice that, according to the hypotheses of the theorem, the set Γ∩Z is necessarily finite. Indeed,
assume by contradiction that a connected component of Γ intersects Z infinitely many times. Then there exists
a sequence (tl)l∈N such that γj(tl) ∈ Z and tl → t∞ as l → ∞. Since the length of γj is finite and γ̇j(t) '= 0
for every t, it easily turns out that γj is not C2 in a (half-)neighborhood of t∞.

By suitably cutting U in subdomains and because of mutual cancelations, we can assume without loss of
generality that U is simply connected, that Γ is C1 and intersects Z twice, and that U \ Z has two connected
components (see Figure 5).

Take ε0 > 0 such that for every ε ∈ (0, ε0) the sets U+
ε and U−

ε are diffeomorphic to U+ and U−, respectively.
By applying the standard Gauss-Bonnet formula to U+

ε and U−
ε . we obtain the equalities

∫

U±
ε

KdA +

∫

Γ∩∂U±
ε

kgdσ +

∫

∂Mε∩∂U±
ε

kgdσ + θ1,±
ε + θ2,±

ε = 2πχ(U±
ε ) = 2πχ(U±)

where the angles θ1,±
ε and θ2,±

ε are defined as in Figure 5.
Therefore,
∫

U+
ε ∪U−

ε

KdAs +

∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−
ε

kgdσ = 2π(χ(U+) − χ(U−)) + θ1,−
ε + θ2,−

ε − θ1,+
ε − θ2,+

ε +

+

∫

∂Mε∩∂U−
ε

kgdσ −
∫

∂Mε∩∂U+
ε

kgdσ. (15)

7

U+
ε

U−

ε

Y 1,−

ε

Z2,−

ε

Z1,−

ε

Y 2,−

ε

L+
ε

Y 2,+
ε

Λ2,+
ε

Z1,+
ε

Y 1,+
ε

Λ1,+
ε

Z2
θ2,+

ε

θ2,−

ε

θ1,+
ε

Z2,+
ε

Z1

Σ+
ε

= +1Σ−

ε
= −1

Σ−

ε
= +1

Σ+
ε

= −1

θ1,−

ε

Figure 2: the domain U .

8

Figure 5.1. The domain U .

Denote by L±ε the oriented portion of ∂M±
ε going from Y 1,±

ε to Y 2,±
ε , by

Λ1,±
ε the oriented portion of ∂M±

ε going from Z1,±
ε to Y 1,±

ε , and by Λ2,±
ε

the oriented portion of ∂M±
ε going from Y 2,±

ε to Z2,±
ε .

It was proven in [1, Section 5.2] that

lim
ε→0

(∫
L+

ε

kgdσ +
∫

L−ε

kgdσ

)
= 0.

Hence, (5.5) rewrites∫
U+

ε ∪U−ε

KdAs +
∫

Γ∩∂U+
ε

kgdσ −
∫

Γ∩∂U−ε

kgdσ =

2π(χ(U+)− χ(U−)) + θ1,−
ε + θ2,−

ε − θ1,+
ε − θ2,+

ε

−
∫

Λ1,+
ε

kgdσ −
∫

Λ2,+
ε

kgdσ −
∫

Λ1,−
ε

kgdσ −
∫

Λ2,−
ε

kgdσ + o(1)

for ε→ 0.
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Let us compute now the asymptotic behavior of −
∫
Λ2,+

ε
kgdσ− θ2,+

ε . Fix
a system of coordinates in a neighborhood of Z2 such that Z2 = (0, 0) and
an orthonormal basis for S is given by the pair of vector fields (1, 0) and
(0, xeφ(x,y)). In this system of coordinates Γ ∩M+ can be locally param-
eterized by a curve of the type t 7→ (t, c(t)) with c(t) = (1/2)ξt2 + o(t2).
Although such curve is not parameterized by arclength, we have that the
norm of its derivative tends to one as t↘ 0. The relation between ξ = c̈(0+)
and Ξ+(0) can be obtained by directly computing the geodesic curvature
of t 7→ (t, c(t)). One gets

(5.6) Ξ+(0) = − ξ√
1 + ξ2

.

(In particular, Ξ+(0) is well defined and finite.)
A similar computation shows that∫

Λ2,+
ε

kgdσ = −ξ
2

+ o(1)

for ε→ 0. Inverting (5.6) one gets∫
Λ2,+

ε

kgdσ =
Ξ+(0)

2
√

1− (Ξ+(0))2
+ o(1).

Finally, the angle θ2,+
ε is computed using the Riemannian metric defined

by S on M+ and has the expression

θ2,+
ε = arccos

− ċ(ε)

εeφ(ε,c(ε))

√
1 + ċ(ε)2

ε2e2φ(ε,c(ε))


= arccos

(
− ξ√

1 + ξ2

)
+ o(1) = arccos

(
Ξ+(0)

)
+ o(1)

for ε→ 0. Therefore,

lim
ε→0

(
−
∫

Λ2,+
ε

kgdσ − θ2,+
ε

)
= −Υ(Ξ+(0)).

Similarly one computes the limits as ε goes to zero of −θ1,+
ε −

∫
Λ1,+

ε
kgdσ,

θ1,−
ε −

∫
Λ1,−

ε
kgdσ, and θ2,−

ε −
∫
Λ2,−

ε
kgdσ, and obtains (5.1).

The second part of the statement follows as a particular case of what has
just been proven. The existence and finiteness of the limits (5.3) and (5.4)
is a consequence of the existence and finiteness of Ξ± and of the fact that
in the C2-case Ξ+ = Ξ−.
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