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TWO LECTURES ON SPECTRAL INVARIANTS
FOR THE SCHRODINGER OPERATOR

Mikhail V. NOVITSKII

Abstract

An introduction into spectral invariants for the Schrodinger operators with per-
iodic and almost periodic potentials is given. The following problems are conside-
red: a description for the fundamental series of the spectral invariants, a complete-
ness problem for these collections, spectral invariants for the Hill operator as motion
integrals for the KdV equation, a connection of the spectrum of the periodic multi-
dimensional Schrodinger operator with the spectrum of a collection of the Hill ope-
rators obtained by averaging of the potential over a family of closed geodesic on a
torus, the direct and inverse problems. Some open problems are formulated.
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Introduction

Spectral invariants as functionals on the collection of the Schrédinger operator with
periodic potential appear in a natural way in investigations of the direct and inverse
problems for these operators. Most interesting are functionals defined in terms of
polynomials of a potential and finite number of its derivatives. We will call them polyno-
mial spectral invariants. The most known collection of such functionals are the
Minakshisundaram-Pleijel coefficients as a collection of the coefficients of the complete
asymptotic expansion of the trace of the fundamental solution for the parabolic equa-
tion associated with the Schrédinger operator. In the same way, the Minakshisundaram-
Pleijel coefficients can be introduced for the Schrédinger operator on smooth compact
manifolds [30].

It turns out that even if a manifold is a circle, the theory of spectral invariants for the
1-D Schrdinger operator with periodic potential (the Hill operator) is not trivial. First of
all, this is because the Minakshisundaram-Pleijel coefficients are the motion integrals of
the Korteweg-de Vries (KdV) equation

U; = BUUy — Uyxy

(see [11}, [34]) and, as a result, have some additional algebraic properties. In particular,
they are solutions of some moment problems on the real axis. The KdV equation pre-
sents the first nontrivial case of continuous isospectral deformations for the Hill opera-
tor. Other isospectral deformations for the Hill operator are related to the high order KdV
equations and their linear combinations. If a potential is an almost periodic function,
then the theory of spectral invariants becomes much more complicated, however some
results can be proven in this case, too.

Spectral invariants for the multi-dimensional Schrédinger operator with periodic
potential is a subject of Lecture 2. Some new effects like spectral rigidity appear, but as
compared to the one-dimensional case the general situation is far from the end. Essen-
tial part of results are stated for analytic potentials only. No classification is known yet
for potentials which permit continuous isospectral deformations. One of the interesting
results is a connection of the spectrum of the periodic multi-dimensional Schrédinger



Two lectures on spectral invariants for the Schrodinger operator 79

operator with the spectrum of a collection of the Hill operators whose potentials are ob-
tained from the potential by averaging over a family of closed geodesic on a torus. Some
open problems are formulated.

1. Spectral invariants for 1-D Schrédinger operators with periodic and
almost periodic potentials

1.1. Periodic case - the Hill operator

1.1.1. Spectral theory. The first step.

Let u(x) be an infinitely differentiable function with the period one, i.e., u(x+1) =
u(x). The Hill operator is the Schrédinger operator with the periodic potential u(x):

d%y

Hy= _ﬁ + u(x)y.

In the space L?(—o0,00), this operator is selfajoint and bounded from below, its spectrum
is absolutely continuous, has multiplicity two and is the union of intervals

o(H) = | J[A2kAzk41]
k=0

divided by the gaps (Azx+1,A2k+2), kK = 0,1,2,. .. For some potentials, the number of the
gaps is finite. For example, if u = l‘i’;—‘”lP(x) with P(x) the Weierstrass function, then
the spectrum of this operator has exactly # gaps. For the potential u = cos 21x, “all” the
gaps are open.

In the space L?[0,2], consider another operator H. per definedby Hy = — :i + u(x)y

with the periodic boundary conditions y(0) = y(2), y'(0) = y'(2). What is a relation
between o (H) and o (Hp,,)? The answer to this question is

LEMmMAa 1.1.

0 (Hper) = {A} =0 e}

Sketch of the proof. — The Hill discriminant can be defined by the equation
1 ’
A(Aru) = E [C(All) +s (Ail)]l

where s(A,x),c(A,x) is the fundamental system of solutions of the equation Hy = Ay
with the initial conditions s(A,x) = ¢(A,0) = 0, s"(A,0) = ¢(A,0) = 1. The central point
of the proof is the following description of the spectrum o (Hp,,) and o (H) in the terms
of A(A,u) :

o(H)={A:|AAu)| <1} 2
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and
0 (Hper) = {A: |A2(A,u)| — 1 =0}. 3)

The function A(A,u) is an entire function of order % and the function A%(A,u) — 1 may be
expressed as a canonical product formed by theroots Ag,k =1,2,...:

- A
AP\ u)-1= 1-—1, 4
(A,u) cg( Ak) @

where the constant ¢ is known. The proof follows from (1),(2),(3) and (4).

The meaning of this Lemma is very simple: if we know the spectrum H we can find
Hp.r and vice versa. For details of the proof and other information on the spectral theory
of the Hill operator see [25], [26], [27], [28], [45]. .

2

Remark. — In the space L?[0,1], consider the operator Hp defined by Hy = — # +
u(x)y with the Floquet boundary conditions y(0) = €®y(1), y' (0) = €y’ (1). The eigen-
values of this problem are the roots of the equation

A(A,u) —cos 6 = 0. (5)

The union of the eigenvalues of the periodic (8 = 0) and antiperiodic (8 = 7r) spectral
problems is exactly the collection {Ag,k = 1,2,...}. If the spectrum o (Hp,) is known,
then one can find the discriminant A(A,u) and, as a result, any spectrum o (Hp),0 €
(0,mr].

1.1.2. Spectral invariants for the Hill operator.

Let us introduce

DEFINITION 1.2.
a) Two Hill’s operators H, and H; are called isospectral Hill'’s operator if \;(H;) =
Ai(Hp),i=0,1,2,....

b) The functional Q(u) is called a spectral invariant of H if Q(u) has the following
property: if the spectra of the operators H; = —di:g + u;(x), i = 1,2, coincide, then Q(u;) =
Q).

DEFINITION 1.3. — We call a system of functionals {Qu},& € 2, a complete system
of spectral invariants for the Hill operator H = —T‘fz + u(x), if the equality Qx (1) =
Qu«(uz) for all values of o € Q implies that the spectra of the operators H; = —di:z +
u;(x),i = 1,2, coincide, and conversely.

Examples.

i) the eigenvalues Ax(H),k = 0,1,2,... and the functionals Q(Ay, ...,Ax), where Q
is an arbitrary function of N + 1 variables, are spectral invariants of the Hill operator;
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ii) the collection of functionals
QAu)=A(Au), AeC

is a complete system. It follows from (4).

iii) the Hill discriminant A(z,u) has the representation
A(Z,u) = cos(Y(z,u)), (6)

where the function y(z,u) is a conformal mapping of the upper half-plane C, = {z :
Im z > 0} onto aregion of the form

G\ | {lkmkm+ing}
k=-o

where hy = h_g, hy = O(see [26]). The function y/(z) is normalized by the conditions
w(0) = 0 and lim,_., ®(iy)/iy = 1 and uniquely determined by the collection {hx}. The
collection of functionals {¢(z,u), Imz > 0} and the collection {hi};__, are complete
systems.

iv) the trace of the fundamental solution of the parabolic equation associated with
the Hill operator is the collection of the functionals

Q(t,u) = O(t,u) = Z e Mt e [0,0]

i=0
The collection {©(t,u),t > 0} is a complete system.

v) the Minakshisundaram-Pleijel coefficients is a collection of the coefficients of the
asymptotic expansion of O(t,u) :

O(t,u) ~ —‘/fl—"; (1+E Cka(u)tk) , ti0.

k=1

Here ¢, = (-1)¥12%/(2k - 1)1, k = 1,2,.. The functionals {I,} - are spectral inva-
riants for the Hill operator H. Generally, this collection is not complete.

DEFINITION 1.4. — A potential u) (x) is called resonance if there exists another po-
tential uy(x) such that I,(w;) = I,(uy) forall n = 1,2,.. but the spectra of the operators
H; = —dl:, + u;(x), i=1,2, aredifferent.

Analytic potentials are not resonance. About that and about a criterion for the col-
lection {I,,},_, to be complete, see Theorem 1.9.
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A description of the fundamental series of spectral invariants for the Hill operator.

The counting number for discrete series of spectral invariants for the Hill operator
can be introduced using the generalized Jacobi formula

O(t,u) = Z Q,(t,u).

n=-—o

Here ©,,(,u) has the form

1 n?
@,,(t,u)=_/o e(t,x,x+n)dx-\/_ xp( )F,,(t u). )]

The function e(z,x,y) is a fundamental solution of the equation de/dt = He on thewhole
line. According to the Kac-Feynman formula, the function F,(¢) admits the representa-
tion ) )
E,(t,u) = / M [exp(—t/ u(x+ nt+ Jtw(t))d 1')] dx. 8)
0 0
Here M is the mathematical expectation of a random variable, w(T) is the “Wiener brid-

ge”, which is defined as a one-dimensional conditional Wiener process determined by
the following conditions:

w0)=w(l)=0
ii) w(t) is a Gaussian process with the zero mean and a correlation function
B(s,t)=(sAnt)(1-svVvi).

LEMMA 1.5 ([44], {26)). — For each n the set of functionals F,(t,u), n€ Z, t > 0,
constitutes a complete system of spectral invariants.

Proof follows from the formula

In|
—JdAZ(A) —
/e’“@,,(tu)dt— A | AQ) -y -1 .
VA2(QA) - 1 2

According to (6), we can rewrite the previous equality as

® 1 d un W
t = giinlv
/o Ao, (t,udt oo e n=0.

Hence F,(t,u) defines w(A) and the Hill discriminant A(A,u).

DEFINITION 1.6. — By an n -series of the spectral invariants for the Hill operator we
will mean the set of values {I]'}7’ given by the asymptotic expansion

Fu(tu) ~1+ Y IFwitk,  tio.
k=1
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It follows from (8) that

1
I,:‘:/ Pep(un,..)dx,
)

where P, is a polynomial in u and its derivatives. The polynomial spectral invariants I}’
are our main subject of consideration.

Explicit formulas for calculating the coefficients of n - series from the set {I;’}7° can
be presented.

TueoreM 1.7 ([38], [39)). — The coefficients of an n- series {I} ., can be expressed
in terms of the coefficients of the 0-series by therelation

k
1
;= mpecy =
B=Y Sl k=12...
m=1

This implies that the collections{I’}§’ with different n are equivalent and it is sufficient
to investigate the collection {12 } only. Define a new collection {I,,} by the formula

- (-1)™1(2n - 1)!!10

on n+1’

I

n=201,2,...

The collection I, has the following properties:

i) I, is given by the formula

1
I,.=/ Oan(u,ud,..,)d x,
0

where o, (u,u’,..)d x are universal polynomials of degree n that have no constant terms
and are defined by the recurrence relation

k-1
0'k+1=—0',"—-z Or-joj, k=12,...
j=1

with the condition o7 = u(x). Using this recurrence relation we get

2 2 2
Io=/ u(x)dx, 1,=/ WA (x)d x, Iz=/(u3+(u')2/2)dx,...
0 0 (1]

and so on.

ii) Let ¢ (z,u) be the “comb-like” comformal mapping from (6). The function ¢ (z,u)
has the representation
® do(t)

t—z'

Y(z,u) =z+ / 9
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where the measure do (t) has the form do(t) = -1]; Im w(t) dt (see [27])). The sequence
{1}, coincides with the coefficients of the asymptotic expansion

—
Wa)~z2-) —ng, z=iy, -+ (10)
n=0

By the Hamburger-Nevanlinna theorem (see [1]) and (10), the coefficients I, are a solu-
tion to the moment problem on the whole line:

I, = / 2" do(t). aan

g

A criterion for the collection {1,},,—, to be a complete system.

Finite gap potentials are not resonance: the periodic spectrum can be recovered
from the collection {I,,},_, in a unique way. The same statement is true for real analytic
potentials. Let {m,}_, be a fixed sequence of positive numbers. We assume with no loss
of generality that {m,, } ;-, grows faster than any power of n and the sequence {In m,} .,
is convex with respect to n.

DEFINITION 1.8. — The Carleman class C(m,,) is the class of all C* one -periodic
functions u such that

Nu™ 2 < C*(w)mp, n=012,...,

where the constant C depends on u.

The class C(m,,) is called quasianalytic if it possesses the following property: each
function u € C(m,,) satisfying u'¥ (x9) = 0 for all k = 0,1,2,... at a fixed point xp is
identically zero. Any function from a quasianalytic class can be recovered by its Taylor
coefficient at any fixed point.

THEOREM 1.9 ([40]).

1. Let C(my,) be a quasianalytic class. Then for every two potentials u, € C(m,) and
u, € C(my,) the equalities I (u;) = I(wp), k=0,1,2,...,imply Ax(uy) = A(uwp), k=
01,2,....

2. Let C(m,,) be a nonquasianalytic class. Then there exist two potentials u; € C(m,)
and u, € C(m,,) such that I(w;) = I.(w), k = 0,1,2,..., but the spectra of the per-
iodic boundary value problems in 1*[0,2] for the Hill operators with these potentials are
different.

Remarks.

1. It follows from this theorem that resonance potentials exist in nonquasianalytic
classes only.

2. According to Theorem 1.7, all n-series of spectral invariants of the Hill operator
are equivalent to each other. Hence Theorem 1.9 is true if we change {I,} into each of the
n- series{I;} i, (n being fixed).
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1.1.3. Isospectral set.

For any periodic potential u, we denote by ISO(u) the set of potentials having the
same spectrum as . What is the structure of an isospectral set ISO(u)?

THEOREM 1.10 ([46]). — Isospectral set 1ISO(u) of the Hill operator H with potential
u is topologically equivalent to the torus TN, where N is the number of the gaps in the
spectrum H :

ISO(u) ~ TV. 12)

Sketch of the proof. — Consider the collection of operators

2

d
Hy@) =[-—+ux+n]yx), telol]
in the space I2[0,1]. Let {ux(2)}5,, t € [0,1] be the auxiliary spectrum of the operator
H; generated by the equation H;y = uy and the boundary conditions y(0) = y(1) = 0.
Then the first trace formula for the Hill operator is

+o0
u(t) = Ao+ Y Aok + Azk-1 — 21(2)]. (13)
=1
It follows from (13) that
u(x) <= {{Ar} =0 {Hx(t)} 50, £ €[01]}. (14)

The collection (14) is overdetermined: to recover a function u(x) we have to know a
countable collection of the functions {ux(2)}g_,. The functions {ux(2)}j_, are not ar-
bitrary, they are solutions of some system of ordinary differential equations. They are
known as the Dubrovin-Trubowitz equations. These equations can be deduced in the
following way (see [46], [3] ). Consider the Green function g(s,z,A) of the operator H =
-—}:2 + u(x) in I?(—o00,00). The diagonal function g(¢,t,A) is well defined if A belongs to
a gap (Azk+1,A2k4+2),k = 0,1,2,... of the operator H. The resolvent equation for g(z,z,A)
implies
di/\g(t'm) =/ gtt+sA)ds>0

and, as a result, this function grows from ~ o to o on each gap. The value p(t) is exactly
the intersection point of this function with the real line, i.e.,

g(t,t,ux(t)) =0, tel01]
Differentiation of this equation with respect ¢ implies

og du(t) og _
at(t,t,uk(t))+ T au(t.t,uk(t))—O, t €[0,1]
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and consequently
du(t) _ FE@Lu)
dt E(t,t,u(2))

A more detailed analysis of g(t,¢,A) shows that
o
E(ttu() = £1= —0u(0),

where +1 corresponds to the left and right half-line Dirichlet eigenvalue. Finally, the sys-
tem for pi(t) is
dug(t)  ox(r)

dt E(t,tu(t)

This system is autonomous, and the existence and uniqueness theorems can be proven.
Furthermore, if we fix some point % € [0,1], then

u(x) <= {{A) ieor (K 10) Vi1 {0 (10) Vo }.

Let @ = (@1,92,...,¢n),1 < N £ o, be the coordinates of the torus T. Define the
constants

Tk = A2k — A2k-1)/2, &= Aok + Az2x-1)/2
The point @ € T is defined by

Crcos @i = Ur(to) — &k, Az2k-1 < Hi < A2k,

O<@r<m, for ox=1 nwLPr<2m for or=-1

There is no ambiguity in @, when pi = Ak or Azx. Hence,

u(x) <= @, @=c TN.

Remark. — The global geometry of the isospectral torus. Global geometry proper-

ties of isospectral sets M corresponding to infinite gap potentials are considered in [29].

By the tangent space T, at the point u we mean the closed span in 12[0,1] of the system
of the functions

d 6A(Au)

, A €R.
dx oéu €

ConjecTURE 1 (H.P. McKean, E. Trubowitz [29]). — The motion integrals {I,(u)} -
determine the isospectral set M, if and only if the local tangent vectors

d 6],
Vn(u) = d—x-g;n, n=0,1,2,...,

span the tangent space T,,.
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The following assertion holds:

THEOREM 1.11 ({40]). — The two properties are equivalent:

1) for every isospectral set M in C(m,,) and for every u € M, the span of the set of the
local tangent vectors {V,(u) };,—, coincides with the whole T,;

2) theclass C(m,,) is quasianalytic.

It follows from Theorem 1.9 and 1.11 that the conjecture is true for every quasianaly-
ticclass C(m,,).

1.1.4. The KdV equation and isospectral deformations.

One of the problems of the spectral geometry related to the Schrédinger operator
on a manifold is an analysis of the set of operators having the same spectrum. Even in
the case if the manifold is a circle, we have a nontrivial problem. We are interested in a
construction of a continuous collection of operators H(t) = —di:z + u(x,t),t € [0,00]
with the same spectrum: o (H;) = o(Hy,), where #; and t, are from [0,]. A trivial
example of an isospectral deformation is the collection of operators

d2
H(t) =—E+u(x+t), t €R

Nontrivial cases appear from

TaeoREM 1.12 ([11]). — Consider the initial value problem for the KdV equation

ot (15)

0
_u =6UUy — Uyxx, L€ [0,0), x € (—00,00)
u(x,0) = up(x),

where the function uy(x) is periodic with period 1. Then:

1) there exists a unique solution of equation (15) in the class of periodic function with
period 1;

2) the spectra of the operators

d2
H(t) = _E_.X-,E + u(x,t),

where u(x,t) is a solution of the KdV equation (15), do not depend upon t:

o(H(t)) = o(H(0)).

To prove this theorem, we use the Lax representation of the KdV equation and formulate
the following general lemma.
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LeEMmMA 1.13 ([22],[23]). — Let H(t) and A(t) be collections of selfajoint and skew-
selfajoint operators in a Hilbert space respectively:

H(t) = H*(t), A(t) =-A*(1).

Suppose that they satisfy the equation

Ed?H“) = [A(),H(2)] = A(t)H(2) — H($)A(2). (16)

Then there exists a unique collection of unitary operators U(t) , t € (0,0), which present
H(t) in the form
H(t) = U*(t)H(0)U (1) 17)

and consequently H(t) is an isospectral deformation of the operator H(0).

To prove the theorem, we set
d? a d
H(t) = —d—xz' + u(x,t), A(t)= —4-&:3— + Gu:i}- + 3u,. (18)

Direct calculation shows that in this case [A(z),H (t)] is an operator of order zero. More
exactly, itis the operator of multiplication by the function 6w, — uxx, and the KdV equa-
tion is equivalent to equation (16).

Remark. — Representation of the KdV equation in the form ‘—f—t H(t) =[A(t),H(1)],
where A(t) and H(t) are of the form (18) is known as the Lax representation of the KAV
equation.

Theorem 1.12 has the following consequences:

i) the eigenvalues of the Hill operator are the motion integrals of the KdV equation:
Ap(u(x,t)) = Ap(u(x,0)), k=0,12,...; (19)
ii) the spectral invariants I,k = 0,1,2, ... are the motion integrals of the KdV equa-
tion.
The KdV equation can be rewritten in the form

U = ——. (20)

V2
Here L(u) = foz(u3 + S%L)dxand, as aresult, %—’5 =312 - u,,.

One can consider higher order KdV equations (see [34]),

Uyy=———, n=34,... (21)
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All these higher order KdV equations also admit Lax representation with a common ope-
rator H(t) = — aL:f + u(x,t) and an appropriate skew-adjoint operator A, (t) :

d
EH(t) = [4,(2),H(1)] & u; = Q(u,...,u?™V), (22)
A more general case
N
0 6]
=Y cp——~F, N=234,..., (23)
ox du .

where ¢,k = 2,3,...,N are arbitrary constant, can also be considered. As a result, a rich
collection of isospectral deformations of the Hill operator can be constructed using the
spectral invariants I,k = 2,3,4, ... The potentials of these isospectral operators are solu-
tions of some partial differential equations (formulas (22) and (23)).

1.2. Almost periodic case

1.2.1. The rotation number and other functionals.
i) Definition of almost periodic function.

DEFINITION 1.14. — Let u be a bounded and continuous function on R. We call the
Junction u(x),t € R, Bohr — almost periodic (a.p.) if the set of its translates {us(x) =
u(x + s))} is relatively compact, i.e., for any sequence of points s, € Rk = 1,2,... the
sequence of functions{us,} has a subsequence which converges uniformly in R.

Trigonometric polynomials u(x) = Zf__l cre€*, where £ € R,k = 1,2,...,N are almost
periodic. A function is almost periodic if and only if it is the uniform limit of a sequence

of trigonometric polynomials. Obviously, every continuous periodic function is almost
periodic. The functional

1 N
E,(u) =1~111-12051_V-/_N u(x)dx

is defined on the class of almost periodic functions and called the mean value of w.
There exists only a countable set {€;,k = 1,2,...,N, N < oo} of numbers £ for which
E,(u(x)e®**) = 0. The frequency module is the set

N
M(u) = {Z ng&i,ng € Z}

k=1

of finite integer combinations of these frequencies.

ii) Rotation number [15]. Let u(x) be an a.p. function of the class C* (R), let

d2
H= ——E;E + u(x)
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be the one - dimensional Schridinger operator in L2(R). The nature of the spectrum of
the Schrodinger operator with almost periodic potential is very complicated and in the
decomposition

o(H) = O'(H)pp Vo(H)scUo(H)gae

“almost all” combinations of the spectral components o (H) pp,0 (H)s,0 (H)4c can ap-
pear (see [10] ).

DEerINITION 1.15. — The ﬁmctio_nal Q(w) is called a spectral invariant on the class
of the Schradinger operators with almost periodic potentials H if Q(u) has the following
property: ifthe operators H; = —a"—:z+ u;(x), i= 1,2, areunitary equivalent, then Q(u;) =
Q(uyp).

Trivial examples of the spectral invariants are the points of the spectrum and the
multiplicity of the spectrum. Another collection of spectral invariants can be constructed
in the following way.

Let G(x,y,z) be the Green function of the operator H, where z belongs to the re-
solvent set of the operator zI — H. The function G(x,x,z) # 0is an a.p. function ( see
[15]). Thus, consider the function of the rotation number (or the rotation number)

-1
w(z,u) = E, (—_ZG(x,x,z)) .

The rotation number has some interesting analytic properties. We will say that a function

f(2z) holomorphicon C. = {z : Imz > 0} belongs to the Nevanlinna class N if it

maps C, into itself. The function w(z,u) belongs to the class of holomorphic functions
on C, = {z: Im z > 0} and satisfies the 3-time Nevanlinna property

w(z,u) € N, - iw(z,u) € N, w'(z,u) € N.

For the periodic Schrodinger operator (the Hill operator), the function of rotation num-
ber w(z,u) is connected to a “comb-like” mapping y(z,u) by the relation w(z,u) =
iy(yz,u), Imz>0.

The function w(z,u) can be defined in the different way. Let y(x,A) be any non-zero
solution of H(u)y = Ay, then y’(x,A) + iy(x,A) does not vanish for any x. For any real A
we define

a(A,u) = lim -:; arg (y' (x,A) + iy(x,A)). (24)

This limit exists and is independent of the particular solution chosen. The functional
o(A,u) measures the average increase of the angle in the (y’,y)-plane. a(A,u), as func-
tion of A, can be extended to some harmonic function in the upper-half plane. It turns
out that this harmonic function is the imaginary part of the rotation number w(z,u),
Im z > 0. Hence

o(A,u) = lsiirglm w(A+¢&u), A€R
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iii) Integrated density of states and the Lyapunov exponent.

Operator H = —d?/d?x + u(x) with a.p. potential u(x) has the spectral decompo-
sition -
H= [ adB, A= inf {a},
~/A-o A 0 Aelgl(H){ I

where the spectral projector E, is an integral operator with a jointly continuous and uni-
formly bounded kernel e(x,y,A). The integrated density of states is defined as

N(A) = E,(e(x,x,A)). (25)

N(A) can be find by means of the following procedure. Consider the spectral problem

-y +ulx)y=ay xe{[-T,T}, 26)
y(-T)=y(T)=0
LetAx(T),k =1,2,.. .be the spectrum of (26). Then it can be proven that
. #AT) KA}
NQA) = %J_{I; >T (27)
and )
Ny =22 28)
21t

For large values of x the envelope of y(x,A), where y(x,A) is a solution of equation
Hy = Ay, behaves as e*¥V1¥/(1+0(1))_The nonnegative quantity y(A) is called the Lyapu-
nov exponent. In terms of the rotation number:

¥(A) = = Re w(A + i0). (29)

It is known (see, for example,[10], [21] )that:

a) the set of the points of growth of the integrated density of states N(A) coincides
with the spectrum o (H) of the operator H;

b ) the absolutely continuous spectrum o, (H) coincides with the essential closure
with respect to the Lebesgue measure of the points of R where Lyapunov exponent y(A)
equals zero:

Oac(H) = ess{A : y(A) =0}.

1.2.2. Spectral invariants.

i) The rotation number, the integrated density of states N(A) and Lyapunov exponent
Y (A) are spectral invariants of the Schrédinger operator.

The mean of the Green functions is related to the rotation number by

w'(z,u) = E,G(x,x,2), (30)
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so w(z,u) determines the collection of the spectral invariants of the Schrodinger opera-
tor H : two unitary equivalent Schridinger operators with almost periodic potentials 1,
and u, have the same rotation number w(z,u;) = w(z,u,). From (24 ) and (29) it follows
that N(A) and y(A) are spectral invariants of the Schrédinger operator as well.

Let u(x) and all its derivatives u'* (x) be almost periodic functions. Then the func-
tion w(z,u) admits an asymptotic expansion of the form

o0

w(z,u) ~ J—_z(l - Z I:'Ez)) ,  Z= —o0,

n=0

and defines the collection {1, }5 of spectral invariants of the Schréodinger operator.

The function —iw(z?,u) belongs to the Nevanlinna class N, i.e., it is a holomorphic
funcionon C; = z : Imz > 0 and maps the half-plane Im z > 0 into itself. By the
Hamburger- Nevanlinna theorem [1}], the coefficients I, are a solution of the moment
problem on the whole line:

I, = / t?do(t), n=01.2,...

0

where d o(t) = y(t)d t. Hence the problem of unique recovery of the rotation number
w(z,u) from theset {1,}g is equivalent to the problem of unique solvability of this moment
problem in the class of absolutely continuous measures with the Lyapunov exponents as
the densities.

ii) The problem of unique recovery of the rotation number w(z,u) from the collection
{I:}g -

Let us formulate a criterion for recovery the rotation number in terms of the growth
of the sequence {I,}g .

Let {m,},-, be a fixed sequence of positive numbers as in the periodic case, i.e., we
assume that {m,},_, grows faster than any power of n and the séquence {Inmy}, -, is
convex with respect to n. Define the standard object of theory of quasianalytic classes,
the function

r"
T(r,m,) =sup —.
nz1 Mn

In the set of a.p. functions of the class C” (R) we distinguish the family of functions

Q({m,}) = {ue C*(R),uisana.p.f. |I,(u)| < C(u)ym,}

and its subset Q({m,},M) consisting of those a.p.f. whose Fourier exponents are contai-
ned in the module M of the Fourier exponents of some fixed a.p.f.

THEOREM 1.16 ([35]). — In order that in the class Q({m,}) implication

Vup,u € Q({m,}),L,(w) = b{(w),n=0,1,2,... > w(z,u;) = w(z,u)
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hold, it is necessary and sufficient that

®InT(r,m,)

+ dr = +oo, (31
0 1+7r2

Similar assertion holds also for the subset Q({m,},M).

Hence, in the general case the spectral invariants {I,} -, do not form a complete
collection of spectral invariants of the Schrédinger operator H.

CoROLLARY 1.17. — On the basis of the collection {I,}g in the classes Q({m,}) and
Q({m,},M), the spectrum o (H) and the absolutely continuous spectrum o ,.(H) of the
operator H as a closed subset of R can be uniquely recovered if and only if the integral from
(31) is divergent.

Sketch of the proof. — Let u; and u, be two potentials which have the same col-
lection of the functionals {I,},-, ( I,(%) = IL(u),n = 0,1,2,...). We get that for
Imz > 6§ > 0 the function @(z) = —ilw(Z%,u)) - w(z?,uy)] satisfies the system of
inequalities

1Z2"@(2)| € Cmy,n=0,1,2,...

and the problem can be reduced to the classical Carleman theorem. The divergence of
the integral in (31 ) implies @ (z) = 0. Hence w(z,u;) = w(z,u).

In the proof of the second part of Theorem 1.16 it suffices to restrict attention to
the classes Q({m,}) of the Hill operators. Consider the periodic potentials of the class
C*® (R) with period 1 such that the lengths of the gaps Azx — Azk-1,k = 1,2,...in the
spectrum of the operator H = —d?/dx? + uin L?(R) are open and have the asymptotic

Aok — Agp1 ~ [TURD ]I V2k=1,2,...

*InT(r) dr<
————— w,
o 1+7132
then every potential u; from this class is resonance, i.e., there exists u, € Q({m,}) such
that I,(x¢;) = I,(u),n=10,1,2, ..., but w(z,u;) + w(z,u;). Here we use the Marchenko -

Ostrovskii theorem [27] on characterization of the Hill discriminant in the class of entire
functions.

We prove that if

1.2.3. Open problems.
1) To decide whether two almost periodic potentials u; and u; for which

w(z,uy) = w(z,up),Imz >0
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give rise to unitary equivalent operators
H =-d?/dxX*+u and H, = -d*/d * + u,.
In other words, is the collection of functionals w(z,u),z € C;, a complete system of spec-

tral invariants in the class of the Schriodinger operators with almost periodic potentials?

2) To construct the Schrodinger operator with an almost periodic potential and pure
point spectrum. To study its spectral invariants and the isospectral deformations.

2. Spectral invariants for the Schrédinger operator with periodic
potential: multi-dimensional case

2.1. Spectral theory. The Bette-Sommerfeld conjecture

Consider an n-dimensional lattice L in R” and an infinitely differentiable potential
V(x) on R" satisfying the periodicity condition

V(ix+d)=V(x), Vdel

For such potentials one has the eigenvalue problems parameterized by k € R”,

{ —-Ay(x) + Vy(x) = Ay(x) (32)

y(x+d) =™k y(x) VxeR,Wdel

The eigenvalues of (32), with multiplicities, are denoted by A;(k),i = 1,2,..., and the
spectrum by o (Hy).

DEFINITION 2.1. — The Floquet spectrum or(H)of the Schridinger operator H =
—A + V is the collection of the functions A;(k),i = 1,2, ... forallk € R".

In the physics literature, og (H) and the collection A;(k),i = 1,2, ... are known as
the Bloch spectrum and the band functions. The Floquet spectrum og (H) is an overde-
termined system. The collection {A;(0),i = 1,2,...} (k = 0) corresponds to the periodic
spectrum, o (Hp) is the spectrum of the operator H on the torus R"/L. We denote this
spectrum by oo (H).

Let o (H) be the spectrum of the Schrodinger operator H = —~A + V in I*(R). Itis
known (see [42]) that H is the direct sum of the operators Hy and, as a result,

cH)= |J o(H), (33
keR"/L*

where L* is the lattice dual to L. Using (33) it can be proven (see, for example, [42] ) that
the spectrum o (H) is absolutely continuous and, as in the one-dimensional case, is the
union of intervals divided by gaps.
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Bette and Sommerfeld conjectured that in the multi-dimensional case the spectrum
o (H) contains only finite number of gaps, i.e.

N-1
U(H) = U [a,,b,] U [aNr°°)-

i=1

This conjecture was proven in (43] with some restrictions on L and in [47] for the general
case (see also [20]).

2.2, Spectral invariants

2.2.1. Definitions and problems.

DEFINITION 2.2.
a) A functional Q(u) is called the Floquet spectral invariant of H if Q(u) has the
Jollowing property:

or(H)) =op(H) = Q)= Q(uz);
b) A functional Q(u) is called a spectral invariant of periodic problem if Q(u) has
the following property:
oo(H)) = 0p(Hz) = Q(u1) = Q(up).

The following problems are interesting for us:

— Let us suppose that we know the Floquet spectrum o (H). What is known about
complete collections of the Floquet spectral invariants? Does the Floquet or perio-
dic spectrum determine the potential #(x) up to isometries of R"/ L?

— Does the periodic spectrum oy(H) determine the Floquet spectrum or(H), i.e.,
are the eigenvalues A;(k),i = 1,2,. .. the spectral invariant of periodic problem for
Vke R™

2.2.2, Floquet spectral invariants.

1) Complete collections of the Floquet spectral invariants.

In this subsection the main results are proven without restriction on the lattice L.
Let e(¢,x,y) be a fundamental solution of the heat equation de/dt = He on R". Denote

Q4(t) = / e(t,x,x+d)d x.
R%®|L

Using the trace formula for the heat equation we obtain

E e~ dm(b)t E e 2mitkd)g (1), (34)

m=0 del



96 M. V. NOVITSKII

The right-hand side of (34) is the Fourier expansion of the function with respect to the
variable k. Hence, if we know the whole collection A,,(k),m = 1,2,...,k € R" then the
coefficients ®4(t) of the expansion (34) are known as well.

Hence, we have

LeEMMA 2.3 ([4]). — The collection
Qg4(1) =/ e(t,xx+d)dx, t>0, delL
R"/L
is a complete collection of the Floquet spectral invariants.

The Kac-Feynman formula for a fundamental solution of the parabolic equation
associated with Schrédinger operator implies that ®4(t) has the representation

—\d| 2
e 4

4 1
(417t)2 /R..,LM [e’m ("/o u(x+dt +/tw(r))d T)] dx. (35)

Then © 4(t) admits for ¢ { 0 the asymptotic expansion

_ja)?
et

(41'rt)%'

©4(t) =

©4(t) ~

O iy, t-o (36)
k=0

DEFINITION 2.4. — We call the coefficients I,f of the expansion (36 ) the generalized
Minakshisundaram-Pleijel coefficients for the operator H = —A+ V.

From Lemma 2.3 and (36 ) it follows that {I%,k = 1,2,...,d € L} is a collection of
the Floquet spectral invariants.

THEOREM 2.5 ([33], [32]). — The generalized Minakshisundaram-Pleijel coefficients
{(I2)¢,d € L,n = 0,1,2,..., form a complete system of the Floquet spectral invariants in

the class of real-analytic potentials on R" /L.

The proof of this theorem is based on the transformation formula

2 ® s
@d(t)=m/(; em{—E}Ed(S)ds,

where
E;(s) = / E(s,x,x +d)d x, 37
RA/L

and E(s,x,y) is the fundamental solution of the hyperbolic problem

?E
— =HE=-AE+VE,
252
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oE
Bl = 5x(}'):—a?|s=o =0, s>0, xyeR"

The properties of the function E;(s) for the real analytic potential V are described
in the following lemma.

LeMMA 2.6. — The function E;(s) admits the representation

Ea(s) = X(1d),0) (®a(s) + @a(s))

Here® 4(s) is a distribution of the form

d
dy(s) = agar_%(sz —1d1?) + o1

s
,52 - ldlz’

@a(s) is an analytic function for s > |d|. The function @ 4(s) has at most an exponential
growth for s — o and has an expansion

Pals) =Y« - 1dP)",  sildl.
n=2

The distribution I (s) is defined as an analytic extension of the function sS}T(A + 1) for
ReA > 0. The sequence {«2}%_, is a sequence of universal constants which do not depend
uponV.

Remark. — The structure of the coefficients {I,f }o has been studied sufficiently
well in the one-dimensional case (see Lecture 1). Here the main series {I}5 coincides
with the polynomial series of the first integrals I,, of the KdV equation while the remai-
ning coefficients {I,f }o -d # 0, are linear combinations of the main series {I,‘c’}{;° ( Theo-
rem 1.7 ). Whether the higher coefficients {I¢}§ for n > 2 reduce to the coefficients of
the main series {12}3" is unknown. We suppose that they do not.

2.2.3. Explicit expressions for the polynomial Floquet spectral invariants.

Using (35) we prove

LEMMA 2.7 ([32]). — The following computational formulas hold:

I,‘f=/ PA(V,DV,..)dx.
Rr/L

Here P,‘f ,d € L are polynomials in the functionV and its derivatives:

2n Er,
PAV.DV,..) = ) M[[ zr_:,d,

2r43r3+-42nn,=2n  I=2
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where {r;} are all possible collections of nonnegative integers satisfying
2ro+3r3+ - - - +2nry, = 2n,

and p = (p1,P2,-,Pn)»

1 apitpat---+pn
Era(x) =— Z / e (x+Td)w] (T)w*(T) - - - i (T)d T
pr4pytetpn=1?0 0xy 0x;% « - - Oxp

Itis convenient to compute the coefficients {I¢ }§* in terms of the Fourier transform

of the potential V. We present explicit expressions for the first four coefficients I,f n =
0,1,2,3,in each d -series, d € L.

LemMA 2.8 ([6] [32]). — Let L* be the lattice dual to L, and let
V() =) ¢ explemi(y.x)}.
yeL*
Suppose the functions {V;(x)},d € L are defined by
Va(x)= Y cyexpizmi(y,0)}.
(y,d)=0)
Then
EB=VoR"L, K= —/ V(x)dx = —co,
R7/L

1 1
F== Y == / Vi(x)d x, 38)
2(y,d)=0) 2 R"IL
1 1 1 Alyl?
== v3 d——/ DV412(x)d x + = ALANY
5 G/Rm dxdx-— T2| 212(x)d x 2(y§m i)

Proof of this Lemma follows from direct calculations and uses some exact formulas
for the Wiener bridge moments.

COROLLARY 2.9. — The collection
{d:delLl, V;=0} (39)

is a collection of the Floquet spectral invariants.

COROLLARY 2.10. — Let L be a rectangular lattice and potential V be separable:

V(x) =) Vilxe).

k=0
Then all potentials Floquet isospectral to V are also separable.

Proof follows from the formula for the coefficient I



Two lectures on spectral invariants for the Schrédinger operator 29

2.2.4. Does the Floquet spectrum determine the potential up to isometries of to-
rus?.

The central result here is an assertion regarding the connection of the spectrum of
H with the class of the Hill operators whose potentials are obtained from V' by averaging
over a family of closed geodesic on T2. To each element d of the lattice L we assign the
family of geodesic y = x + 7d,0 < T £ 1,y € R"/L. Introduce the functions

1
Vd(x)=/ Vix+T1d)dT = Z cyexp{2mi(y,x)}.
0 (y,d)=0

We shall call V;(x),d € L the reduced potentials.

THeOREM 2.11 ([6], [31]). — The Floguet spectrum o (— A + V') determines for-arbi-
trary d € L the Floquet spectrum or(— A + V) for reduced potential V.

Proof (see [32]) is based on the following formula:

k—+o ®J+kd(t,o) @d(t,o) '

To prove this formula we note that according to (35) for any k > 0 we have

6d"+kd(""V) (%Hcd)
= —— =0y t,V == 40
®J+kd(t:0) d+kd( ) exp at (40)

1
=/ dxMexp{—t/ u(x+(J+kd)T+ﬁw(T)))dT}
R"/L 0

1
=/ dxMexp{—t Z cy/ exp{2ni(y,x+iT+ﬁw(T))}dT}
RP/L 0

(y,d)=0

1
X exp{ -t Z cy/ exp{2mi(y,x+dT + de+ﬁw(T))}dT}.
(yd)z0 VO

Because of the rapid oscillation of the factor exp{2mik(y,d)T} for (y,d) + 0 and the
continuity of w(T), we have

1
Z cy/ exp{2mi(y,x + dt + kdT + VTw(T))}dT = 0
(rd)z0 70

as k — o. The second factor in (40) tends to 1 as k — oo and the desired limit coincides
with the function © ;(¢,V;)/© ;(¢,0). As aresult, the collection © 3(¢,Vy) for arbitrary d €
Lis known. The Floquet spectrum or (- A + V) for the reduced potential V; can be find
using (34).

DEFINITION 2.12. — A potential Q € L?>(R"/L) is said to be a one-dimensional po-
tential associated to q in the directiony € L* if thereexistsy € L* and a function q on R
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such that
Q=4(y-x) (41)

forallx € R™.

Let
d={yel*:3dye L, y-dy=1}.

& is the set of indices parameterizing all possible lines in L* passing through the point
¥y = 0. Given the condition ¢o = 0, the potential V' can be expressed in terms of the
collection of the one-dimensional potentials {V,,} by the formula

1
Vix) = 2 E Vy(x),
ged

where
+00

Vy(x) — Z cnyeZﬂ'iY-x.

n=-o0

We assign to the function V,,, y € &, the function v, (t) defined on the circle of
the length 1 and having the same Fourier coefficients as V, (x):

+o0

vy (t) = Z Cny @™,

n=—oo

The function V,,(x) is the one-dimensional potential associated to vy (?) in the direction
y € L*,i.e. V,(x) = v, (y - x). The operator

a2
hy = =lylP—— + v,(2)
is the Hill operator.
TuEOREM 2.13 ([31], [6] (on quasireduction)). — The Floquet spectrum op(—A+V)
determines:
1) the Floquet spectrum o (— A +V,) of the one-dimensional potentials V, (x), ye®;
2) the Floquet spectrum o (h,,) of the Hill operators h, y € ®.

Proof.

1) For arbitrary y € ® one can find linearly independent d,,d,, . ..,d,—; € Lsuch
thaty - di = 0,k = 1,2,...,n — 1. Reducing the potential V in directions d;,d,, - . .,d,-)
we obtain from Theorem 2.11 the first statement of our theorem.

2) The Floquet spectrum o (h,) of the Hill operators h, can be exactly calculated
in terms of the Floquet spectrum o (- A + V,,) of the one-dimensional potentials V,,(x)
and visa verse. O
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In the class of separable potentials the Floquet spectrum of the Hill operators h,,
Y € @ determines the Floquet spectrum or(—A + V). In general case it is not true. It
follows from

THEOREM 2.14 ({7]). — There is a set M of potentials, dense in C*(R*/L) and such
thatforV € M the Floquet isospectral set 1ISOF (V) is finite up to isometries of R%/ L.

CoROLLARY 2.15. — The potentials V € M do not admit any continuous isospectral
deformations.

2.2.5. Does the periodic spectrum determine the Floquet spectrum?.

There are trivial cases when the periodic spectrum oy (H) does not determine the
Floquet spectrum or(H). For example, if a lattice L is preserved under an orthogonal
transformation U = +I of R" then the periodic potentials V (x) and V (Ux) have the
same periodic spectrum but the Floquet spectrum are different.

Denote
[dl=(d eL:|d|=|dl}, Oa= ) Oy

LEMMA 2.16. — Let V' be a real - analytic function on R" /L. Then each term of the
sum

o) =Y (1)
[d]
can be recovered from ©(t).

Proof. — We have

2 * s
Gd(t)=\/m/o exp{—Z;}Ed(s)ds. (42)

Here the function E;(s) is defined by formula (37). It is sufficient to prove that each term
of the sum

E()=_ Ea)(?)
(4]
can be recovered from E(z). The detailed analysis of the analytic wave front set of the
fundamental solution E(s,x,y) of a hyperbolic problem shows that E(s,x,y) is a real —
analytic function on the complement of {(Z,x,y) : |[x — y| = |t]|} and, as a consequence,
the function E;(t) vanishes for 2] < ]d| and is a real analytic function for || > |d].
Then the distribution

Ed(t)=/ E(s,x+d,x)d x
R"/L

vanishes for || < |d| and is a real analytic function of the variable ¢ for |t] > |d|. We
can label the vectors of L as

0=|[0)} <l[a ]l <...I[d]l <....
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Denote t; = |[di]l. On the interval (0,7) we have E(t) = Ejg}(t). The function Ej)(?) is
analytic on (0,«) and, hence, can be uniquely extended from the interval (0,#;) to (0,).
On the interval (#1,2,) wehave E(t) = Ejo}(t) + E 4,)(t). The function E[4,;(¢) is analytic
on (;,) and hence can be uniquely extended from the interval (#;,%;) to (#,). Using
similar arguments we can find all the distributions E(4)(?).

The lemma is proved. a

THEOREM 2.17 ([6]). — Let u; and uy be real analytic functions and a lattice L has
the property
ldi=|d| = d=zd'. (43)

Then the periodic spectrum oo(H) determines the Floquet spectrum or(H).

For the proof we note that if the lattice L satisfies (43) then [d] = {d, — d} and
Eg = E_4. Then Ey4(t) = 2E; and each E;,d € L can be recovered from E(t). Using
(42) we get that each ©4,d € L can be recovered from ©(¢).

Theorems 2.11, 2.13 and 2.17 imply

THEOREM 2.18 ([31], [7]). — Let u be the analytic and a lattice L have the property
(43). Then the periodic spectrum oo(— A + V') determines:

1) the periodic spectrum oo(— A + V) of the reduced potentials V;(x), d € L;
2) the periodic spectrum oo (— A+ V,) of the one-dimensional potentials V, (x), y€®;

3) the periodic spectrum oy (h,) of the Hill operators hy,y € ®.

Denote by ISO, (V') the set of potentials with the same periodic spectrum as the po-
tential V. For n = 1 the following statement can be proven [40]: if a set ISOg (V') contains
a potential from a Carleman class C(m,,), then all potentials from ISOy (V') belong to the
same class C(m,,). In particular, if V is analytic then ISO, (V') contains analytic functions
only. In the multi-dimensional case n > 2 itis still an open problem: to prove thatif a
set ISOo (V') contains at least one analytic potential then all potentials from ISO (V') are
analytic.

DEFINITION 2.19. — An analytically rigid potential V is a periodic analytic potential
with the property: the intersection of1ISOq (V') with the class of analytic functions is exactly
the collectionV(+xx+ a), a € R".

Itis known

THEOREM 2.20 ([5]). — Let u be real analytic and a lattice L have the property (43).
Then the set of analytically rigid potentials is dense in the set of smooth potentials on R?/ L
in C* topology.
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The condition (43) coincides in dimension two with a generally less restrictive
condition that the only isometries of R"/L are the compositions of translations with +1I.
Nevertheless, it is surprising that

THEOREM 2.21 ({14}, [13]). — There exist a lattice L, C R* such that the only isome-
tries of R™| L, are the compositions of translations with +1I and real analytic potentials u;
and uy on R*/ L, such that

oo(Hy) = oo(Hy) but or(Hy) + op(H).

The tori R*/L, were first constructed by J.H. Conway and N.J.A. Sloane [2] in the
construction of flat tori in dimension four which are isospectral but not isometric.

2.3. Spectral rigidity theorem

Consider spectral invariants of the Schrédinger operator on the torus with coupling
constant by potential. The operator

H(B) =~-A+BV(x)

is defined on the space L?([-a;,a;] X [~a3,a,]). The function V (x;,x;) is a periodic
function with respect to the variable x; with the period 24, and to the variable x, with
the period 2ay; {Ax(B)} 1., is the periodic spectrum of the operator H(B). We consider
the problem of unique recovery of the potential V (x1,x;) from the set {A;(B)}z.,.8 = 0,
and solve this problem in the class of even functions with respect to x; and x,. The set
{Ak(B)}=1,B = 0, is overdetermined. Hence, instead of this set we consider the expan-
sion

sp[RA(B) — Ra(0)1 = Bh(A) + B°L(A) + B L(A) +...,8 1 0. (44)

The constants {I;(B)},k = 1,2,3,... are spectral invariants of the operator H(8),8 > 0.
Let us suppose that we know the first three coefficients of this expansion. What partial
information about the potential can we get? We prove

TuEOREM 2.22 ([37) (the spectral rigidity theorem)). — Let H° be the Hilbert space
of even square integrable functions on the rectangle L*([—a;,a;] x [—a3,a,]) where a
and a, are incommensurable positive numbers. Let V (x,,x,) be a function of H°. Let us
consider in the space H° the operator H(B) = —A + BV (x). Suppose the three coefficients
L (A), L(A), KE(A) in the expansion (44) are known. Then all other potentials with the same
three coefficients are the superposition of this potential and the reflections:

DhQ:ix—-x, y—=y 2) Up:x—-x, y—ay-y
YWUz:x—-a—-x, y-yi ) Uy:x~ay—-x, y—-a-y.

The sets {Ax(B)} 1=, B > 0,and sp[ Ry (B) — RA(0)] are equivalent. Then we have

COROLLARY 2.23. — Let V (x),x2) be an even function of x; and x, on the rectangle
[0,a1] X [0,a,]. Then the set {Ax(B)} x=1,B = 0, recovers the potential V (x,,x;) uniquely.
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2.4. Open problems

1. Spectral rigidity.
Let a lattice L have the property

ldi =|d'| = d=zxd'. (45)

To prove that for any periodic C* potentials different from a directional potential V(5 - x)
the only Floquet isospectral potential have the form V (+x + a), where @ € R".

2. Complete systems.

To give a criterion for the collection of {I,f ,n=12,...d € L} to be acomplete
system of Floquet spectral invariants. We suppose that a criterion similar to the one-
dimensional case can be proven: the collection {I,‘f,n =1,2,...,d € L} can be a com-
plete system of Floquet spectral invariants in quasianalytic classes only.

3. Let E(z,x,y) be a fundamental solution for the hyperbolic equation associated
with - A + V(x). Let V belong to the Carleman class C(m,,R"/L). Is E(t,x,y) from the
same Carleman class C(m,,R"/L) on the complement of {(¢,x,y) : |[x—y| = t}? We have
a conjecture that it is true in the quasianalytic classes. Then the arguments of Theorem
2.17 could be used for quasianalytic potentials, i.e., the periodic spectrum oo (H) will
determine the Floquet spectrum or (H).

4. The moment problem.

Let L be an orthogonal lattice in R? and V be a separable periodic potential
V(x1,x%1) = Vi(x1) + V5(x;). Then the coefficients I,‘,’ have the representation

= / P,(t,5)d a(t,s), (46)
R2

where P,(t,s) = 2’,;_0 tks®~k and d o(t,s) = y1(t)y:(s)d td s. Define the moments
Mpym = [ tksn=kd o (t,s). Then

R= " mum (47)
ny+nz=n
and the function
w(z) = // do(t,s) 48)
(z-1t)(z-5)

is the generating function for the collection I2. Formulas (46) and (48) are similar to (11)
and (9 ) for the Hill operator.

It would be interesting to find a representation similar to (46) and its generating
function (48) for general periodic potentials.

5.AsetISOo (V).

a) To describe ISOq (V') for potentials of the form V (x) = Q;(8; - x) + Q2(d2 - x) or
V(x) = Qi(8) - x) + Q2(52 - x) + Q3(d3 - x);
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b) is aset ISOy(V') compactin C®(R"/L)?

c) in the case n > 2, to prove that if a set ISOy(V') contains at least one analytic
potential then all potentials from ISOy (V') are analytic.

Concluding remarks.

1. [31] is the first publications (unfortunately, in Russian) where Theorems 2.13 and
2.18 of the Lecture 2 where announced.

2. At present, some results formulated in these lectures are extended to the case
of the Schrodinger operator with periodic vector potential {9] and for the Schrédinger
operator with periodic magnetic and electric potentials [8]. Isospectral potentials on a
discrete lattice are considered in [17]-[19].

3. On the trace formulas for multi-dimensional Schréodinger operator with periodic
potential see [24},{12].

4. For detailed proofs of the results of these lectures, see [41].
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