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TWO LECTURES ON SPECTRAL INVARIANTS
FOR THE SCHRÖDINGER OPERATOR

Mikhaïl V. NOVITSKII

Abstract

An introduction into spectral invariants for the Schrödinger operators with per-
iodic and almost periodic potentials is given. The following problems are conside-
red: a description for the fundamental series of the spectral invariants, a complete-
ness problem for these collections, spectral invariants for the Hill operator as motion
intégrais for the KdV équation, a connection of the spectrum of the periodic multi-
dimensional Schrödinger operator with the spectrum of a collection of the Hill ope-
rators obtained by averaging of the potential over a family of closed geodesie on a
torus, the direct and inverse problems. Some open problems are formulated.
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Introduction

Spectral invariants as functionals on the collection of the Schrödinger operator with
periodic potential appear in a natural way in investigations of the direct and inverse
problems for these operators. Most interesting are functionals defined in terms of
polynomials of a potential and finite number of its derivatives. We will call them polyno-
mial spectral invariants. The most known collection of such functionals are the
Minakshisundaram-Pleijel coefficients as a collection of the coefficients of the complete
asymptotic expansion of the trace of the fùndamental solution for the parabolic équa-
tion associated with the Schrödinger operator. In the same way, the Minakshisundaram-
Pleijel coefficients can be introduced for the Schrödinger operator on smooth compact
manifolds [30].

It turns out that even if a manifold is a circle, the theory of spectral invariants for the
1-D Schrödinger operator with periodic potential (the Hill operator) is not trivial. First of
ail, this is because the Minakshisundaram-Pleijel coefficients are the motion intégrais of
the Korteweg-de Vries (KdV) équation

ut = Suux - uxxx

(see [11], [34]) and, as a resuit, have some additional algebraic properties. In particular,
they are solutions of some moment problems on the real axis. The KdV équation pré-
sents the first nontrivial case of continuous isospectral déformations for the Hill opera-
tor. Other isospectral déformations for the Hill operator are related to the high order KdV
équations and their linear combinations. If a potential is an almost periodic fonction,
then the theory of spectral invariants becomes much more complicated, however some
results can be proven in this case, too.

Spectral invariants for the multi-dimensional Schrödinger operator with periodic
potential is a subject of Lecture 2. Some new effects Iike spectral rigidity appear, but as
comparée! to the one-dimensional case the gênerai situation is far from the end. Essen-
tial part of results are stated for analytic potentials only No classification is known yet
for potentials which permit continuous isospectral déformations. One of the interesting
results is a connection of the spectrum of the periodic multi-dimensional Schrödinger



TVo lectures on spectral invariants for the Schrödinger operator 79

operator with the spectrum of a collection of the Hill operators whose potentials are ob-
tained from the potential by averaging over a famîly of closed geodesie on a torus. Some
open problems are formulated.

1. Spectral invariants for 1-D Schrödinger operators with periodic and
almost periodic potentials

1.1. Periodic case - the Hill operator

1.1.1, Spectral theory. The first step.

Let u(x) be an infinitely differentiable function with the period one, i.e., u(x + 1) =
u(x). The Hill operator is the Schrödinger operator with the periodic potential u(x):

- ^ + u(x)y.

In the space I 2 (- oo,oo), this operator is selfajoint and bounded from below, its spectrum
is absolutely continuous, has multiplicity two and is the union of intervals

<T(H) =

divided by the gaps (A2fc+i,A2it+2)> k = 0,1,2,... For some potentials, the number of the
gaps is finite. For example, if u = W^+1?PU) with P(x) the Weierstrass function, then
the spectrum of this operator has exactly n gaps. For the potential u = cos 2nx, "all" the
gaps are open.

In the space L2 [0,2], consider another operator Hper defined by H y = - ĵjjf + u(x)y
with the periodic boundary conditions y(0) = y(2), y(Q) = y'(2). Whatis a relation
between <r(H) and <r(Hper)l The answer to this question is

LEMMA 1.1.

a(Hper) - {A*}^o (1)

Sketch of the proof. — The Hill discriminant can be defined by the équation

where s(\,x),c{Xtx) is the fundamental system of solutions of the équation Hy = \y
with the initial conditions s(\,x) = c'(A,0) = 0, 5r(A,0) = c(A,0) = Ï.The central point
of the proof is the following description of the spectrum <r(Hper) and <r(H) in the terms
of A(A,M) :

)| < 1} (2)
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and
(r(Hper) = {A : |A2(A,w)| - 1 = 0}. (3)

The function A ( A, w) is an entire function of order \ and the function A2 ( A, w) - 1 may be
expressed as a canonical product formed by the roots A*,fc = 1,2,... :

(4)

where the constant c is known. The proof follows from (1),(2),(3) and (4).

The meaning of this Lemma is very simple: if we know the spectrum H we can find
Hper and vice versa. For details of the proof and other information on the spectral theory
of the Hill operator see [25], [26], [27], [28], [45].

Remark. — InthespaceI2[0,l],considertheoperatorflfedefinedbyHy = - ^ f +
u(x)y vtiihtheFloquetboundary conditions y (0) = eiey(l)ty'(0) = eiBy(l). The eigen-
values of this problem are the roots of the équation

A(A,u) -cosÖ = 0. (5)

The union of the eigenvalues of the periodic (9 = 0) and antiperiodic (0 = n) spectral
problems is exactly the collection {A f̂c = 1,2,...}. If the spectrum a(He1 ) is known,
then one can find the discriminant A(A,u) and, as a resuit, any spectrum a{Hg),0 €
(0,7T].

1.1.2. Spectral invariants for the Hill operator.

Let us introducé

DÉFINITION 1.2.
a) Two HilVs operators H\ and Hz are called isospectral Hill's operator if\i(H\ ) =

\i(H2),i = 0,1,2,....

b) The functional Q(u) is called a spectral invariant of H ifQ(u) hos thefollowing
property: ifthe spectra of the operators Hi = -;jjr + "/(*)> *'= 1,2, coïncide, thenQ{u\) =
Q(u2).

DÉFINITION 1.3. — Wecallasystemoffunctionals{Qa},oc e Q., a complete system
of spectral invariants for the Hill operator H = - - ^ + u(x), ifthe equality Q«(ui) =

Qot(u2) for all values of ot e Cl implies that the spectra of the operators Hi = - ^ +
Ui(x),i = 1,2, coincide, and conversety

Examples.

i) the eigenvalues Xk(H),k = 0,1,2,... and the functionals Q(Ao, - -. ,Ajv), where Q
is an arbitrary function of N + 1 variables, are spectral invariants of the Hill operator;
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ii) the collection of functionals

Q(À,w) = A(À,u), À € C

is a complete system. It follows from (4).

Ui) the Hill discriminant A(z,u) has the représentation

(6)

where the fonction ip(z,u) is a conformai mapping of the upper half-plane Q. = {z :
Im z > 0} onto a région of the form

oo

Jb=-oo

where hk - h-k, h0 = 0(see [26]). The fonction i//(z) is normalized by the conditions
<//(0) = 0 and limy_«> ®(iy)/iy = 1 and uniquely determined by the collection {hk}- The
collection offunctionals {i//(z,u), Imz > 0} and the collection {hk}^^ arecomplete
Systems.

iv) the trace of the fondamental solution of the parabolic équation associated with
the Hill operator is the collection of the functionals

Q(t,u)

The collection {®(t,u),t > 0} is a complete System.

v) the Minakshisundaram-Pleijel coefficients is a collection of the coefficients of the
asymptotic expansion of©(r,u) :

t i 0.

Hère ck = (-l)fc+12fc/(2A: - 1)!!, k = 1,2,.. The fonctionals {/„Î^LQ are spectral inva-
riants for the Hill operator H. Generally, this collection is not complete.

DÉFINITION 1.4. — A potential u\ (x) is called résonance ifthere exists another po-
tentialu2(x) such that In{u\) = In(u2) for ail n = 1,2,.. but the spectra ofthe operators
Ht = - ^ + Ui{x), i = 1,2, aredifferent

Analytic potentials are not résonance. About that and about a criterion for the col-
lection {/n}£=oto b e complete, see Theorem 1.9.
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A description of the fundamenîal series of spectral invariants for the HUI operator

The counting number for discrete series of spectral invariants for the Hill operator
can be introduced using the generalized Jacobi formula

e(t,u) = J2 en(t,u).

Here &n(t,u) has the form

f1 1 / n2\
®n(t,u)= ƒ e(t,x,x+ n)dx = -==exp [-— )Fn(t,u). (7)

Jo V47Tf \ At)
The function e(r,x,y) is a fondamental solution of the équation dejdt = f/eonthewhole
line. According to the Kac-Feynman formula, the function Fn(t) admits the représenta-
tion

Fn(t,u)= I M e x p ( - M M(JC+WT +V?M/(T))dT) \dx. (8)

Here M is the mathematical expectatioh of a random variable, w(r) is the "Wiener brid-
ge", which is defined as a one-dimensional conditional Wiener process determined by
the following conditions:

i) a/(0) = u/(l) = 0;

ii) w(r) is a Gaussian process with the zero mean and a corrélation function
B(s,t) = (sAt)(l-svt).

LEMMA 1.5 ([44], [26]). — Foreach n thesetoffunctionalsFn{t,u), n € Z, t ^ 0,
constitutes a complete system of spectral invariants.

Proof follows from the formula

\n\

According to (6), we can rewrite the previous equality as

Hence Fn(t,u) defines i//(A) and the Hill discriminant A(A,M).

DÉFINITION 1.6. — Byann -series of the spectral invariants for the Hill operator we
will mean the set of values {1%} f* given by the asymptotic expansion
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It follows from (8) that

# = ƒ Pkn(U,u',...)dx,
Jo

where P^n is a polynomial in u and its derivatives. The polynomial spectral invariants 1%
are our main subject of considération.

Explicit formulas for calculating the coefficients of n - series from the set {I£} f can
be presented.

THEOREM 1.7 (138], [39]). — The coefficients ofan n- series {/£}£=! can be expressed
in ternis ofthe coefficients ofthe O-series by the relation

p5)4 *=1'2'-

This implies that the collections!7£} * with different n are equivalent and it is sufficient
to investigate the collection {1%} only. Define a new collection {ƒ„} by the formula

In - ( }
 2„ Cu n = 0,1,2,...

The collection In has the following properties:

i) In is given by the formula

Jo

where an (u,u',..) d x are universal polynomials of degree n that have no constant terms
and are defined by the récurrence relation

j , k = 1,2, •..

with the condition a\ = U(JC). Using this récurrence relation we get

u(x)dx, = r
and so on.

ii) Let tp(z, u) be the "comb-like" comformal mapping from (6). The function ty(z,u)
has the représentation

f°° dcr(t)
tl*(z,u) =z+ , (9)

J-oo * - z
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where the measure da(t) has the form da(t) = £ lm ip(t) dt (see [27]). The séquence
{In}n=i coincides with the coefficients of the asymptotic expansion

B=0

By the Hamburger-Nevanlinna theorem (see [11) and (10), the coefficients In are a solu-
tion to the moment problem on the whole line:

t2nda(t). (11)

A critenon for the collection {Jn}£=o to be a complete system.

Finite gap potentials are not résonance: the periodic spectrum can be recovered
from the collection {Jn}n=o *n a unique way. The same statement is true for real analytic
potentials. Let {mn} £Lj be a fixed séquence of positive numbers. We assume with no loss
of generalitythat {/n„}*=1 grows faster than any power of «and the séquence {In m„}~=1

is convex with respect to n.

DÉFINITION 1.8. — The Carleman class C(mn) is the class of all C00 one -periodic
functions u such that

\\u{n)\\Lz < Cn(u)mn> n = 0,1,2,...,

where the constant C dépends on u.

The class C(mn) is called quasianalytic if it possesses the following property: each
fiinction u e C(mn) satisfying uik)(xo) = 0 for all k = 0,1,2,... at a fixed point Xo is
identically zero. Any fiinction from a quasianalytic class can be recovered by its Taylor
coefficient at any fixed point.

THEOREM 1.9 ([40]).
l.LetC(mn) be a quasianalytic class. Then for everytwo potentials u\ <= C(mn) and

u2 e C(mn) theequalitiesIk(ui) = Ik(u2), £ = 0,1,2,... ,imply\k(u\) = Ajt(u2), k =
0,1,2,....

2. Let C( mn ) be a nonquasianalytic class. Then there exist two potentials u\ e C(mn)
andu2 e C(mn) such that h{u\) = Ik(u2), k = 0,1,2,... , but the spectra ofthe per-
iodic boundary value problems in L2 [0,2] for the HUI operators with these potentials are
different.

Remarks.

1. It follows from this theorem that résonance potentials exist in nonquasianalytic
classes only.

2. According to Theorem 1.7, all n-series of spectral invariants of the Hill operator
are equivalent to each other. Hence Theorem 1.9 is true if we change {ƒ„} into each of the
n- series{ƒ£}?L0 (w beingfixed).
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1.1*3. Isospectral set.

For any periodic potential u, we dénote by ISO( u) the set of potentials having the
same spectrum as u. What is the structure of an isospectral set ISO( M)?

THEOREM1.10([46]). — Isospectral setïSO(u) of'the HUI operator H with potential
u is topologically equivalent to the torus TN, where N i$ the number ofthe gaps in the
spectrum H :

ISO(u) « TN. (12)

Sketch of the proof. — Consider the collection of operators

Hty(x) = [ - - ^ + u(x + t)]y(x), t € [0,1]

inihespace L2[Q,l].Let {Wcit)}^, te [0,1] be the auxiliary spectrum ofthe operator
Ht generated by the équation Hty = yy and the boundary conditions y(0) = y(l) = 0.
Then the first trace formula for the Hill operator is

+00

u(t) = Ào + ̂ [ A 2 f c + A2jt_! - 2nk(t)]. (13)

Itfollowsfrom(13)that

u(x) «=> {{À*}^,{^(0}£=<>, t G [0,1]}. (14)

The collection (14) is overdetermined: to recover a function u(x) we have to know a
countable collection of the functions { ĵt(f)}j£=o- The functions {^fc(f)}^=i are not ar-
bitrary, they are solutions of some System of ordinary differential équations. They are
known as the Dubrovin-Trubowitz équations. These équations can be deduced in the
following way (see [46], [3] ). Consider the Green function g(s,t,\) of the operator if =
~ dj? + UW in I2(-oo,oo). The diagonal function g(t,t ,\) is well defined if A belongs to
a gap (À2*;+i,À2A:+2)>fc = 0,1,2,... of the operator H. The résolvent équation for g(t,t ,À)
implies

—g(t,t,A)= ƒ g*(t,t + s,\)ds>0

and, as a resuit, this function grows from -oo to oo on each gap. The value tik(t) is exactly
the intersection point of this function with the real line, i.e.,

=O, t € [0,1].

Differentiation of this équation with respect t implies
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and consequently

A more detailed analysis of g(t

M.VNOVITSKn

dt —£ {t,t,Ulr(t ))

,r,A)showsthat

where ± 1 corresponds to the left and right half-line Dirichlet eigenvalue. Finally, the sys-
tem for ;**(*) is

dyicit) _ ak(t)
dt % '

This system is autonomous, and the existence and uniqueness theorems can be proven.
Furthermorefifwefixsome point ÎQ € [0,l],then

u(x)

Let cp = (g?i,<P2/. • • ,<PJV)>1 < N < oo, be the coordinates of the torus T. Define the
constants

The point q> € T is defined by

O < <Pfc < 7T, for Ofc = 1, TT < g?jt < 2TT, for ak = - 1

There is no ambiguityin cpk when ixk = À2fc-i or À2jt- Hence,

M(JC) <=» <p, <p e r N .

Remark. — The global geometry of the isospectral torus. Global geometry proper-
ties of isospectral sets M corresponding to infinité gap potentials are considered in [29].
By the tangent space Tu at the point u we mean the closed span in I? [0,1] of the system
ofthefunctions

d ÖA(\,u)
dx 5u '

\<ER.

CONIECTURE 1 (H.P. McKean, E. TVubowitz 129]). — The motion intégrais {ƒ„
détermine the isospectral setMu if and only ifthe local tangent vectors

4-1T> « = 04,2
dx Su

span the tangent space Tu.
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The following assertion holds:

THEOREM 1.11 ([40]). — The two properties are equivalent:

1) forevery isospectral setM inC(mn) andforeveryu e M, the span ofthe set ofthe
local tangent vectors {Vn ( u)} JJLQ coincides with the whole Tu;

2) theclassC(mn) isquasianalytic.

It follows from Theorem 1.9 and 1.11 that the conjecture is true for every quasianaly-
tic class C{mn).

1.1.4. The KdV équation and isospectral déformations,

One of the problems of the spectral geometry related to the Schrödinger operator
on a manifold is an analysis of the set of operators having the same spectrum. Even in
the case if the manifold is a circle, we have a nontrivial problem. We are interested in a
construction of a continuous collection of operators H(t) = - ^ + u(x,t),t € [0,oo]
with the same spectrum: a{Htl) = 0*(<Hi2), where ri and fe are from [0,oo]. A trivial
example of an isospectral déformation is the collection of operators

d2

r

dx2

Nontrivial cases appear from
THEOREM 1.12 ([11]). — Consider the initial value problem for the KdVéquation

[du
— = 6uux - uXXXf t e [0,oo), x € (-00,00)
ot U5J
u(x,0) = UQ(X),

where the fonction UQ(X) isperiodic with period 1. Then:

1) thereexists a unique solution of équation (15) in the class ofperiodicfunction with
period 1;

2) the spectra of the operators

d2

dx2

where u(x,t) is a solution of the KdV équation (15), do not depend upon t:

To prove this theorem, we use the Lax représentation of the KdV équation and formulate
the following genera! lemma.
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LEMMA 1.13 ([22],[23]). — Let H(t) and A(t) be collections ofselfajoint and skew-
selfajoint operators in a Hubert space respectively:

f/(r) = #*(*), A{t) = -A*(t).

Suppose that they satisfy the équation

4~H(t) = [A(t),H(t)] = A(t)H(t) - H(t)A{t). (16)
a t

Then there exists a unique collection ofunitary operators U(t) ,t € (0,oo), which present
H(t) intheform

U*(t)H(0)U(t) (17)

and consequentlyH( t) is an isospectral déformation of the operator H(0).

To prove the theorem, we set

/*(*) = - - ^ + u(x,f), A(t) = -4-^?+6u^- + 3ux. (18)
dx2 d& dx

Direct calculation shows that in this case [ A{ t ),H ( t ) ] is an operator of order zero. More
exactly, it is the operator of multiplication by the function 6uux- uxxx and the KdV équa-
tion is equivalent to équation (16).

Remark. —Représentation of the KdV équation in the form -^H(t) = [A{t),H(t)],
where A{t) and H(t) are of the form (18) is known as the Lox représentation of the KdV
équation.

Theorem 1.12 has the following conséquences:

i) the eigenvalues of the Hill operator are the motion intégrais of the KdV équation:

O)), fc = 0,1,2,...; (19)

ii) the spectral invariants 4 , k = 0,1,2,.. . are the motion intégrais of the KdV équa-
tion.

The KdV équation can be rewritten in the form

Here I2(u) = J0
2(iz3 + - ^ ) d jcand, asaresult, | £ = 3u2 - uxx.

One can consider higher order KdV équations (see [34]),

T^ «-3A... (21)
öu
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All these higher order KdV équations also admit Lax représentation with a common ope-
rator H(t) = - ^ + u(x,t) and an appropriate skew-adjoint operator An(t) :

— H(t) = [An(t),H(t)] » ut = Q(u,...,u[2n+l)). (22)

A more genera! case
N

k—-*, N = 2,3,4,..., (23)

fe dx5u

where ck,k = 2,3,... ,N are arbitrary constant, can also be considered. As a resuit, a rich
collection of isospectral déformations of the Hill operator can be constructed using the
spectral invariants 4 , A; = 2,3,4,... The potentials of these isospectral operators are solu-
tions of some partial differential équations (formulas (22) and (23)).

1.2. Almost periodic case

1.2.1. The rotation number and other functionals.

i) Définition of almost periodic function.

DÉFINITION 1.14. — Letubea bounded and continuons function on R. We call the
function u{x)tt e R, Bohr - almost periodic (a.p.) if the set of its translates {us(x) =
u(x + s))} is relatively compact, Le., for any séquence of points Sk e R,k = 1,2, ...the
séquence offunctions{ uSk} hos a subsequence which converges uniformly in R.

Trigonométrie polynomials u(x) = 22k=\ c * e > where Ç* e /?,*;= 1,2,... ,Nare almost
periodic. A function is almost periodic if and only if it is the uniform limit of a séquence
of trigonométrie polynomials. Obviously, every continuous periodic function is almost
periodic. The functional

1 fN

Ex(u) = Hm — I u(x)dxlim /
V-oo 2N y_jv

is defined on the class of almost periodic functions and called the mean value of u.
There exists only a countable set {Ç̂ ,fc = 1,2,. ..,N, N ^ oo} of numbers Ç for which
Ex{u(x)elkX) * O.The frequency module is the set

N

of finite integer combinations of these frequencies.

ii) Rotation number [15]. Let u(x) be an a.p. function of the class C°° (R), Iet

d2

H = - — j + u(x)
dx2
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be the one - dimensional Schrödinger operator in L2(R). The nature of the spectrum of
the Schrödinger operator with almost periodic potential is very complicated and in the
décomposition

<r(H) = <r(H)pp u cr(H)sc u a(H)ac

"almost all" combinations of the spectral components <r(H) Pp,(r(H)sc,cr(H)ac can ap-
pear(see [10]).

DÉFINITION 1.15. — The functional Q( u) is called a spectral invariant on the class
of the Schrödinger operators with almost periodic potentials H ifQ(u) hos thefollowing
property: if the operators Hi = —jg+Ui(x), i = 1,2, are unitary equivalent, then Q(u\) =
Q ( )

Trivial examples of the spectral invariants are the points of the spectrum and the
multiplicity of the spectrum. Another collection of spectral invariants can be constructed
in the following way.

Let G(x,y,z) be the Green function of the operator H, where z belongs to the ré-
solvent set of the operator zl - H. The function G(x,x,z) =P 0 is an a.p. function ( see
[15]). Thus, consider the function of the rotation number (or the rotation number)

w(z,u) = ( -1 v
\2G{x,x,z) )

The rotation number has some interesting analytic properties. We will say that a function
f(z) holomorphic on Q. = {z : Imz > 0} belongs to the Nevanlinna class N if it
maps C+ into itself. The function w(z,u) belongs to the class of holomorphic functions
on Q. = {z : lm z > 0} and satisfies the 3-time Nevanlinna property

w(z,u) € N, - iw(z,u) e N, w(z,u) € N.

For the periodic Schrödinger operator (the Hill operator), the function of rotation num-
ber w(z,u) is connected to a "comb-like" mapping ip(z,u) by the relation w(z,u) =

)t I m z > 0 .

The function w(z,u) can be defined in the different way. Let y{x,\) be any non-zero
solution of H( ü)y = \y, then y' (x,\) + iy(x,\) does not vanish for any x. For any real \
we define

<x(\,u) = lim - arg (y'(x,A) + iy(xji)). (24)
*— °° x

This limit exists and is independent of the particular solution chosen. The functional
ot(\,u) measures the average increase of the angle in the (y\y)-plane. a(À,w), as func-
tion of À, can be extended to some harmonie function in the upper-half plane. It turns
out that this harmonie function is the imaginary part of the rotation number w(z,u)t

lm z > 0. Hence
<x(\,u) = lim lm U/(À + £,M), A e R.

£-0
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iii) Integrated density ofstates and the Lyapunov exponent

Operator H = ~d2/d2x + u{x) with a.p. potential u{x) has the spectral décompo-
sition

\dEx, Ao= inf {A},

where the spectral projector E\ is an intégral operator with a jointly continuous and uni-
formly bounded kernel e(x,y,A). The integrated density ofstates is defined as

(25)

N( A) can be find by means of the following procedure. Consider the spectral problem

J - y " + wU)y = Ay xe[-T,T], {26)

Let Afc( T),k - 1,2,.. .be the spectrum of (26). Then it can be proven that

- (27)
2.1

and

KW-f. (28)

For large values of JC the envelope of y(x,\), where y(x,\) is a solution of équation
Hy = \y, behaves as e±y(A)|jc|(1+o(1)).Thenonnegative quantityy(A) iscalled theLyapu-
nov exponent In terms of the rotation number:

y(A) = -Reu;(A + fO). (29)

It is known (see, for exampleJIO], [21] )that:

a) the set of the points of growth of the integrated density of states N(\) coincides
with the spectrum a(H ) of the operator H ;

b ) the absolutely continuous spectrum crac(H) coincides with the essential closure
with respect to the Lebesgue measure of the points of R where Lyapunov exponent y ( A)
equals zero:

ess{\ :y(A)=0}.

1.2.2. Spectral invariants.

i) The rotation number, the integrated density ofstates N(\) and Lyapunov exponent
y ( A) are spectral invariants of the Schrödinger operator.

The mean of the Green functions is related to the rotation number by

w(z,u) = ExG(x,x,z), (30)
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so w(z,u) détermines the collection of the spectral invariants of the Schrödinger opera-
tor H : two unitary equivalent Schrödinger operators with almost periodic potentials u^
and «2 have the same rotation number w(z,u\ ) = w(z,u2). From (24 ) and (29) itfollows
that N(\) and y (À) are spectral invariants of the Schrödinger operator as well.

Let u(x) and all its derivatives u{k) (x) be almost periodic functions. Then the fiinc-
tion w(z,u) admits an asymptotic expansion of the form

w(z,u)~ ^ x l - V ^ . * - — .

and defines the collection {/„}£* of spectral invariants of the Schröodinger operator.

The function - iw(z?,u) belongs to the Nevanlinna class JV, i.e., it is a holomorphic
function on Cf = z : lm 2 > 0 and maps the half-plane lm z > 0 into itself. By the
Hamburger- Nevanlinna theorem [1], the coefficients In are a solution of the moment
problem on the whole line:

'--f
J - o

Jlnrnda(t),

where d <r(t) = y(t)d t. Hence the problem of unique recovery of the rotation number
w(z,u) from the set {In}(? is equivalentto theproblem of unique solvabilitéofthis moment
problem in the class ofabsolutely continuous measures with the Lyapunov exponents as
the densities.

ii) The problem of unique recovery of the rotation number w(z,u) from the collection

{In)o-

Let us formulate a criterion for recovery the rotation number in terms of the growth
of the séquence {ƒ„}£*.

Let {mn} *=1 be a fixed séquence of positive numbers as in the periodic case, i.e., we
assume that {m„}"=1 grows faster than any power of n and the séquence {In mn}^i is
convex with respect to n. Define the standard object of theory of quasianalytic classes,
the function

rn
T(r,mn) =sup .

In the set of a.p. functions of the class C"(R) we distinguish the family of functions

n}) = {i/€C0<>(JÏ),uisana.p.f. \In(u)\ ^ C(u)mn}

and its subset Q( {mn} M) consisting of those a.p.f. whose Fourier exponents are contai-
nedin the module M of the Fourier exponents of some fixed a.p.f.

THEOREM 1.16 ([35]). — In order that in the class Q({mn}) implication

= h(u2),n = 0,1,2,... => w{z,ui) = w(z,u2)
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hold, it is necessary and sufficient that

T(T FM ï

dr = +00. (31)
f°° hïT(r,mn)

Jo 1 + ri

Similar assertion holds alsofor the $ubsetSl( {mn} ,M ).

Hence, in the gênerai case the spectral invariants {In}™=0 do notform a complete
collection of spectral invariants ofthe Schrödinger operator H.

CoROLLARYl.17. — On the basis ofthe collection {IH}Q in the classes Q({mn}) and
Cl({mn},M), the spectrum a(H) and the absolutely continuons spectrum (Tac(H) ofthe
operator H osa closed subset ofR can be uniquely recovered if and only if the integralfrom
(31 ) is divergent

Sketch of the proof — Let U\ and «2 be two potentials which have the same col-
lection of the functionals {/„}£=! ( /„(«i) = /w(u2),« = 0,1,2,... ). We get that for
Imz ^ 5 > 0 the function qp(z) = -i[w(#,u\) - w(z?,u2)] satisfies the System of
inequalities

#n
 n,n = 0,1,2,...

and the problem can be reduced to the classical Carleman theorem. The divergence of
the intégral in (31 ) implies <p(z) = 0. Hence w{z,u\)

In the proof of the second part of Theorem 1.16 it suffices to restrict attention to
the classes Q({mn} ) of the Hill operators. Consider the periodic potentials of the class
C00 (R) with period 1 such that the lengths of the gaps A2jt - ^2k-\>k = 1.2,... in the
spectrum ofthe operator H = -d2/dx1 + u in L2(R) are open and have the asymptotic

We prove that if
lnT(r)

Jo

then every potential u\ from this classis résonance, i.e., there exists M2 € Cl({mn}) such
that/n(i/i) =/„(M2),n = 0,1,2,,.., but u/(z,i/i) * M/(Z,M2). Hère we use the Marchenko-
Ostrovskii theorem [27] on characterization ofthe Hill discriminant in the class of entire
fonctions.

1.2,3. Openproblems.

1) To décide whether two almost periodic potentials u\ and u\ for which

w(z,ui) = w(z,u2),Imz > 0
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give rise to unitary equivalent operators

Hi = -d2/d^ + ul and H2 = ~d2/dxl + u2.

In other words, is the collection of functionals w(z,u),z e Q. , a complete system of spec-
tral invariants in the class of the Schrödinger operators with almost periodic potentials?

2) To construct the Schrödinger operator with an almost periodic potential and pure
point spectrum. To study its spectral invariants and the isospectral déformations.

2. Spectral invariants for the Schrödinger operator with periodic
potential: multi-dimensional case

2.1. Spectral theory. The Bette-Sommerfeld conjecture

Consider an n-dimensional lattice L in Rn and an infinitely differentiable potential
V{x) on Rn saösfying the periodicity condition

) = V(x), V d e l .

For such potentials one has the eigenvalue problems parameterized by k € Rn,

\y(x + d) = ^ni^d)y(x) Vx € Rn,Vd e L
(32)

The eigenvalues of (32), with multiplicities, are denoted by Aj(fc),z = 1,2,..., and the
spectrum by a ( Hk ) •

DÉFINITION 2.1. — The Floquet spectrum aF(H)of the Schrödinger operator H =
-A+V isthe collection of the fonctions A,- ( Jb), i = 1,2,... for all ke Rn.

In the physics literature, <rF(H) and the collection A,-(fc),f = 1,2,... are known as
the Bloch spectrum and the band fonctions. The Floquet spectrum aF(H) is an overde-
termined system. The collection {A,(O),z = 1,2,...} {k = 0) corresponds to the periodic
spectrum, a (Ho) is the spectrum of the operator H on the torus Rn/L. We dénote this
spectrum by <TQ(H).

Let <T(H) be the spectrum of the Schrödinger operator H = -A + V in LZ(R). It is
known (see [42]) that H is the direct sum of the operators Hk and, as a resuit,

<r(iJ)= U a(Hk), (33)
keRn/L*

where I* is the lattice dual to L. Using (33) it can be proven (see, for example, [42] ) that
the spectrum cr(H) is absolutely continuous and, as in the one-dimensional case, is the
union of intervals divided by gaps.
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Bette and Sommerfeld conjectured that in the multi-dîmensional case the spectrum
a (H) contains onïyfinite numberofgaps, i.e.

N-l

i=l

This conjecture was proven in [43] with some restrictions on L and in 147] for the gênerai
case(seealso [20]).

2.2. Spectral invariants

2.2.1. Définitions and problems.

DÉFINITION 2.2.

a) A functional Q(u) is called theFloquet spectral invariant ofH if Q(u) has the
following property:

aF(Hx) « aF(H2) => Q(ii,) = Q(u2);

b) A functional Q(u) is called a spectral invariant ofperiodic problem ifQ(u) has
the following property:

ab(Hi) = (T0(H2) =» Q(ui) = Q(u2).

The following problems are interesting for us:

- Let us suppose that we know the Floquet spectrum ap(H). What is known about
complete collections of the Floquet spectral invariants? Does the Floquet or perio-
dic spectrum détermine the potential u(x) up to isometries of J?"/I?

- Does the periodic spectrum ao(H) détermine the Floquet spectrum o-p(H), i.e.,
are the eigenvalues \i(k),i = 1,2,... the spectral invariant ofperiodic problem for

2,2*2. Floquet spectral invariants.

1) Complete collections ofthe Floquet spectral invariants.

In this subsection the main results are proven without restriction on the lattice L.
Let e( t,x,y) be a fondamental solution of the heat équation de/ dt = H e on Rn. Dénote

= /
JR

e(t,x,x+d)dx.
RnlL

Using the trace formula for the heat équation we obtain

e-2ni{k>d)@d(t). (34)
m=0
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The right-hand side of (34) is the Fourier expansion of the function with respect to the
variable k. Hence, if we know the whole collection \m(k),m = 1,2,... ,k e Rn then the
coefficients ©d(f ) of the expansion (34) are known as well.

Hence, we have

LEMMA 2.3 ([4]).— The collection

® d ( t ) = / e ( t , x , x + d ) d x , t > 0 , d e L
JRnIL

is a complete collection of the Hoquet spectral invariants.

The Kac-Feynman formula for a fondamental solution of the parabolic équation
associated with Schrödinger operator implies that ©<*(*) has the représentation

®d(t) = * ' f M|expf-r f u(x + dT + Vtw(T))dr) \dx. (35)(4nty JRnIL l \ Jo /J

Then ®d(t) admits for t i 0 the asymptotic expansion

DÉFINITION 2.4. — We call the coefficients l£ ofthe expansion (36) the generalized
Minakshisundaram-Pleijel coefficients fortheoperator H = - A + V.

From Lemma 2.3 and (36 ) it follows that {Ij*,k = 1,2,... ,d e 1} is a collection of
the Floquet spectral invariants.

THEOREM 2.5 ([33], [32]). — The generalized Minakshisundaram-Pleijel coefficients
{In)o*d G Un = 0,1,2,..., forma complete System ofthe Floquet spectral invariants in
the class ofreal-analytic potentials on Rn/L.

The proof of this theorem is based on the transformation formula

where
Ed(s)= f E(s,x,x + d)dx, (37)

JRn/L

and E(s,x,y) is the fùndamental solution ofthe hyperbolic problem

&E
-— = HE = -AE + VE,
ds2
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dE
E\s=o = Sxiyh—lm = 0, O 0, x,y €= Rn.

os

The properties of the function Ed(s) for the real analytic potential V are described
in the following lemma.

LEMMA 2.6. — The function Edis) admits the représentation

Here$d($) is a distribution of the form

= o o ^ r i t / - \d\2) + <xf if
ds J

q>d(s) is an analytic function for s ^ \d\. The function q> dis) has at most an exponential
growthfors -> oo and has an expansion

<Pd(s) =
n=2

The distribution T\(s) is defined as an analytic extension of the function s$IT(\ +1) for
ReA > 0. The séquence {of£}*=1 is a séquence ofuniversal constants which do not depend
upon V.

Remark. — The structure of the coefficients {l£}o has been studied sufficiently
well in the one-dimensional case (see Lecture 1). Here the main series {IJ*}Q coincides
with the polynomial series of the first intégrais In of the KdV équation while the remai-
ning coefficients {!*}%$ * 0, are linear combinations of the main series {•/£}* ( Theo-
rem 1.7 ). Whether the higher coefficients {ig}$ for n ^ 2 reduce to the coefficients of
the main series {1% }$ is unknown. We suppose that they do not.

2.2*3. Explicit expressions for the polynomial Floquet spectral invariants.

Using (35) we prove

LEMMA 2.7 ([32]). — The following computational formulas hold:

tf- f Pn(V,DV,...)dx.
JBPIL

Here Pj*,d € L are polynomials in the function V and its derivatives:

2r2+3r3+---+2nr2B=2f»
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where {77} are all possible collections ofnonnegative integers satisfying

2r2 + 3r3 + • • • + 2nr2n = 2«,

andp= (p\>P2,:>Pn)f

It is convenient to compute the coefficients {/*} 5° in terms of the Fourier transform
of the potential V. We present explicit expressions for the first four coefficients Ifj,n =
0,1,2,3, in each d -series, d e l .

LEMMA2.8([6] 132]). — LetL* be the lattice dual to I, and let

V(x) = Y2 cyexp{2ni(y,x)}.
y€L*

Suppose the fonctions {Vó(x)},d G L are defined by

cyexp{2ni(y,x)}.
(y,d)=o)

Then
= VolRn/L, lf = - f V(x)dx = -CÖ,

JRnIL

j g » - l 5 ^ 4 = 1 / (38)

Proo/ of this Lemma follows from direct calculations and uses some exact formulas
for the Wiener bridge moments.

CoROLLARY 2.9. — The collection

{d:dsLf Vd = 0] (39)

is a collection of the Floquet spectral invariants.

COROLLARY2.10. — LetLbe a rectangularlattice and potentialV beseparable:

fc=0

Then all potentials Floquet isospectral to V are also separable.

Proof follows from the formula for the coefficient /ƒ.
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2*2.4. Does the Floquet spectrum détermine the potential up to isometries of to-
rus?»

The central result here is an assertion regarding the connection of the spectrum of
H with the class of the Hill operators whose potentials are obtained from V by averaging
over a family of closed geodesie on T2. To each element d of the lattice L we assign the
family of geodesie y = x + rd,0 ^ T < l,y € RnjL. Introducé the fonctions

pi
Vd(x)= V(x+rd)dr = y ; cyexp{2TT/(y,x)}.

Jo (y,d)=o

We shall call Vd(x),d e L the reducedpotentials.

THEOREM2.11 ([6], [31]). — The Roquetspectrum <TF(- A + V) détermines forarbi-
traryd € L the Floquet spectrum (Tp{- A + Vd) forreduced potentialV&.

Proof (see [32]) is based on the following formula:

ed+kd(t,o)
To prove this formula we note that according to (35) for any fc^Owe have

= f dxMexp\-t f u(jc+(rf+Jfcd)T

= / dxMexpj-f S2 °y \ ^p{2ni(y,x-¥dr + y/tw{r))}drl
JRVL t {yd)=0 Jo i

x e x p j - r V] CY I exp{2Trz(y,jt + rfT + kdr+ Vtw(T))}dr\.
1 (y%o J* J

Because of the rapid oscillation of the factor exp{2nik(yfd)T} for (y,d) * 0 and the
continuity of w(r), we have

exp{2ni(y,x + - 0

as *; -* oo. The second factor in (40) tends to 1 as A; — oo and the desired limit coïncides
with the function 0 j( t,Vd ) /0 j{ r,0). As a result, the collection © j( t,Vd ) for arbitrary d €
I is known. The Floquet spectrum a? ( - A + Vd ) for the reduced potential Vd can be find
using(34).

DÉFINITION 2.12. — A potential Q € L2(Rn/L) is said to be a one-dimensional po-
tential associated to q in the direction y e L* ifthere exists y e L* and a function qonR
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such thaï
x) (41)

for all x e Rn.

Let
* = {y € L* : 3do e L, y • db = 1}.

* is the set of indices parameterizing all possible lines in L* passing through the point
y = 0, Given the condition Cfc = 0, the potential V can be expressed in terms of the
collection of the one-dimensional poten tials {Vy} by the formula

where

We assign to the function Vy, y e *, the function vy(t) defined on the circle of
the length 1 and having the same Fourier coeflBcients as Vy(x):

+ OO

The function Vy(x) is the one-dimensional potential associated to vy(t) in the direction
y € I*,i.e. Vy(x) = vy(y • JC). The operator

is the Hill operator.

THEOREM 2.13 ([31], [6] (on quasireduction)). — TheFloquetspectrumap(-A + V)
détermines:

1) the Floquet spectrum crF(- A + Vy) of the one-dimensional potentials Vy(x), y€*;

2) the Floquet spectrum ap(hy) of the Hill operators hy y € $.

1) For arbitrary y e * one can find linearly independent d\9di9... ,dn-\ 6 L such
that y - djc = 0,k - 1,2,... ,n - 1. Reducing the potential V in directions d\,d2,... ,dw~i
we obtain from Theorem 2.11 the first statement of our theorem.

2) The Floquet spectrum ap(hy) of the Hill operators hy can be exactly calculated
in terms of the Floquet spectrum ap ( - A + Vy ) of the one-dimensional potentials Vy(x)
and visa verse. D
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In the class of separable potentials the Hoquet spectrum of the Hill operators hyt

y € $ détermines the Floquet spectrum api-A + V). In gênerai case it is not true. It
follows from

THEOREM 2.14 ((7]). — There is a set M of potentials, dense in C<n(Rz/L) and such
thatforV e M the Floquet isospectral setISOF(V) isflniteuptoisometriesofR2/L.

COROLLARY2.15. — The potentials V e M do not admit any continuous isospectral
déformations.

2*2*5. Does the periodlc spectrum détermine the Floquet spectrum?.

There are trivial cases when the periodic spectrum <ro(H) does not détermine the
Floquet spectrum ap(H). For example, if a lattice L is preserved under an orthogonal
transformation U * ±1 of Rn then the periodic potentials V(JC) and V(Ux) have the
same periodic spectrum but the Floquet spectrum are different.

Dénote
[d] = {d' eL:\d'\ - \d\), B[d] = J2 e*.

d'€[d]

LEMMA 2.16. — Let V bea real - analytic fonction on Rn/L. Then each term of the
sum

[d]

can be recoveredfrom ®(t).

Proof — We have

Hère the function Ed(s) is defined by formula (37). It is sufficient to prove that each term
of the sum

can be recovered from E(t). The detailed analysis of the analytic wave front set of the
fondamental solution E(s,x,y) of a hyperbolic problem shows that E(s,x,y) is a real -
analytic function on the complement of{(t,x,y) : \x - y\ = |r|} and, as a conséquence,
the function Ed(t) vanishes for \t\ < \d\ and is a real analytic function for \t\ > \d\.
Then the distribution

£*(')= / E(s,x + d,x)dx
JRn/L

vanishes for |f | < \d\ and is a real analytic function of the variable t for |r| > \d\. We
can label the vectors of L as
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Dénote tk = \[dk]\. On the interval (0,*Ï) wehave£(r) = £[0} (O. The fonction £[0] (O is
analytic on (0,oo) and, hence, can be uniquely extended from the interval (0,fi ) to (0,oo).
On the interval (fi,f2) we have £(f) = E[0](t ) + E[dx](t). The fonction i ï^] (f) is analytic
on (*i,<x>) and hence can be uniquely extended from the interval (t^fe) to (<i#°°)- Using
similar arguments we can find all the distributions E[d] ( t ).

The lemma is proved. D

THEOREM 2.17 ([6]). — Let U\ and u2 be real analytic functions and a lattice L hos
theproperty

\d\ = \d'\ => d = ±d'. (43)

Then the periodic spectrum (TO(H) détermines the Hoquet spectrum <Tp(H).

For the proof we note that if the lattice L satisfies (43) then [d] = {d, - d) and
Ed = E-d- Then E[d](t) = ZEd and each Ed,d e L can be recovered from E(t). Using
(42) we get that each ©<*,d € L can be recovered from ®(t).

Theorems 2.11,2.13 and 2.17 imply

THEOREM 2.18 ([31], 17]). — Letube the analytic and a lattice L have the property
(43). Then the periodic spectrum ov>(-A + V) détermines:

1) theperiodic spectrum cro(- A + Vd) ofthereducedpotentialsVd(x), d e L;

2) the periodic spectrum ob( -A + Vy) oftheone-dimensionalpotentials V^JC), ye<ï>;

3) the periodic spectrum Œoihy) of the Hill operators hy, y € $.

Dénote by ISO0 ( V ) the set of potentials with the same periodic spectrum as the po-
tential V. For n = 1 the following statement can be proven [40]: if a set ISOo( V) contains
a potential from a Carleman class C(mn), then all potentials from ISOo( V) belong to the
same class C( mn ). In particular, if V is analytic then ISOo ( V ) contains analytic functions
only In the multi-dimensional case n ^ 2 it is stiU an open problem: to prove that if a
set ISOo ( V ) contains at least one analytic potential then all potentials from IS O0 ( V ) are
analytic.

DÉFINITION 2.19. — An analytically rigid potential V is a periodic analytic potential
with the property: the intersection oflSOo ( V ) with the class of analytic functions is exactly
the collection V(±x + a), a e Rn.

It is known

THEOREM 2.20 ([5]). — Letube real analytic and a lattice L have the property (43).
Then the set of analytically rigid potentials is dense in the set ofsmooth potentials onR2/L
in C°° topology.
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The condition (43) coincides in dimension two with a generally less restrictive
condition that the only isometries oïRnIL are the compositions of translations with ± J.
Nevertheless, it is surprising that

THEOREM 2.21 ([141, [13]). — There exist a lattice L\ c R* such that the only isome-
tries ofRn/L\ are the compositions of translations with ±1 and real analytic potentials u\
and u2 onR*/L\ such that

The tori B4 /I i were first constructed by J.H. Conway and N J J \ . Sloane 12] in the
construction of flat tori in dimension four which are isospectral but not isometric.

2*3. Spectral rigidity theorem

Consider spectral invariants of the Schrödinger operator on the torus with coupling
constant by potential. The operator

ƒƒ(/?) = - A + /JV00

is defined on the space L2([-fli,ai] x [-02^2])- The ftinction V0clfjc2) is a periodic
function with respect to the variable x\ with the period 2a\ and to the variable x2 with
the period 2a2) {Afc(/?)}£Lj is the periodic spectrum of the operator H(p). We consider
the problem of unique recovery of the potential V(x\,x2) from the set {A*(0)} ̂ , , 0 ^ 0,
and solve this problem in the class of even functions with respect to X\ and x2. The set
{Ajb(£)} JJLj^ ^ 0, is overdetermined. Hence, instead of this set we consider the expan-
sion

2 3 . . . , ^ i 0. (44)

The constants {/*(/))},£ = 1,2,3.... are spectral invariants of the operator H(p),f} > 0.
Let us suppose that we know the first three coefficients of this expansion. What partial
information about the potential can we get? We prove

THEOREM 2.22 ([37] (the spectral rigidity theorem)). — Let H° be the Hubert space
of even square integrable functions on the rectangle I?([-a\,a\] x [-02^2]) where a\
and «2 are incommensurable positive numbers. LetV{x\,x2) be a function ofH°. Let us
consider in the space H° the operator H (p) = - A + fïV(x). Suppose the three coefficients
I\ (A), /2(A), /3(A) in the expansion (44) areknown. Then all other potentials with thesame
three coefficients are the superposition of this potential and the reflections:

1) C7] : x - x, y - y; 2) U2:x^ x, y - a2-y
3)U3:x^ai-x, y -+ y\ 4) U4 : x - as - x, y - a2 - y.

The sets {A*(j8)}J^,, P ̂  0,and sp[R\(&) - R\{0)] are equivalent. Then we have

CoROLLARY 2.23. — Let V(x\,x2) be an even function ofx\ andx2 on the rectangle
[Q,a{\ x [0,a2]. Then the set {\k{fl)}Z*\>& ̂  0, recovers the potential V(xi,x2) uniquely
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2.4. Open problems

1. Spectral rigidity.

Let a lattice L have the property

* rf = ±rf'. (45)

To prove that for any periodic C00 potentials different from a directional potential V$ ( 5 - x)
the only Hoquet isospectral potential have the form V ( ±x + a), where a e Rn.

2. Complete Systems.

To give a criterion for the collection of {/̂ ,n = 1,2,... ,d e 1} to be a complete
system of Floquet spectral invariants. We suppose that a criterion similar to the one-
dimensional case can be proven: the collection {l£>n = 1,2,... ,d e 1} can be a com-
plete system of Hoquet spectral invariants in quasianalytic classes only.

3. Let E(t,x,y) be a fundamental solution for the hyperbolic équation associated
with - A + V(x). Let V belong to the Carleman class C{mn,R

nIL). Is E(t,xty) from the
sameCarlemanclassC(mw,JR

n/L) on the complement of {(t,x,y) : |jc-y| = r}?Wehave
a conjecture that it is true in the quasianalytic classes. Then the arguments of Theorem
2.17 could be used for quasianalytic potentials, i.e., the periodic spectrum cro(if) will
détermine the Floquet spectrum <Tp (H).

4. The moment problem.

Let L be an orthogonal lattice in R2 and V be a separable periodic potential
V(x\ >X\ ) = V\ (x\ ) + V2 (x2 ). Then the coefficients i j have the représentation

Pn(t,s)d(T(t,s), (46)

where Pn(t,s) = $ 3 ^ tksn'k and da{t,s) = y\{t)y2(s)dtds. Define the moments
mnltn1 = ƒ tksn-kda(t,s).Then

„ _ ™nltn2 (47)

and the function

w(z) = / / (48)

is the generating function for the collection i j . Formulas (46) and (48) are similar to (11)
and (9 ) for the Hill operator.

It would be interesting to find a représentation similar to (46) and its generating
ftinction (48) for gênerai periodic potentials.

5.AsetISO0(V).

a) TodescribelSOoCV) for potentials of the form V(x) = Q\(Si • x) + Q2(S2 • JC) or
V(x) = Qi(5l - x) + Q2(52 • x) + Q3(53 • x);
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b) is a set ISO0( V) compact in C°° (Rn/L)l

c) in the case n ^ 2, to prove that if a set ISOo( V) contains at least one analyüc
potential then ail potentialsfrom ISOo(V) are analyöc.

Concluding remarks.

1. [31] is the first publications (unfortunately, in Russian) where Theorems 2.13 and
2.18 of the Lecture 2 where announced.

2. At present, some results formulated in these lectures are extended to the case
of the Schrödinger operator with periodic vector potential [9] and for the Schrödinger
operator with periodic magnetic and electric potentials [8]. Isospectral potentials on a
discretelattice are considered in [17]-[19],

3. On the trace formulas for multi-dimensional Schrödinger operator with periodic
potential see [24],[12].

4. For detailed proofs of the results of these lectures, see [41].
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