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EINSTEIN MANIFOLDS, VOLUME RIGIDITY AND
SEIBERG-WITTEN THEORY

Andrea SAMBUSETT!

1. Introduction.

These notes stem from some talks we gave at the Institut Fourier of Grenoble in
1998, where we compared Besson-Courtois-Gallot's and Lebrun's approaches to unique-
ness of Einstein metrics on real and complex hyperbolic 4-manifolds.

The Ricci tensor of a Riemannian manifold (X, g) is the symmetric bilinear form
defined on each tangent space by taking the trace of the curvature operator Rg, that is:
Ricg(u, v) = Trg Rg(w, -, v, ). If uis a unit tangent vector, then Ricg(u) = Ricg(u, u)
is the Ricci curvature in the direction of u. An Einstein metric on a differentiable n-
manifold is a Riemannian metric whose Ricci curvature is constant in every direction,
or, equivalently, which satisfies Ricg = A - g for some constant A. By rescaling the met-
ric, one can always assume that A = +(n — 1) or 0: we shall say, in this case, that g is a
normalized Einstein metric. The sign of A is called the sign of the Einstein metric.

Ricci curvature and Einstein metrics arise quite naturally in Riemannian geometry
as well as in many other different contexts: they are related to topology and to the con-
vergence theory of Riemannian manifolds (cp. [14], [12], {16] and the recent works of
Cheeger and Colding [13]), to complex geometry (the main motivation being Yau and
Aubin’s solution of the Calabi conjecture, and Ahlfors-Schwarz Lemma), to the well-
developed theories of symmetric spaces and homogeneous manifolds (see [17], [4]) and,
of course, to gravitational field theory (see [28]). Two definitely good references are (4]
(even if not up-to-date) and [11] (focusing on dimension 4). There also exist several short
surveys such as 3], [22], [1].

A natural, mostly unsettled, problem is trying to classify Einstein metrics on a given
space X, up to homotheties: this set is the so-called Moduli Space & (X)) of Einstein struc-
tures. This is mainly motivated by the fact that equivalence classes of metrics of constant
Ricci curvature on a given manifold X are seen to form, at least locally, a “reasonable”
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space (a real analytic subset of a smooth real analytic manifold of finite dimension), by a
theorem of Koiso [4). !

The only examples where one knows a good description of the moduli space, in
dimension 4, essentially are: the case of tori (where every Einstein metric is easily seen
to be flat, and &(T*) is the quotient, by a discrete group, of a convex, open subset of a
vector space of dimension 9) and the case of K3-surfaces (in this case one can prove that
any Einstein metric is Kdhler with respect to some complex structure, and & (K3) is the
quotient, by a discrete group, of an open set of the symmetric space SO(3,19)/(S0O(3) x
50(19)).

In this paper we shall be concerned with two (at present) exceptional cases of rigi-
dity, i.e. where £(X) = {x}:

THEOREM 1.1 (G. Besson-G. Courtois-S. Gallot [6]). — Every Einstein metric on a
closed real hyperbolic 4-manifold (X, gy) is homothetic to the real hyperbolic metric gy.

THEOREM 1.2 (C. Lebrun [19]). — Every Einstein metric on a closed complex hyper-
bolic 4-manifold (X, gy) is homothetic to the complex hyperbolic metric gy.

Recall that a real hyperbolic manifold (X, gg) is a Riemannian manifold with con-
stant sectional curvature k(gy) = -1, while a complex hyperbolic manifold is a regular
quotient of the complex hyperbolic space form H"(C) = U(n+ 1)/(U(1) x U(n)) (a
complex hyperbolic 4-manifold is a special case of complex surface of general type).

In both cases, it turns out that the exceptional Einstein metrics are minima of some
Riemannian functional: the volume-entropy functional, in the real case, and the L2-
scalar curvature in the complex one. Actually the philosophy behind Theorems 1.1 and
1.2 can be summarized by the following

ASSERTION 1.3. — On a real or complex hyperbolic 4-manifold X, locally symmetric
metrics are characterized, among all metrics g with Ricg 2 —(n — 1)g, by being volume-
minimizing.

This means that a metric gy on X, normalized as above, is locally symmetric if and
only if Vol(X, go) = inf{ Vol(X,g) | g on X, Ricg > —(n — 1)g}. This holds true in
every dimension for real hyperbolic manifolds, while it is known only in dimension 4 in
the complex hyperbolic case. Assertion 1.3 will be the object of the next sections.

Admitting 1.3, one then infers Theorems 1.1 and 1.2 by showing that any normalized
Einstein metric g on a hyperbolic 4-manifold (X, go) necessarily realizes the minimal
value Vol(X, go). This is the common point of both methods, and it is achieved by using
Gauss-Bonnet's and Hirzebruch's formulas as follows.

YThis contrast with the analogous classification problem for metrics of constant sectional curvature, or of
constant scalar curvature, which, in dimension greater than 2, generally form sets which are respectively empty
and of infinite dimension.
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Let V be the tangent space at some point of a Riemannian 4-manifold (X, g). The
metric g gives rise to an action of SO(V, g) on all tensor, symmetric and exterior pow-
ers of V. In particular, one has an action of SO(V, g) on the vector space #V of the
algebraic curvature tensors, that is the space of the symmetric endomorphisms of A2V
satisfying the formal Bianchi identity (i.e. the tensors of the same type and which sat-
isfy the same algebraic properties of the Riemannian curvature tensor). As a result, one
has a decomposition of ¥V = #V e 3V & 2"V @ 72~V into irreducible represen-
tations of the special orthogonal group: #V coincides with the one-dimensional sub-
space R id,2y, 5V is the subspace of endomorphisms which anticommute with the
Hodge operator * (hence, they exchange A%>*V with A>~V), while 2 *V and 2/ "V are
respectively made up of self-dual and antiself-dual tensors W commuting with * and
satisfying TrgW = Trg(W o x) = 0 (see [5] for details). With respect to this decomposi-
tion, the Riemannian curvature R, splits intoasum Rg = U + Zg + Wg+ + Wy, where

o U= ic—?—;ig—) - id 2y is determined by the scalar curvature;
¢ Zg=1 ( Ricg - —““‘%&g) &g involves the trace-free part of the Ricci tensor;

o Wy =Ry — Ug - Zz = W, + W, isthe Weyl tensorof g, and W;* € End(A**V).

Here, & is the natural operation, called Kulkarni-Nomizu product, which let us ob-
tain an algebraic curvature tensor from two symmetric 2-tensors, by antisymmetrizing
with respect to the first and second couple. Of course, g&g gives 2 id .2, and is, up to
a factor, precisely the curvature tensor of the sphere or of the hyperbolic plane: in other
words, the metric g has constant sectional curvature if and only if R, reduces to Ug. On
the other hand, Einstein metrics are characterized by the vanishing of the tensor Z.

Gauss-Bonnet’s and Hirzebruch'’s formula [5] take then, in dimension 4, the follow-
ing simple expressions:

’ = _]..._ 2 _ 2 2
x(X) 8172/x(”Ug” I Zgll + IWglI“)dug 9))

1

X)=
T(X) 12712

/(nw;nz — Wy 1%) dvg. 2)
X

for any metric g on X. Combining these formulas, one finds that if (X, g) is an Einstein
4-manifold, then

1 -2
2X(X) - 37(X) = R/qugn%znwg 1) dvg

3)
scal’(g) - Il id,2y 112

57672

- Vol(X, g)

=

by forgetting the negative Weyl tensor. As || id .2y /|2 = 6, we see that the volume of any
normalized Einstein 4-manifold (X, g) of nonzero sign satisfies
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Vol(X, g) < §n2(2x(X) -37(X)) (4)

and the equality holds if and only if Wy~ = 0. In particular, a (real or complex) hyperbolic
4-manifold (X, gy) precisely satisfies the equality

Vol(X, g) = §n2(2x(X) - 37(X)) (5)

as Wy, = 0 by self-duality. But now, since by Assertion 1.3 locally symmetric metrics on
a hyperbolic 4-manifold (X, gy) are characterized by being volume minimizing among
metrics with Ricg 2> -3g, from (4) and (5) it follows that every normalized Einstein
metric g on (X, gp) necessarily satisfies the equality Vol(X, g) = Vol(X, g) and, again
by 1.3, g is locally symmetric. Thus, g is isometric to gy by Mostow'’s rigidity theorem.
This proves Theorems 1.1 and 1.2, assuming Assertion 1.3.

In section 2 we shall describe Besson-Courtois-Gallot’s method, which implies As-
sertion 1.3 when (X, go) is real hyperbolic. Actually, Besson-Courtois-Gallot's proof of
Theorem 1.1 by-passes Mostow’s rigidity theorem, as it shows directly how to construct
an isometry between a normalized Einstein metric g on X and gy;. We shall see that their
method provides an even stronger version of Theorem 1.1.

In section 4 we shall explain Assertion 1.3 for complex hyperbolic 4-manifolds. It
stems from a remarkable L? estimate, due to C. LeBrun, of the scalar curvature of a Rie-
mannian 4-manifold admitting some non-zero Seiberg-Witten invariant (Theorem 4.1).

For the convenience of readers unfamiliar with spin geometry and Seiberg-Witten
invariants, we decided to include, in section 3, a short review of those facts of Seiberg-
Witten theory which are necessary to understand Lebrun’s main estimate 4.1.

2. Real and complex Schwarz lemma

The classical Schwarz-Pick lemma, on holomorphic mappings of the unitary disk
of C in itself, has been generalized in several directions by Ahlfors, Chern, Kobayashi,
Griffiths, Wu et al. (see [23]). A Kidhler version of the Schwarz lemma (due to S.T. Yau
[35]; but see [7] for a proof with the constants reported below) says that any holomorphic
map f : (Y,g) — (X, g) from a Kéhler manifold into a Kihler manifold of negative

Ricci curvature contracts volumes, i.e. | Jac f| = |f—;‘:’4‘1| < 1 (provided, of course,
that the metrics are suitable normalized, that is: Ric(g) > -(n - 1)gand Ric(gy) <
~(n - 1)go). In particular, Vol(Y,g) > deg(f) - Vol(X, g). Moreover, the equality
Vol(Y, g) = deg(f) - Vol(X, g) holds if and only if f is a locally isometric covering,

i.e. (d f)yisanisometryforally € Y.

An analogous result has recently been proved for maps between real Riemannian
manifolds, provided that the target space has negative sectional curvature:
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ReaL ScHwARz LEMMa 2.1 (G. Besson, G. Courtois, S. Gallot [7]). — Let f : (Y, g) —
(X, 8) be a continuous map between closed Riemannian manifolds of dimension n 2 3,
and assume that (X, go) is negatively curved. Let the metrics g, gy be normalized so that
k(go) < -1 and Ric(g) = -(n — 1)g: then, there exists a family of C' -maps fe, with
€ — 0, homotopic to f and which verify

| Jac fel < (1+¢€)” (6)

that is, the f¢'s tend to contract volumes infinitesimally. Moreover, if volumes are globally
preserved (i.e. if Vol(Y,g) = | deg( f)| - Vol(X.g)) then a subfamily of the f¢'s con-
verges, when € — 0, to a Riemannian covering fy : (Y,g) — (X, g), and in this case g
and g, necessarily have constant sectional curvature k(g) = k(gy) = —1.

The construction of the maps f, may be summarized as follows. Let ¥, X, be the
universal coverings of Y, X. Lift g and g to metrics g, § on Y, X and call d, dj the in-
duced Riemannian distances. Themap f : Y — X canbeliftedtoamap f : ¥ — X,
the groups of deck transformations Aut(Y), Aut(X) may be identified to 7, (Y ) and
m,(X) respectively, and f is equivariant with respect to the representation fy : m(Y) —
m (X) induced by f. Let us consider the spaces.# (Y ) and.# (X) of positive and finite
Borel measures on Y and X. The groups Aut(¥) and Aut(X) naturally act on (Y )
and./#(X) by pushing forward measures. Then, one can embed Y in.#(Y ) by means of
maps g

y = Uely) = e—(n—1+c)d(_v._v')dvg(y')'

These are finite measures, as the assumption Ric(g) > —(n — 1)g implies, by Bishop’s
comparison theorem, that the volume of R-ballsin (Y, §) grows at most as fast as e!"~ %
(the growth function of R-balls in the hyperbolic n-space): this, in turns, implies that
the integral [, e~("~1+€453) gy (y') converge for all € > 0. One then compose p¢ with
themap f. :.#(Y) — .#(X) obtained by pushing forward measures via f; finally, one
comes back on X by the barycentre map 2. One therefore obtains f, -equivariant maps
fe : ¥ — X, defined by fe(y) = bar( f.uc(y)), which are “more isometric” than the .
initialmap f, whene — 0.

Then, by using the implicit function theorem, it turns out that the jacobian of the
maps f can be expressed in terms of the first and second derivatives of the distance
function on (X, g). By the assumption k(gy) < -1, these derivatives can be compared
with the corresponding tensors in the hyperbolic space, giving the announced estimate.

We shall not give details of the proof of 2.1, since good surveys on Besson-Courtois-
Gallot’s construction already exist (see [7] and [8] for instance). However, notice that
the authors originally used a family of probability measures p¢ (y) supported by the geo-
metric boundary 8X of X, which involve the Busemann functions of X; the above men-
tioned, more elementary, method is fully explained in {31], where we also improved (6)
by the topology of the map f.

2Recall that the barycentre of a measure p on a simply connected Riemannian manifold X of negative cur-
vature may be defined as the unique absolute minimum of the C* -function &,,(x) = [; do(x, x")2p(x’).
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Proof of Assertion 1.3 for real hyperbolic manifolds. This is a direct application of the
Real Schwarz Lemma. In fact, given a normalized Einstein metric g on a real hyperbolic
manifold (X, go), applying the coarea formula to the identity map (X, g) — (X, go) yields

(1+€)"- Vol(X, g) 2/ | Jac(id) | dvg = Vol(X, g);
X

letting e — 0 one then finds Vol(X, g) = Vol(X, g). and if the equality holds then, by
Theorem 2.1, g is a hyperbolic metric too. O

REMARK 2.2. — Rigidity of Kédhler-Einstein metrics.

Since we quoted the Schwarz Lemma in Kéhler geometry, it may be pertinent to
stress a difference between Einstein metrics and Kahler-Einstein metrics. Much more
is known about rigidity of the latter. Already in the 50's E. Calabi [10) proved unique-
ness of Kahler-Einstein metrics on Kihler manifolds X of dimension n 2> 2 such that
(X)) 2 0, whithin any fixed Kahler class [w,] (the complex structure being fixed). In
1976, T. Aubin proved (2] global uniqueness (and existence) of Kéhler-Einstein metrics
on complex manifolds with negative first Chern class, and in the same year, S.T. Yau [34]
obtained, independently, another proof, achieving Calabi conjecture 3. Uniqueness, in
the Kahler case, has to be intended in the strongest sense: any two normalized Kéhler-
Einstein metrics on a complex manifold (X,]) with ¢;(X) < 0 coincide (whereas, of
course, in the real case, Einstein metrics are unique up to diffeomorphisms, since no
compatibility with a fixed complex structure is required). This result can also be de-
duced from the Schwarz Lemma in the following way. Let g, g2 be normalized Kahler-
Einstein metrics on some complex manifold X with negative first Chern class. These
metrics necessarily have negative Ricci curvature as, for Kéhler manifolds, 27 times the
Ricci form represents c) (X ). Then, one applies the Schwarz Lemma to the identity map
id: (X, ], &) — (X.], &) (which is holomorphic as ] is fixed) to infer that Vol(X, g) >
Vol(X, g), and viceversa. Therefore, the equality Vol(X, g ) = Vol(X, g) holds and
id necessarily is an isometry, i.e. g = g at every point.

We shall now show how Besson-Courtois-Gallot's Real Schwarz Lemma provides in
fact a stronger rigidity statement than 1.1.

THEOREM 2.3. — Let (X, g) be a real hyperbolic 4-manifold. Any Einstein 4-mani-
fold (Y, g) with nontrivial simplicial volume, whose fundamental group is an amenable
extension of m(X), and which satisfies x(Y ) < x(X), is necessarily isometric to (X, A -
&), for someA > 0.

By amenable extension of a group G, we mean a group epimorphismp : G' — G
whose kernel is an amenable subgroup (abelian, for instance).

3E. Calabi originally conjectured that, a Kihler manifold (X, ). g) of complex dimension n > 2 being
given, then for any real form o of type (1,1) in the class 2mr¢;(X) there exist a unique Kahler metric g on
(X, Jo), within the same Kihler class wyg, of g, with Ricci form equal to .
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Recall that the simplicial volume of a n—dimensional manifold X, denoted |1 X|l,
may be defined in terms of the real homology of X as the infimum of ), r;l, when
>, o runs over all singular chains which represent the fundamental class of X. The
simplicial volume is an invariant supposed to measure the topological complexity of X,
and it is non-vanishing, for instance, for negatively curved manifolds. By definition, one
hasthat,if f : Y — X isa continuous map between closed manifold of same dimension,
then |[Y |l > | deg( f)| - IX|l. Cases where the equality ||Y || = | deg( f)! - [IX|| holds
are frequent, e.g. when f is a covering. More generally, one has {15}, [31]:

LEMMA24. — Let f : Y — X be a continuous map between closed manifolds of
same dimension. If the kernel of the homomorphism induced by f between fundamental
groups is amenable, then the equality |Y || = | deg( f)| - IX |l holds.

Some concrete examples for Lemma 2.4 can be found in (30). This lemma essen-
tially relies on the fact that an equivalent definition of simplicial volume can be given us-
ing bounded cohomology, and on the fact that the bounded cohomology of an amenable
group vanishes [15].

Proof of Theorem 2.3. Orient Y so that 7(Y) > 0, and normalize g so that Ric, =
(n — 1)g: this is possible since clearly Y does not admit metrics with non-negative Ricci
curvature, otherwise its fundamental group would have at most polynomial growth and
its simplicial volume would vanish. As X is a K (1, 1)-space, thereexistsamap f : Y —
X which induces the amenable extension p : m(Y) — m(X). Since H = ker(p) is
amenableand ||Y || # 0, then Lemma 2.4 yields | deg( f)| = Y I/lIX]i 2 1. Thus, by the
Real Schwarz Lemma, using the coarea formula, one deduces

| deg( )] - Vol(X, g) s/#fc“dvgo(x)
X

=/ | Jac, feldvg(y) @
Y
< (1+¢)" Vol(Y, g

(as the f's are homotopic to f). Lettinge — 0, we get Vol(Y, g) 2 Vol(X, g). But we
know that, in dimension 4, Gauss-Bonnet’s and Hirzebruch’s formulas give

Vol(Y, g < §n2(2x(Y) -37(Y)) < §n2 - 2x(X) = Vol(X, go);

this, with (7), implies that | deg( f)| = 1and Vol(Y, g) = Vol(X, gy) necessarily. There-
fore, by the rigidity part of the Real Schwarz Lemma, f is homotopic to an isometry. O

The above argument actually shows that, when x(Y) < x(X), then Y does not
admit any Einstein metric. In other words, there are topological obstructions to the
existence of Einstein metrics on 4-manifolds Y dominating some hyperbolic manifold
(X, go). In [29) we used this fact to show that “most” 4-manifolds do not admit Einstein
structures at all.
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3. A short review of Seiberg-Witten theory

For references, details and full proofs of facts reported below one can see [24), {25],
{32}, [33]).

3.1. Spin groups and Clifford algebras

Let H be the quaternionic space, endowed with its canonical euclidean structure
which makes of {1, i, j, k} an orthonormal basis of H over R, and let HC = H g C the
complexification of H, with the induced complex quadratic form. We shall see quater-
nions as matrices, since the algebras H, HC have standard representations as

H={(Z _ab)Ia,beC}cHC=HeiH=M(2.C)

such that < Q, Q >= [|QI|? = det Q.

The Clifford algebras associated to H, HC may be identified with
Cl(H) = M(2,H) c CI(H®) = M(4,C)
where the Clifford multiplication - simply is the usual product of matrices. These alge-

bras are canonically isomorphic, as vector spaces, to the exterior algebras AH, AHC via
themap @ : AH® = CI(HC) defined by

_({ 0 -Q
w(Q)-(Q ¢

1

) and @(Q A---AQ)=@(Q) - @(Qy), for Q Q; € HE.

Therefore, we can see HC and its exterior powers as subspaces of CI(H®) (often drop-
ping the symbol @). The associated spin groups Spin(4) ¢ CI(H), Spin¢(4) ¢ CI(H®)
are

Spin(4) = SU*(2) ® SU™(2)

_(( A o
= {( N ) | Av A € SU(Z)} c M(4,C)

Spin©(4) = U™ (2) xge U™ (2)

={( '2‘* : )|A+.A_EU(Z),detA+=detA-eU(l)}.

These groups have the property that, when we see H, HC ¢ CI(HC), the conjuga-
tion by elements of Spin(4) and Spin‘(4) preserves H and HC. Notice that Spin‘(4)
can also be seen as Spin(4) x.; U(1).
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3.2. Representations of Spin€(4)

The group Spin®(4) has three fundamental irreducible representations:

1) an orthogonal representation p : Spin‘(4) — S$O(4), which is obtained by
letting a couple of matrices (A4, A-) act on the 4-dimensional euclidean space H as
Q — A-QA;! (i.e. by restriction to H of the action by conjugation of Spin°(4) on
CI(H®)). Itis easily verified that this action preserves the euclidean metric and the ori-
entation of H;

2) two unitary representations w5 : Spin‘(4) — U(2), obtained by projecting
Spin‘(4) on one of its factors U=(2) = U (2), that is defined by (A+, A_) - ¢ = A.y for
(A+,A_) € Spin“(4) and ¢ € C2. The representation space C?, endowed of its canoni-
cal hermitian metric and of one of these Spin‘(4)-actions will be denoted, respectively,
by S=. Weset S=S* o S.

3) a one dimensional unitary representation det, = det- : Spin(4) — U(1)
obtained by taking the determinant det(A.) = det(A-) of one factor of (A4, A_) €
Spin®(4). The space C, endowed of its canonical hermitian metric and of the Spin©(4)-
action induced by det. will be denoted by L.

Summarizing, one checks that the following commutative diagram holds:

U(2)

S0O4)

where i and ¢ are the natural inclusions, det is the determinant, A is the diagonal inclu-

sion, 2 is the square map and
1 0
= ((5 o84 ) ).

The map Spin(4) L S$0(4) in the diagram, which is the composition of p with ¢, is the
canonical double universal covering of SO(4).

The following relations between the above representations are easily verified:
a) det : A25* = Lis anisomorphism of Spin(4)-representations;

b) by identifying Endc(S) with M(4,C) = CI(HC), @ induces isomorphisms of
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Spin®(4)-representations

HC — Homc(S%,S§7)
@:1 A2*HC = Endd(§*)
A?*H — su(§%)

where A2=H are the eigenspaces of the Hodge operator of A2H, A%=HC are their com-
plexifications, and where End®(S¥) and su(S*) respectively denote the sets of traceless
endomorphisms and of traceless, anti-hermitian, endomorphisms of §%;

¢) moreover, one has a quadratic, Spin®(4)-equivariant map between hermitian
spaces

0:S" - in?* Hc A?*HC

definedby o'(y) = wew* - 4L id € 5*@(5*)* = End%(S*); byidentifying H withits
dual via the Euclidean metric, one also obtains a quadratic, Spin®(4)-equivariant map
0™ : 8" — i A%* H*. The map o™ satisfies |[o* (y)lI? = llwll?/8.

3.3. Spin®-structures and spinor bundles

A Spin‘-structure on an oriented Riemannian 4-manifold (X, g) is a principal
Spin‘(4)-bundle P; — X, with a principal bundle map P; — SO(X, g), equivariant with
respect to the homomorphism p : Spin(4) — SO(4). One also says that the bundle 7,
lifts the orthogonal frame bundle of (X, g) with respect to p.

Now, let GL+ (4, R) be the connected component of GL(4, R) containing the iden-
tity, let GL. (4, R) be its double universal covering, and let

GLl.(4,R) = GL.(4,R) x.; U(1).

We call Spin‘-prestructure of a differentiable 4-manifold X a principal 61:,(4,11)-
bundle P — X which lifts ’\t‘hce bundle GL+(X) of the oriented frames of X, with respect
to the natural projection GL,(4,R) — GL:(4,R).

Remark thata Spin®-structure P, — X precisely coincides with the data ofa Spin°‘-
prestructure P and of a metric g on X. In fact, by the covering theory one deduces an
injection Spin(4) — GL.(4,R), which in turn induces a commutative diagram

Spin‘(4) —E—  S0(4)
e }
GL;(4,R) GL.(4,R)

Therefore, one can associate to each Spin‘-structure P; on X the Spin‘-prestructure
P Xy, EL: (4, R). Conversely, given a metric g on a differentiable manifold X and a prin-
cipal ﬁi(ll, R)-bundle P £ GL.(X) which lifts the bundle of oriented frames of X,
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then we get a true Spin‘-structure on (X, g) by taking the subbundle P, = u*SO(X, g)
of P.

Even if the notion of Spin‘-prestructure may seem artificious. it is useful to under-
stand what the Seiberg-Witten invariants depend on. The Seiberg-Witten invariants are
attached to a Spin‘-structure on a Riemannian manifold (X, g): thus, the datum of a
metric g on X is implicitely required (and their very definition makes use of the metric
g). However, they do not really depend on the metric, at least when b3 (X) > 2. More
precisely, P; and Pé, will have the same Seiberg-Witten invariants provided that they de-
fine the same equivalence class of Spin‘-prestructures (where two Spin‘-prestructures
P, P’ of X are said to be equivalent if there exists a principal bundle isomorphism P — P’
which commutes with the projections of P, P’ on GL, (X)).

As a result of obstruction theory (see [25)), every 4-manifold has at least one Spin®-
structure, thus the Seiberg-Witten invariants help to classify 4-manifolds (however, there
exist also 4-manifolds X all of whose Spin‘-structures have trivial Seiberg-Witten invari-
ants - if X admits a metric of positive scalar curvature, for instance).

When X is endowed with an almost complex structure J, then X has a canonical
Spin‘-prestructure, obtained by considering the bundle U (X, J, g) of unitary frames,
with respect to the choice of some hermitian metric g on (X, J), and then by taking the
associated bundle P;(J) = U(X, ], g) x; Spin‘(4) (which clearly lifts SO(X,g) as i =
p o h). Then, the underlying Spin‘-prestructure P(J) does not depend on the choice of
g. Infact, the natural inclusion GL;2, C) ¢ GL+(4,R)liftstoaninclusionn : GL2,C) -
51:. (4,R) ? which gives a commutative diagram of homomorphisms

ue —I GL:2,C)

g In

Spin‘(4) —% GL,(4,R)

50 Py ()%, GL, (4, R) = (U(X, ], g)x jGL(2,C))x,GL;(4,R) = GL(X, J)x,GL5(4,R).
Thus, the Seiberg-Witten invariants of P;(J) only depend on J, and they give invariants
of the almost complex manifold (X, J).

Given a Spin‘-structure P on (X, g), tensoring P, by the fundamental representa-
tion spaces H, $* and L of Spin®(4), one gets the following associated euclidean and
hermitian bundles on X:

1) the tangentbundle T X = P;x,H withits Riemannian metric g, since SO(X, g) =
P, x, Spin€(4);

2) two rank 2 hermitian bundles S* (P;) = P, X5, S*, called the associated complex
spinor bundles;

4notice that GL(2,C) = U(2) x Herm*(2,C) and GL.(4,R) = Spin(4) x.; U(l) x Simm*(4,R), as
manifolds.
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3) a hermitian linear bundle L(Pg) = Pz Xder, L, called the determinant line bundle
of the Spin®-structure.

The relations a),b),c) of the previous paragraph in turn yield:

a) isomorphisms of hermitian linear bundles det : L(ng = AN2SH(Pp) = A2S™(Py);
b) isomorphisms TXC = Hom(S*(P,), 5™ (F)), A%*TXC = End®(S*(F))and
AZETX = su(S*(Fp));

c) aquadratic, Spin‘(4)-equivariant vectorbundlesmap o* : §*(Pp) — iA?*TX*.

Notice that the determinant bundle L(P;) = L(P) is defined as soon as one has
a Spin‘-prestructure on X, whereas in order to define the spinor bundles $*(P;) one
needs to choose a metric on X.

Remark that the bundle L(P) determines P up to 2-torsion in H?(X,Z). Actu-
ally, the set SPIN‘(X, g) of equivalence classes of Spin‘-structures over (X, g) (as well
as the set of equivalence classes of Spin®-prestructures on X) form a H?(X, Z) princi-
pal space °. By identifying, via the Chern class, H2(X,Z) with the set of isomorphism
classes of principal U (1)-bundles on X, the action of H?(X,Z) on Spin®(X, g) is given
by E - [P] = [(P xx Spin‘(4))/A], where A is the multiplication Spin‘(4) x U(1) —
Spin®(4). Thus, an origin [Py] € SPIN(X) being fixed, if we have two Spin®-structures
B, B, then P; = E; - R for some U(1)-bundles E; determined up to isomorphism. If
L; and L; are the determinant bundles of B, B, then a simple computation shows that
a(L)) = (L) = 2 (¢1(E}) — (E)): since the Chern class classifies complex linear
C®-bundles, it follows that Ly = L, if and only if ¢; (Ey) — ¢; (E3) is a torsion element of
order 2 (if there is no torsion — on a simply connected 4-manifold, for instance — one has
L) = L, ifandonlyif E} = E;, thatis B, = B).

Finally, let us remark that when P; = PB,(J) is the canonical Spin°‘-structure of an
hermitian manifold (X, J, g), then the vector bundles L(P) and §* (F;) are naturally re-
lated with the complex tangent bundle and the canonical bundle of (X, J): namely, it
easily follows from definitions that L(P) = Kx! = A%?T*X,S™(P,) = TX and §*(F,) =
(X xC) @ Kg! = A%T*X @ A%2T>X (where = are the complex linear isomorphisms
induced by the hermitian metric g). In this case, the map o* : C*(X,C) & £%%(X) —
i€%*(X) canbe expressed as: 0* ( f, &) = i(ll&}|? = || flID)wg/4 ~ iIm(f ).

3.4. Seiberg-Witten equations

Let a Spin‘-structure P, 2 sox, g) on (X, g) be given. In what follows, we shall
write for short L, Sg instead of L(P), $* () (thus implicitely assuming that the underly-
ing Spin®-prestructure has been fixed).

Sthatis,H2 (X, Z) acts on SPIN‘ (X ) freely and transitively, so these spaces can be identified up to the choice
of an origin By € SPIN‘(X, g).
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We shall be interested in the space Comp(P;) of connections H on P; which are
compatible with the Levi Civita connection H' of SO(X, g): this means that the hori-
zontal, Spin(4)-stable distribution H of T P, is mapped by du, precisely into H V. Any
H € Ceomp(Pg) induces therefore the Levi Civita connection V on T X, and connections
on Sg and L. Actually, the connection A induced on L by H completely determines H: in
fact, in order to reconstruct H from A, it is enough to consider the product distribution
HY*A = (HY x H*)|, onthe principal bundle SO(X, g) xx U (L) (where A is the diago-
nal inclusion of X in X x X, and H* is the U (1)-connection defined by A on the bundle
of complex frames of L), and then verify that H coincides with the pullback of H¥*4 via
the double covering P, — SO(X, g) xx U(L).

Therefore, we can restrict our attention to the space C(L) = Ccom p(Pg) of connec-
tions on L: as L has complex rank one, this can be identified, up to the choice of an origin
Ay € C(L), to the vector space i¢' (X) (because any other connection A on L can be ex-
pressed as Ap + w, for some pure imaginary 1-form w on X). We shall denote by V 4 the
connection induced by A on the complex spinor bundles S; . In formulas, compatibility
with the Levi Civita connection can be expressed as:

Va@(V) - @) =(VV) - p+ (V) - Vay, forV e (TX), p€TI(Sp).

Also notice that the compatibility with the Levi Civita connection implies that the qua-
dratic map 0* : §; — i A%* TX™ takes parallel sections (with respect to V,) into
parallel sections (with respect to the Levi Civita connection), because o* is Spin®(4)-
equivariant.

Now, the Seiberg-Witten equations for P are a system of partial differential equa-
tions for a connection A € C(L) and a complex spinor ¢ € S;, and they can be written:

0
Q*(A)

D
(SW), :{ 0*(';;‘;

The symbol Q* (A) denotes the self-dual part (with respect to g) of the curvature of the
connection A (i.e. Q*(A) € i A** TX pointwise), while D, : I(S7) — I(S;) is the Dirac
operator associated with A, that is the composition

Da:T(S}) 22 N(TX* @ S}) = I(S”)

where - is obtained by letting the first factor TX* = TX ¢ Hom(S;,S;) acton S; ® S
by Clifford multiplication (in formulas, Day = Z; jdx; - @ jif Vap = Z; jdx; @ Y
locally). For instance, when (X, J, g) is a Kdhler manifold endowed with its canonical
Spin‘-structure P = P(J) and A is the connection on L(P) = Kx'! induced by the Levi
Civita connexion, a direct computation shows that the Dirac operator

D4 :T(S}) = C& (X) @ €*%(X) — [(Sp) = €1 (X)

can be expressed in terms of more familiar differential operators as D4 ( f, &) = v2- of+
3" & (where 3" denotes the formal adjoint of 3).
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The first of Seiberg-Witten equations is linear of the first order, and that the second
one has order 2, with quadratic terms of order 0. The philosophy behind this system is
that the invariants of the space of solutions (dimension, homology etc.) will give subtle
invariants of the initial Spin‘-prestructure. However, in order to get a smooth space
of solutions, one has generally to consider a generic perturbation of the Seiberg-Witten
equations, that is to study the whole family of systems:

. Day = 0
(SWgs : { or W) = QYA +6

for 6 € i¢2*(X). Asolution (y, A) will be called reducibleif y = 0.

3.5. Space of solutions and Seiberg-Witten invariants

Let % = 7% (X, U(1)): this group can be identified with the automorphism group
of a Spin®-prestructure P on X, since P — GL+(X)isa principal bundle with structure
group U (1). The group % acts therefore on the spaces of sections of all vector bundles
associated to P, as well as on the relative spaces of connections: for instance, if A € C(L),
then f - A= A-2d f/f.ltis easily verified that, when (y, A) is a solution of (SW)gs,
then also ( fy, f - A) is a solution; in fact, % acts trivially on the terms of the second
equation, while Dy, fy = f Dsy. What is therefore interesting is the space of solutions
modulo the gauge group . Choosing a point X € X, one can identify the gauge group to
S! x %, where % is the subgroup of % made up of maps u with u(x) = 1.

So, let A; = C(L) x T(Sy) be the ambient space, let A7 = C(L) x (I(Sg) \ {0}), and
let.o/y = Ag/%,.o/5 = A}/%and.s/; = A7 /. Then, let Zg 5 be the space of solutions of
(SW)gs, let Zg_ s =Zgs N Ag‘ be the space of irreducible solutions, and let Z; = Us Zg 5,
Zg; = Us Zg5. Finally, let us denote by 3¢5, 5.5 5 and 33 the corresponding spaces
modulo the gauge group. . -

These are (quotients of) spaces of sections, and one should specify their regularity.

The natural framework is that of L2-sections, for k big eriough in order that the Seiberg-
Witten equations make sense at least as a functional

SWes : LR (iT*X @ S3) — L;_1(S; ® i A%* T*X)

between Hilbert spaces, where SW5(A, @) = (Day, o*(y) - QY (A) - §). What fol-
lows holds when these spaces are endowed with the Li-topology (and the corresponding
spaces modulo gauge group endowed with the quotient topology), for all k > 0.

The space </ is a smooth Hilbert manifold (since % acts properly on A, and

C(L) x {0} C Ag is the set of fixed points for this action). Moreover, the space .7; is

a natural S!-fibration over J/g*. On the other hand, about the structure of the space of
solutions one knows that:

i) the projection g : 3, — i€2*(X) on the space of perturbation parameters is
proper;
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i) 5" is a C*> Hilbert manifold;

iii) the projection 1 : 5% — i€%*(X) is C* and Fredholm.

Thus, there are two types of singular values for mg (“singular perturbations”): the
perturbations ¢ for which there exists a reducible solution of (SW), s (that is, such that
g 1(6) meets 3, \ 3¢ ), and the critical values of 717 Since 17 is Fredholm, by the Sard-
Smale theorem these last points form a closed subset of i¢%*(X) with empty interior.
On the other hand, to investigate the first type of singular values, one has to study the
image of the map A — Q*(A) of C(L) into i¢%* (X): this is the space of self-dual 2-forms
which are orthogonal to the harmonic ones, hence it is a closed subspace of codimension
bj (X) = dim.#%*(X). So, if b} (X) is at least 1, a generic & will be nonsingular. By the
Sard-Smale theorem one then deduces that:

iv) if b3 (X) > 1 then, for & generic, 56 is a compact smooth submanifold of 5"

The dimension of 55 is given by the index of the map 7, which is computed by
identifying the tangent space Tj4,4)55.5 to a class of solutions [ A, @] with a subspace of
T,.wZg 5 supplementary to the %-fiber, and then by differentianting the Seiberg-Witten
operator. By using the Atiyah-Singer theorem, one finds:

. . ~ i g~ _ )2 -2x(X)=-3T(X)
v) the dimension of 55 is d = (5g5) = & T

In addition, one can see that the generic smooth fiber 3, 5 is orientable (a canonical
orientation being determined by the choice of orientations of the vector spacesH° (X, R),
HY(X,R) and #** (X, R)).

Now, as soon as b; (X) > 2, for any choice of metrics g, g on X and of nonsin-
gular perturbations 8,, 6; of the Seiberg-Witten equations, one can clearly find a path
g in the space of metrics and a path §, in i¢%*(X) made up of nonsingular perturba-
tions for 7, : then, the space ;ggz“fz‘ = U;3g,.5, Will be a smooth manifold which realizes
an oriented cobordism between 3, 5, and 3, 5,. Therefore, all the homological invari-
ants of a generic fiber 5 5 do not depend on g, 6, and are invariants of the initial Spin®-
prestructure P. Namely, the Seiberg-Witten invariants of P are defined as

SW(P) = / e (7 ) ?
5

8.h

where ¢; (;7;) € H?(+/g,R) is the first Chern class of the S'-bundle .7; ~ /. The
invariant SW (P) is defined as zero if 4 is odd.

On the other hand, if b3 (X) = 1, one cannot generally find paths g;, §; which avoids
the singular perturbations. However, notice that there do not exist reducible solutions of
(SW)g (and, consequently, of (SW), s as well, for 6 generic and arbitrarily small) unless
the projection ¢} (L) of ¢;(L) on the subspace of self-dual harmonic 2-forms #%*(X)
is zero: in fact, if (0, A) is a solution, then Q*(A) = 0 and ¢ (L) = [Q (A)/2mi] €
> (X)*. So, when b3 (X) = 1, if Pyis a Spin‘-structure on (X, g) such that c; (L) =
0, one can still define the Seiberg-Witten invariants SW (F;) as the integral of ¢ (.,7;)
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over the generic smooth fiber 3, 5: this number (being an integer) will not depend on
6, if & is sufficiently small, but it will now depend, a priori, on the metric g. Actually,
it can be shown that SW( Pg) = SW(Py) when g and g’ define the same polarization
of X. A polarization of a manifold X is a maximal subspace H* of H?(X,R) where the
intersection form is positive definite: any metric g on X determines a polarization H,,
given by the subspace .#2* (X) ¢ #%(X) = H?(X,R) of self-dual harmonic 2-forms. In
conclusion, when b3 (X) = 1, the Seiberg-Witten invariants depend on the initial Spin‘-
prestructure P and on the choice of a polarization H* of X, and they are denoted by
SW(P,H").

Finally, let us notice that in case P = P(]) is the canonical Spin°-prestructure
of a complex manifold (X, J), then the space of solutions of a generic perturbation of
the Seiberg-Witten equations (modulo gauge) has dimension zero, as we have ¢ (L)? =
a1 (Kx)? = 2x(X)+37(X) precisely, by Hirzebruch's formula. The Seiberg-Witten invari-
ant SW (P) then simply reduces to count a finite number of points with signs +1.

Actually, one can see that the Seiberg-Witten equations for a Kdhler manifold
(X, ], g) (written with respect to the Kdhler metric) have only reducible solutions if Kx
has negative degree, and have only one solution, modulo gauge, if Kx has positive degree
(where the degree of Ky is by definition the number ¢; (Kx) - [wg]).

4. A general scalar curvature L? estimate

A direct consequence of the nonvanishing of the Seiberg-Witten invariants of some
Spin‘-prestructure on a differentiable manifold X is the following remarkable estimate
of the L?-norm of the scalar curvature of any metric on X.

THEOREM 4.1 (C. LeBrun (19], [20]). — Let X be a smooth 4-manifold with
b3 (X ) 22 IfX hasa Spin®-prestructure P with nonvahishing Seiberg-Witten invari-
ant SW(P) = Oand L = L(P), then

/ scal? dvg > 32m°c{ (L)*  forallgonX. (8)
X
Ifcf (L) = 0O, the equality
/ scals dvg = 32m%cf (L)? )
x

holds if and only if there exists a complex structure ] on X which induces P = P(]),and g
is a metric of constant scalar curvature which is Kéhler with respect to J .

Moreover, the equality [y scal2 dvg = 32m2c\(L)? (which is stronger than (9)) is
satisfied if and only if g is, in addition, Einstein.

The same conclusions hold when b3 (X) = 1 for metrics g such that SW (P, HgT )= 0.
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The symbol ¢} (L) here clearly denotes the projection of c; (L) on the space of self-
dual harmonic 2-forms .#?* (X). Hence, the right-hand side of (8) depends on g; how-
ever, notice that one always has ¢} (L)? > ¢, (L)? (which does not depend on g).

We need now to recall some basic facts about the curvature of Kahler manifolds
(X,],8). Let ~ denote the isomorphism which transforms real hermitian forms « of TX
into real antisymmetric forms of type (1,1), i.e. &(+,-) = a(J-,-). The curvature of g,
when seen as a symmetric endomorphism of A2T X, has matrix

A2.+ TX /\2.— TX

we
scal, 0 0|py p2 p3 wg

0 o0O0{0 0 O N> TX

Rg = 0 0 0O 0 0 (10)

P1 00

p2 0 0O A N~ TX

p3 0 0

with respect to any orthonormal basis of the form {a] = wg, a3, 03} U {a], a5, a3} of
A**TX ® A%~ TX (cp. [5]). With this notation, one has

3
P — 1 —
Ricg = Rg(wy) = 2 scalg -wg + Zp,-a,- ) Rng = scalg -wg/4. 11

i=1

Proof of Theorem 4.1. Let g be any metric on X. We may assume that c¢f (L)? > 0,
since otherwise the inequality is trivial. As SW (P) = 0 (or SW (P, Hg+ ) # 0, by assump-
tion, when b3 (X) = 1), there exist solutions (g, Ax) of the perturbed Seiberg-Witten
equations (SW)gs, , for generic, arbitrarily small, parameters 6. As g is proper, (a sub-
sequence of) the solutions (g, Ax) converge to an irreducible solution (y, A) of (SW )¢
(we already remarked that there exist no reducible solutions when ¢ (L) = 0).

Now let V3, D} the formal adjoint operators of V4 and D, with respect to the 12
scalar product of (X, g). By a standard Weitzenbdck-Lichnerowicz formula (see [24],
[25]), one can control the difference between the Laplacian of Dirac Di = D3 D4 and
the Laplace operator V} V 4 by the curvature of g and A:

1 1
Di=V3Va+ 3 Scalg - ids +2@(Q"(A)). 12)
Plugging our solution (, A) into this formula gives

* 1 1
0=V Vap+ n scalg @ + le‘IJIIZW
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since @(Q*(A4)) = @(o™(Y)) = %H(,UHZ - . By taking the L?-scalar product with ¢, one
gets

1 1
0= /(IIVAUJHZ + % scalg - lgl? + ~lyl*)dvg
X 3 3

which in turn yields

2 2
( / uwn“dug) < ( / scalg-IIW|12dUg) < / scal? dvg - / lwldv,  (13)
X X X X

that is,

/Xscalidvgz/;Ilwll"dvg:afx||Q+(A)||2dvg (14)

as 197 (A) 12 = llo(w) |12 = {lyl|* /8. Remark that this inequality is strict unless V@ = 0
and scaly is constant.

If we knew that Q* (A) represents 27¢] (L), we would be done; unfortunately, the
self-dual form Q¥ (A) need not to be closed, a priori, so it remains to use the following
trick. One considers the harmonic form o in the cohomology class of Q(A), so that the
self-dual and the antiself-dual components &* of & do represent 27rc§ (L) respectively
(since they are closed), and then one writes:

. 1 - 1 -
/no (A)Pdvg = —/ aQ*AE-10 (A)Ilz)dvg+—/(I!Q*(A)IIZHIQ (AP dug
X 2 X 2 X
1
=4mic(L)* + 5/ 1Q(A) 12 dvg
.
24'rr2c1(1.)2+1/ el dvg
2 Jx
1 1
= —/(Ila+ll2— ||a'uz>dvg+—/(||a+u2+ua-u2)dvg
2 Jx 2 Jx
- / loc* [2dvg = 4mec} (L)
X

as the harmonic forms have minimal L?-norm within their cohomology class. This pro-
ves inequality (8).

When (X, ], g) is a Kdhler manifold of constant scalar curvature, and P = P(J) is
the canonical Spin‘-structure attached to J, then we know that L = Kx! and that the
Ricci form over 27 represents ¢;(X) = c¢1(L). By the above recalled decomposition of
the Kéhler curvature operator, we have ‘}Ti’cg = % scalg -wg + ﬁTcE € 2mcy(L); as wgis
parallel, it follows that scalg - w,/81 represents cj (L), hence the equality

1 1
+01)2 = 2 = 2
(o] (L) Bar? / scalg "Wg A Wg o2 / scalgdvg
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is satisfied. If, in addition, g is an Einstein metric, then ’R\IE; = 0and ¢ (L) = c]*(f_)
necessarily.

Conversely, assume that f X sca1§ dyg = 32m2cf (L)?. This forces the inequalities
(13) and (14) to be equalities, so that y is parallel and scalg is constant. How to find
an almost complex structure J for which g is Kdhler? We say that the fact that S* has a
parallel section ¢ (which we may assume of norm 1, pointwise) permits to find a sub-
bundle P, of P with structure group U (2). In fact, see P as the bundle of “ Spin°®-frames”
of S*(X) ® S™(X), i.e. couples of local unitary sections (¢7,y3), (¢7, @3 ) satisfying
det (] A w3) = det_ (@] A @3). Then, let B be the subbundle defined by the frames
(@, @3), (Wi, w3 ): since y is parallel, this bundle has holonomy

- 1 0 z < ¢
Uu@e)= {( 0 det(A.) )eA- , A_ € U(Z)} Spin©(4),

hence its structure group can be reduced to U (2). As P lifts the bundle of direct orthonor-
mal frames of (X, g), by commutativity of diagram (3.2) the bundle R, also lifts SO(X, g):
this precisely is an almost complex structure J on X for which g is hermitian 8.

Moreover, to see that the metric g is Kahler with respect to this structure, itis enough
to verify that the Levi Civita connection of SO(X, g) comes from a connection on B, (cp.
[18]): but this is clear as the horizontal, Spin®(4)-invariant subbundle H of T P defin-
ing the compatible connection of P can be restricted to a connection on B, (it is easily
checked that H C TR, as every horizontal curve of P based at any py € R liesin Ry).

Finally, assume that the stronger equality [, scal; dv, = 32m%¢)(L)? is verified.
This implies that ¢; (L) = ¢} (L). But we just proved that P = P(J), and that g is Kéhler,

so (11) holds; as wy is parallel, we infer that ’R\l’c; = T’:i?:g - scalg -wg/4 is closed and

therefore it represents 2mcy (L) = 0. Moreover, ffﬂ:; necessarily vanishes since
= ()2 1 Rin A Rin
0= (L) = P ; Ricg A Ric,
= - [ Ric axRicy = - [ IRicy I
= - ; icg A x Ricy, = e . ll Ricg I°dvg.
Thus, ﬁTCg reduces to % scalg -wyg, and g is Einstein. O
Finally, let us see how Theorem 4.1 implies Assertion 1.3 in the complex case.
Proof of Assertion 1.3 for a complex hyperbolic surface (X, Jy, g0). As go is Kédhler-

Einstein, one has ¢;(Kx) = —¢;(X) = — Ric(go)/2m = - scalg, -wg, /27, which implies
that Kx has positive degree since scalg, < 0. As we saw in the last section, this implies

$0f course, we have a natural candidate to define explicitely this almost complex structure: J is the
orientation-preserving, antisymmetric isomorphism of T X associated, with respect to the metric g, with the
real, self-dual form of norm 1 given by iQ*(A)/1Q" (A)ll. This is clearly a parallel form (hence, (X, g, /) is
Kihler) since y is parallel and o* (@) = Q* (A) (o™ sends parallel sections into parallel sections).



182 A. SAMBUSETTI

that SW(P(J;)) = 0. However, this can be checked directly as follows. If V denotes the
connection on Ky! induced by the Levi Civita connection of T X, the couple

Wo = (/- scalg,,0)
Ao=V

evidently satisfies the Seiberg-Witten equations (SW)g,. By computing the differential
of the Seiberg-Witten operator one sees that this solution is a regular point for 1g,. More-
over, any other solution (y, A) is gauge equivalent to (g, Ag). Infact, formula (14) yields

, 1
/II Ricg, I1°dvg, = §/ scal?, dvg, ;/ Q% (A) 12d v,
X X X

but ’Iricgo = scalg -wg /4 = T’:i’c;o is harmonic (as scalg, is constant), hence by min-
imality one infers that [}, || Ricg, l2dvg, = [, IIQ*(A)|?dvg,. This in turn implies that
lwll? = scalg, and that y is V 4-parallel. Now, as Kx! ¢ S* has no parallel sections
(c1(L) = ¢;(Kx!) being nonzero), ¢ reduces to a section of X x C,soy = u - scalg,
for some u € %. Moreover, Q(A) = Q*(A) (as Q(A) and iﬂ:go define the same co-
homology class, and ’P-tTcg,, is self-dual). Therefore A = V + o is equal to the Chern
connection twisted by some flat connection. But as y is parallel, it is easily checked that
Vaxxc = d- u'du sothata = ~u~'duand A = u - V; thatis, (¢, A) = (o, Ag)
modulo the gauge group.

In conclusion, Lebrun’s inequality (8) is avalaible. Notice that there actually exist
[26] complex hyperbolic surfaces X with b3 (X) = 1, but the characteristic numbers of X
always satisfy, by Hirzebruch'’s and Gauss-Bonnet formula (cp. [5]):

x(X)

0< =T(X) = b (X) - bj(X)

hence b; (X} = 0 and there exists only one polarization of X (so, SW(P(Jy), H*) =
SW (P(Jp)) in this case). We then deduce that for all normalized Einstein metrics gon X
one has

144 - Vol(X, g) = / scal; dvg > 32m¢ (L)% = 96m%(2x(X) - 31(X)  (15)
X

that is,
2 »
Vol(X,g) 2 grr (2x(X) - 37(X)).
But we know, by (4), that the opposite inequality always holds for an Einstein 4-manifold,
so we get that
2
Vol(X, g) = §n2(2x(X) - 37(X)) and W; =0

necessarily. Moreover, this equality forces the equality in (15), and one deduces, by The-

orem 4.1, that g is Kidhler with respect to some complex structure J. Now, since g is
Einstein and W~ = 0, formulas (10) and (11) yield p; = 0 forall i, and A = { scalg I (as
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Rg reduces to Ug + W). Therefore, Rg = ; scalg - id2-7x +§ scalg-wg ® wp. Itis
now evident that R, is a parallel tensor, hence that g is a locally symmetric metric. 0
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