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GENERALIZED CONDENSERS AND
CONFORMAL PROPERTIES OF RIEMANNIAN MANIFOLDS
WITH AT LEAST TWO ENDS

Jacqueline FERRAND

Iintroduction

In spite of important generalizations such as .A-potential theory (cf. [HKM], [H1],
[HR2], the conformal potential theory remains an essential tool for studying quasiconfor-
mal and quasiregular mappings of Riemannian manifolds (cf. [GLM], [H2], [HR1], [HR3]).
However, the usual definition of capacities is perhaps not always the most appropriate one
for studying the conformal properties of such a manifold M at infinity, as it only deals with
condensers defined by a pair (G, C) where G is a domain in M and C C G is compact.
This last restriction makes often necessary to consider some sequences of domains (G;)
and pass (once or several times) to the limit.

It seems therefore worthwhile to set a theory of capacities for more general con-
densers. In [F1], we studied condensers defined by a pair (G, C,) of closed but non nec-
essarily compact sets of M, playing the same role; if C; is compact this definition reduces
to the usual one with G = M \ (G and C = C;. We will first extend this theory to the
limit case obtained by letting G, tend to a set S of ends of M. Then by letting C; also tend
to infinity and assuming that M has at least two ends, we obtain condensers whose both
components G, C; are sets of ends of M, with domain G = M. The extremal functions
relative to those condensers are n-harmonic on M (n = dim M). Hence the existence of
non-constant n-harmonic functions on M with a prescribed behaviour at infinity. We also
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obtain an obstruction to the existence of a sequence of K-quasiconformal automorphisms
converging to infinity for a manifold M with two ends and CapoM > 0.

The paper is organized as follows: in sections 1, 2 we present the basic properties
of condensers defined by two closed sets G, C; of M, only assumed to have at most one
compact connected component, and we set some non-obvious topological properties such
as Lemmas 2.4 and 2.6.

In section 3 we precise the notion of end of M and the topology of the (possibly
infinite) set 0M of ends of M. We introduce the notion of sub-boundary of M and ex-
tend the theory of capacities to “hybrid” condensers I'(S, C) whose first component S is a
sub-boundary of M. In section 4 we prove the existence of extremal functions for hybrid
condensers and in section 5 we study the behaviour of those functions when the second
component C tends to infinity. Then in sections 6, 7 we can define condensers whose both
components are at infinity, and by using the same process of normalization of extremal
functions as in [H1] and [HR2] we obtain non-constant n-harmonic functions on M of one
of the following types; i) bounded, ii) unbounded and positive, iii) two-side unbounded.
Section 8 is devoted to some improvements.

The existence of non-constant n-harmonic functions has been proved in [H1] and
[HR2] in the special case of a manifold M of the type M = N \ {a,...,ax} where
a,,...,aj are some points of a compact differentiable manifold N; and the extension of
this result to the general case is considered in [HR3] as obvious. The present proof has
however perhaps the interest of being synthetic and complete. It has been presented at the
“Ecole de printemps” (Géométrie conforme, Analyse et applications) held in Domaine de
Seillac (France) in 1995.

1. Preliminaries

In what follows M will always denote a non-compact connected Riemannian mani-
fold of class C! with dimension n > 2, and dT its volume element. As in [F1] and [F2],
H(M) = C(M) N L} (M) will be the linear space of continuous real-valued functions u on
M whose distributional gradient V u satisfies

I(u,M)=/ |IVu|"dt < +00.
M

(we emphasize that u is not assumed to be in L,(M)).

Then we will denote H* (M) the set of functions u € H(M) which are monotone
on M. (Let us recall that a function u € C(M) is called monotone if its supremum and
infimum on any relatively compact domain D of M are respectively the same as on 3 D).
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The space H(M) will be equipped with two topologies:
a) the compact-open topology (c-topology for brevity)
b) the strong topology (s-topology for brevity) defined by the family of norms

llull = sup |u(x)| + I(u, M)"/"
x€EK

where K is any compact set of M.

If A is a subset of H(M) we will reserve the notation A, or Cl A, for its closure in the
strong topology. However a subset B of C(M) will simply be called bounded on a subset X
of M if the set

{u(x) | u € B, x € X} is bounded.

In what follows we simply denote infx u [resp. supy u] the infimum [resp. supre-
mum] of a function u on a set X of M; and the oscillation of u on X will be denoted
osc(u, X).

Asin [F2] a relative continuum of M is a non-empty closed subset of M without any

compact connected component, and a compact continuum is a compact connected set not
reduced to a single point.

At last, according to the usual terminology, a function u € C(M) N loc L} (M) is
called n-harmonic if it is a weak solution of div(|Vu|"~2Vu) = 0.

The following results are known (cf. [F1], [F2}, [GLM], [H1]):

1.1. — The limit of a c-convergent sequence of monotone [resp. n-harmonic]
functions is monotone [resp. n-harmonic].

1.2. — Let C be a relative continuum of M and assume that u € C(M) is mono-
toneon M \ C, with u = C'® = kon C. If k = sup,, uor k = inf), &, then u is monotone
onall M.

1.3. — Let (1) be a c-convergent sequence in H(M) with m = lim inf I(u, M) <
+00. Then u = lim(uy) belongs to H(M) with I(u, M) < m. If the sequence (u) is s-
convergent, then I(u, M) = m.

1.4. — For every compact connected set C in M there exists a constant k(C) such

that, forany u € H*(M):
osc™(u, C) < k(C)I(u, M) .

1.5. — For any k fixed, the set {u € H*(M) | I(u, M) < k} is equicontinuous.



30 J. FERRAND

2. Conformal capacities

In view of extensions we first observe that the elementary theory of conformal ca-
pacities is in fact based on the two following general Lemmas.

2.1. LEMMA. — Let A be a convex subset of H(M) and let write
m(A) = :lélg I(u,M).

If (uy) is a c-convergent sequence in A withlim I(u;) = m(A), then the sequence (u) is
s-convergent, hence u = lim(u;) belongs to A with I(u, M) = m(A).

Morever if v € A also satisfies I(v, M) = m(A), thenv — u = C'¢.
Both these assertions follow from Clarkson inequality (cf. [M]).

2.2. LEMMA. — Let A and m(A) be as in Lemma 2.1. Let additionally assume that
A is bounded on all M and that there exists amap p : A — A with an open covering (Uy)
of M such that forall u € A:

i) p(u) is monotone on every set Uy.
ii) I(p(u), M) < I(u, M) and sup, |p(u)| < supy, |ul.

Then there exists a function v € A satisfying I(v, M) = m(A) and monotone on
every set Uy.

Proof. — Let (u;) be a sequence in A with lim I(ux, M) = m(A). Then the se-
quence I(p(u), M) also tends to m(A). The restriction of the sequence (p(uy)) to every
set Uy is equicontinuous, hence this sequence is equicontinuous on all M. As it is bounded
on M, it admits a c-convergent subsequence whose limit v satisfies the claim; and from
Lemma 2.1 such a function v is unique except for addition of a constant.

Condensers and capacities.

Asin [F2] we deal here with condensers whose both boundary components play the
same rdle, none of them being assumed to be compact. For that reason we denote ['(G, C;)
the condenser whose boundary components G, C, are any closed disjoint subsets of M,
its domain being M \ (G U C,). The conformal capacity of [ (G, G, ) is

Cap(G, ) = irl}fI(u, M)

where u runs into the set A(G, C, ) of functions u € H(M), called admissible forT (G, C,),
which satisfyu = 0on G, u = 1on C,and 0 < u < 1everywhere. If A(G, G;) = 0
we set Cap(G, C)) = +00. If Cap(G, C) < +00 it follows from Lemma 2.1 that there is
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at most one function u € A(G, G;) with I(u, M) = Cap(G, C;). Such a function will be
denoted extr(G, C;). The following result is known (cf. [F1), [F2]):

2.3. THEOREM. — Let (G, C;) be a pair of compact or relative continua of M with
Cap(G, C) < +0o. Then u = extr(Cy, C)) exists and this function is n-harmonic on
M~ (Co U Cl)

If G, C; are relative continua, u is monotone on all M. In the other cases u is mono-
tone on the domain obtained by removing from M a point of C; if it is compact (i = 0,1).

Precisions. — Itis easyto see that, for any open set V of M\ (GUG, ), the function
u = extr(Gy, ) realizes the infimum of I(v, V) among all the functions v € H(M) which
satisfy v = uon @ V. From this principle we get the following properties.

2.4. LEMMA.

a) For any domain D C M \ (G U C) (not assumed to be relatively compact) the
extremal function u = extr( Gy, C;) satisfies
1gfu= 1ar}qu, Sl:)pu= satg)u.
In other terms the monotonicity of u still holds if we adopt the more restrictive
definition of [M].
b) If (o, y1) is another pair of compact or relative continua withy, C Gy andy, C
C,, we have

extr(yo, C]) > eXU'(Co, Cl) > extr(Co,yl) .

Proof. — Assertion a) is almost obvious. For proving assertion b) let us write u =
extr(Gy, Cy),v = extr(yp, C) and assume that V = {x € M | v(x) < u(x)} is not empty.
ThenV C M\ (G U C)and v = uondV. As u|y and v|y both realize the infimum of
I{(w,M)in{w € H(V) | w = uondV} wehave v = uon V, in contradiction with our
assumption. Hence V = (3, which proves the first inequality. The second one follows by
exchanging G, with C, and y, with y;.

Moreover, from Theorem B in [F3], which generalizes a classical result, we can state:

2.5. PrROPOSITION. — With the same assumptions and notations as in Theorem 2.3
letwriteC; = {x e M | u(x) < t}andCf = {x € M | u(x) > t},(0 < t < 1). Then
forall0 < o < B < 1 the function ueg = extr(C;,C[{) is defined by uxg = 0 on Cg,
Uag = lon C;’ and uap = (u— )/(B— a) onDypg = {x € M | & < u(x) < B}, hence

Cap(Cy,Cf) = (B — «)'~"Cap(Gy, 1) .
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Remark. — A sufficient (but not necessary) condition for having Cap(G, C;) <
400 is that one at least of the sets G, C; is compact.

We complete this result by the following one.

2.6. LEMMa. — Let G, C, be two relative continua such that 0 G, is compact. If
G N G = B, Cap(G, C)) is finite with

Cap(Gy, C1) = Cap(0Gy, Cy) and extr(0 Gy, G) = extr(Cy, Cy).

We point out that the existence of extr(d G, C,) is here obtained without assuming
that 3 ( is connected.

Proof. — We know that A(d G, C;) is not empty. If u € A(0 G, C,) the function v
defined by v = 0on G and v = uon M \ G is admissible for (8 G, G;) and I'(G), G;),
with I(v, M) < I(u,M) if v # wu. From (2.3) the function w = extr(G, C;) exists and
I(w, M) = Cap(G, C)) < I(v,M) hence I(w,M) < I{u,M) forall u € A(0G), C,). As
w € A(8 Gy, C)), we necessarily have w = extr(3 G, G ).

In what follows we shall consider generalized condensers whose one boundary
component at least is at infinity.

3. Condensers with one boundary component at infinity

Preliminaries.

Let recall that an end E of M is the projective limit of a family (E; ), where L ranges
in the set (M) of compact sets of M and E is a connected component of M \ L chosen
in such a way that K C L implies Ex D E;. Let 9M denote the set of ends of M. It is
known ([Fr1], [Fr2], [B], [Z]) that the topological structure of M can be extended to M=
M U dM in such a way that M and 9 M are compact. However for all subset X of M we
will go on denoting X and 2 X, respectively, its closure and its boundary in M. The traces
on M of the neighborhoods of a subset S of 9 M will be called relative neighborhoods of S.
Particularly, for every end E, the family (E1),ex(nm) is a basis for relative neighborhoods
of E. Let observe that for any pair (K, L) of compact sets in M, Ex N E; D Exyy, hence
Ex N E; is never empty.

Sub-boundaries.

For brevity the closed, hence compact, subsets of 0 M will be called sub-boundaries

of M. For all subset S of 9M and for all L € K(M) we will write S; = (J E;.
EES
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3.1. LEMMA. — Let S be a sub-boundary of M.

a) For every L € K(M), there exists a finite subset X of S such that S, = X;; hence
Sy has a finite number of components and S| is a relative continuum.

b) The family (SL) ¢ x(m) Is a basis for relative neighborhoods of S.

Proof.

a) From the compacity of S there exists a finite subset X of Ssuch thatX; = |J E;
Eex

is a relative neighborhood of S. Then for every end E € S, we have E; N X; # 0, hence
there exists an end F € X such that E; N F; # 0. As E; and F; are connected components
of M \ L, necessarily E; = F;. Hence Sy = X; and S; = X; = |J F. = |J E..Asevery
Fex Ees
set E; is a non-compact continuum, S; is a relative continuum.
b) Let O be a relative neighborhood of S. For every end E € S there exists a set
C(E) € K(M) with E¢(g) C Q. From the compacity of S there exists a finite subset X of

suchthat V = |J Ec(g is a relative neighborhood of S.Then V C Qand L = |J C(E)
EEX EEX
is a compact set.

Foreveryend E € S, we have E; NV # () and there exists an end F € X such that
E; N Fgpy # 0. As EL C Eg(r), the sets E¢(r) and F(r) are two intersecting connected
components of M \ C(F), which implies Ec(ry = Fc(r), hence Eg C V C Q. Finally

St = |J E.is contained in Q. The claim follows.
LES

Remark.

a) From Lemma 3.1 b) it appears that every sub-boundary S of M is the pro-
jective limit of the family (S1),¢x(nm), Which could allow to give a direct definition of
sub-boundaries, generalizing the definition of ends. We shall keep in mind that two sub-
boundaries S, X are disjoint if, and only if, there exists a compact set L with §; N X; = 0.
In that case there also exists a compact set K such that §; NZx = §.

b) The same proposition allows us to say that a map f of M into a topological space
X admits a point x of X for limit [resp. cluster value] at the sub-boundary S if, for every
neighborhood V of x in X there exists a compact set L such that f(S;) C V [resp. V N

f(S) # 0.
At last we will say that a sequence (B,) of subsets of M tends to a sub-boundary S
if, forall L € K(M) there exists p; € Nsuch that p > p, implies B, C S;.

Hybrid condensers.

We will now consider hybrid condensers i.e. of the type I'(S, C), where S is a sub-
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boundary of M and C a compact set or arelative continuum of M. Then A(S, C) will denote
the set of functions u € H(M) with u = 1on C, u = 0 on S; for some choice of the
compactset Land 0 < u < 1 everywhere.

3.2. DEFINITION. — With above notations the capacity of T(S, C) is defined by
Cap(S,C) = inf I(u,M) = infCap(S,, C).
p(S,C) = inf I(u,M) = infCap(5;,C)

If S = 0 M and if C is a compact set of M we recover the usual capacity of C, simply
denoted Cap C.

If M is a domain of R” and if S is the union of a set of boundary components of M,
we recover a classical definition.

Properties of Cap(S, C).

In what follows we shall say that a set C is strongly disjoint from S if there exists a
compact set L with S; N C = (). This condition is always satisfied if C is compact and S;
sufficiently close to S. Then we have:

3.3. LemMmA. — IfCisacompact set, or a relative continuum strongly disjoint from
S, then Cap(S, C) is finite.

Proof. — Let L be a compact set with S N C = . Then from Lemma 2.6
Cap(S;, C) = Cap(dSy, C) is finite and A(S, C) is not empty.

3.4. LEMMA.
a)If S, , S, are two sub-boundaries of M with S; C S, and ifeach C; (i = 1,2) isa

compact set or a relative continuum of M with C; C G,, then

Cap(S1, i) < Cap(S2, &) -

b) If (S;) is a family of sub-boundaries of M and (C;) a family of compact sets or
relative continua,

Cap(US;, UC;) < Y _ Cap($:,C)).
L

3.5. THEOREM. — Let S be a sub-boundary of M. If there exists a compact con-
tinuum K with Cap(S,K) = 0, then Cap(S,H) = 0 for any compact set H of M and
Cap(S;, H) tends to zero when S; tends to S.

In that case we shall write Cap S = 0. In the opposite case we write Cap S > 0
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Proof. — If K is not contained in H let us choosea € K ~ Hand b € K \ {a}.
Then there exists a compact continuum C with H U {b} C C C M \ {a}. Hence the
existence of a constant k such that the inequality osc”(u, C) < kI(u, M) holds for any
u € H(M) which is monotone on M \ {a} (cf. Prop. 1.4).

Now, £ > 0 given, there exists from hypothesis a function u, € A(S, K) satisfying
I(ug, M) < 27 "¢, and from Lebesgue straightening Lemma (cf. [M]) we can assume that i,
is monotone on M \ K, hence also on M \ {a} from (1.2). By choosing & < 1/k we have
therefore osc”(ue, C) < kI(u, M) < 27" hence u, > 1/2 on H. Then v = inf(2u,, 1)
belongs to A(S, H), hence Cap(S, H) < 2"I(u,) < &, and Cap(S, H) = 0 by letting ¢ tend
to zero.

If K C H we can choose a pair ( H,, H>) of compact sets not containing K with H =
H, U H, and from above arguments Cap(S, H;) = Cap(S, H;) = 0 hence Cap(S, H) = 0.

Atlast, it is obvious that the above notions of sub-boundaries and hybrid capacities
are conformally invariant. More precisely:

3.6. Let M, N be two Riemannian n-manifolds. Then every K-quasiconformal map
of M onto N can be continuously extended into a homeomorphism of M U dM onto N U
ON, and for any pair (S, C), where S is a sub-boundary of M and C a compact set or a
relative continuum of M, we have:

K~ Cap(S, C) < Cap(fS, fC) < K Cap(S, C).

4. Extremal functions for hybrid condensers

With the same notations as in § 3, we can state:

4.1. THEOREM. — For any sub-boundary S of M and any compact or relative con-
tinuum C strongly disjoint from S the function v = sup, extr(S;, C) is the only one in
CLA(S, C) satisfying I{v, M) = Cap(S, C). This function is the strong projective limit of
extr(Sy, C) when Sy tends to S. It satisfies:

(4.2) / V" ?Vv - Vwdr =0
M

for allw € H(M) satisfyingw = 0 on C U S, for some compact L. Hence v is n-harmonic
onM \ C and monotoneonM \ {a} foralla € C if C is compact [resp. monotone on all
M if C is a relative continuum)]. It will be denoted v = extr(S, C). If Cap S = 0 it reduces
to the constant 1. Moreover Proposition 2.5 still holds with v in place of u, namely, for all
0<a<p<l1:

(4.3) Cap({xe M| v(x) <}, {x€ M| v(x)>B}=(B— a)""Cap(s,C).
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Proof. — If S; is sufficiently close to S for having C N'S; = ( the function'v, =
extr(dS;, C) exists and from Lemma 2.6 extr(Sy, C) = v;. Now £ > 0 given there is u; €
A(S, C) satisfying I{(u,, M) < Cap(S, C) + € and vanishing on Sy for some compact set H.
For any compact set L with §; C Sy the function v; = extr(S;, C) satisfies

Cap(S, C) < I(v1, M) = Cap(S;, C) < Cap(Sy, C) < I(u, M) < Cap(S,C) + ¢
hence I(v, M) = Cap(S;, C) tends to Cap(S, C) when S; tends to S. On the other hand v
is monotone on M or at least on M \ {a} for any a € C, the set A(S, C) is convex, and
from Lemma 2.4 the inclusion S; C Sy implies v; > vy.

Then it follows from Lemmas 2.1 and 2.2 that the family (v, ) is strongly converging
to v = sup, v and that v is the only function in Cl A(S, C) satisfying I(v, M) = Cap(S, C).
Hence the variational condition (4.2) which gives an elementary proof of the fact that v
is n-harmonic on M \ C and makes the proof of Proposition 2.5 given in [F3] still valid.
Hence the claim.

4.4. PROPOSITION. — Let S, S’ be two sub-boundaries of M withS C §', and let C,
C' be two compact or relative continua with C C C'. Then
(4.5) extr(S’, C) < extr(S, C) < extr(S,C').

Proof. — From definition of sub-boundaries we have S; C Si for all compact set
L of M, hence from Lemma 2.4:

extr(S}, C) < extr(S;, C) < extr(Sy, C') < ext(S, C').

The first inequality (4.5) follows by letting S tend to S’ and the second one by letting
Sy tend to S.

Behaviour of extr(S, C) at Sand C.

It is first obvious that v = extr(S, C) always satisfiesv = lonCand0 < v < lon
all M. If M CC N is aregular subdomain of a manifold N (cf. [H1] it appears that v tends
to zero at S. In the general case we can interpret (4.2) by saying that v is the weak solution
of div(|ov|"~*@v) = 0 on M \ C with boundary conditions v = 1 on C, v = 0 on S and
dv/dn = 0ondM \ S, but the two last conditions must be interpreted in a weak sense. In
fact we can only state:

4.6. PROPOSITION. — With the same notations as in Theorem 4.1, the functionv =
extr(S, C) admits zero for cluster value at any end E € S with Cap E > 0. Consequently
v(M) =]o,1).

The first assertion will be proved below as an application of Theorem 5.1. The sec-
ond one follows from Harnack inequality.
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5. Limits of Cap(S, C) when C tends to infinity and applications

We first assume that C is a compact set of the type C = 9S; and that S; tends to S.

5.1. THEOREM. — Let S be a sub-boundary of M with Cap S > 0. Then Cap(S,9S.)
tends to +oo when S; tends to S.

Proof. — Let suppose that there exists a sequence (L,) of compact sets of M such
that Sy, tends to S, with Cap(S,8Sy,) < k < +oo forall p. Then for all p there exists g € N
such that g > g, implies St, C Su, and also

Cap(Sy,,8S1,) < Cap(S,9S;,) + k < 2k.

After extraction of a subsequence we can assume g, = p + 1, hence
Cap(Sy,,,,9S1,) < 2k for all p. Now for all ¢ > p the domain D, = S, \ Sy, of
the condenser F(§Lq, 0S.,) contains the g — p disjoint sets Dy 41, . .., Dp41,p- For conve-

_ 1/(1=n)
nience let write mp,; = (Cap(sl_q, BSL,,)) .

From a classical inequality relative to moduli (cf. [M], 7.2) we have:

g-1
Mpg 2 E miin > (g — p)(2k)Y0=n
i=p

which proves that Cap(?Lq, 0Sy,) = m;,,';" tends to zero when, p fixed, g tends to +oc.
Hence Cap(S,3Sy,) = 0 in contradiction with Cap S > 0.

Application. Proof of Proposition 4.6 .
As E C Sfrom (4.3),

u = extr(E,C) > extr(S,C) = v
while from Theorem 5.1, with E in place of S, Cap(E,dE.) tends to +oco when E; tends
toE.

Let write m; = inf3g, u. For all compact set L with E.NC = 0, from Lemma 3.4
and (4.3) we have Cap(E,9E;) < Cap(E,{x € M | u(x) > m;}) = m}~ " Cap(E, C).
Hence m; ™" tends to 4+0o when E; tends to E, and m; tends to zero. As v > 0 the claim
follows.

5.2. THEOREM. — Let S, X be two disjoint sub-boundaries of M with Cap S > 0,
CapX = 0, and let C be a closed setin M.

Then Cap(S, C) tends to zero when C tends to X.
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Proof. — Let K be a compact set separating S from %, i.e. such that SkNZx =0.

From hypothesis Cap(Z, K) = 0. Then, £ > 0 given, there exists a compact set L with

Cap(Z.,K) < & The function u; = extr(Z;, K) satisfies u; = 0onZ; and u; = 1 on Sk.
For all closed set C C X, the function 1 — u; belongs to A(Sk, C), hence
Cap(S, C) < Cap(Sk,C) < I{u, M) = Cap(3;,K) < &.

The claim follows.

Remark. — The behaviour of extr(S, C) and Cap(S, C) when C tends to some
boundary ¥ with CapX > 0 will follow from Theorem 6.1 if we assume that C is of the
special type C =93, 0or C = ;.

Application to sequences of quasiconformal automorphisms.

Theorems 5.1 and 5.2 will allow us to prove a result announced in [F4] (Prop. 11 7.5).

5.3. THEOREM. — Assume that M has exactly two ends E, F and that there exists
a sequence (fi.) of K -quasiconformal automorphisms of M which c-converges to infinity.
ThenCap E = Cap F = CapoM = 0.

Proof. — Let H be a compact continuum separating E from F. After extraction
of a subsequence and composition with a fixed map if necessary, we can assume that the
maps fi preserve the ends of M. Then f;(H) tends to some end of M, let E for precision.
As fi(H) separates E from H, the assumption Cap E > 0 would imply

lim Cap(E, fi(H)) = +o0
in contradiction with the estimate Cap(E, fi(H)) < K Cap(E, H) (Proposition 3.6). Con-
sequently we have Cap E = 0, hence lim Cap(F, fx(H)) = 0, with Cap(F, fy(H)) >
K~ Cap(F H), hence Cap(F, H) = 0 and Cap F = 0.

AsdM = EUF wehave Cap(dM, K) < Cap(E, K)+Cap(F,K) = 0for all compact
K, or, in other terms, Cap 0 M = 0, as claimed.

This result is particularly interesting for non-compact Lie groups equipped with a
left-invariant conformal structure (cf. § 8).

6 Condensers with both boundary components at infinity

We will now consider condensers whose boundary components are two disjoint
sub-boundaries S, X of M and we must distinguish three cases: @) Cap S > 0, CapX > 0, b)
CapS>0,CapZ =0,c)CapS =CapZ =0.
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The first case leads to an easy generalization of rings in the n-space. The two other
cases will introduce Green-type functions with poles at infinity. In all cases we will obtain
n-harmonic functions globally defined on all M.

6.1. THEOREM. — Let S, X be two disjoint sub-boundaries of M with Cap S > 0,
CapX > 0, and let A(S,X) be the set of functions u € H(M) which satisfyu = 0on S
for some choice of the compact L, u = 1 on Xk for some choice of the compact K and
0 < u < 1 everywhere. Let write

Cap(§,2) = ueijgz)z(u, M) = }P{Cap(gl_,fx).

Then there exists a unique function v € Cl A(S,Z) with I(v, M) = Cap(S,X). This
function is n-harmonic with 0 < v < 1 on all M and will be denoted extr(S, X). It satisfies
the variational condition

(6.2) / |Vu|""2Vv-Vwdr =0

for allw € H(M) which varu'sheA; on S; U X for some choice of the compact sets K, L.
Obviously Cap(Z, S) = Cap(S,%) and extr(Z, S) = 1 — extr(S,X). Moreover, as an

extension of (4.3), forall0 < a < B < 1:

(6.3) Cap({xeM|v(x)<a}, {xeM|v(x)>(B)})=(B—a)""Cap(5%).

Proof. — The arguments are the same as for proving Theorem 4.1. As §, X are
disjoint there exist some pairs of compact sets (K, L) with §; NZx = @ and Cap(S,X) =
iHCap(EL,EK) is finite.

Then the claimed function v is the projective strong limit of extr(S;,Zx) =
extr(9S;,0Zx) when S; tends to S and Zx tends to 3. As extr(S;, ) is increasing when Sy,
is decreasing while extr(S, k) is decreasing with X, we also have

v = extr(S,X) = supextr(S;, %) = irlgfextr(s,fk) .
L

As obviously 0 < v < 1, the strict inequality 0 < v < 1 follows from Har-

nack inequality. The variational condition (6.2) follows from the strong convergence of

extr(Sz,Zx) to v, and makes the proof of Proposition 2.5 given in [F3] still valid with v in
place of u, hence (6.3).

Other properties.

Let S, Sy, ., o be sub-boundaries of M suchthat S C Sand X, C X. If S, ¥ are
disjoint, by an easy extension of Lemma 3.4 and Proposition 4.4 we get:

(6.4) Cap(So, %) < Cap(S, %)
(6.5) extr(S,%p) < extr(S, %) < extr(S, X).
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Behaviourof vat Sand 3.

6.6. PROPOSITION. — Let S,  be two disjoint sub-boundaries of M withCap S > 0,
CapX > 0. The function v = extr(S,X) admits 0 for cluster value at any end E € S with
Cap E > 0, and 1 for cluster value at any end F € X with Cap F > 0. Hence v(M) =]0,1].

Proof. — Let E € Sbe an end with Cap E > 0. Let write vg = extr(E,X) and for

any compact set L
= inf vg, =infv.
xr yl},, VE,» HL g%l' 14
From (6.5) we have v < vg, hence u; < o;. As9E; C {x € M | vg(x) > «ar} wealso
have from (6.3)
Cap(E,9E.) < Cap (E, {x € M | vg(x) > &1 }) = &}~ " Cap(E,X).

Now from Theorem 5.1, Cap(E, 9 E; ) tends to +oo when E; tends to E. It follows

that o; and y; tend to zero when E; tends to E, which proves the first assertion. By ex-

changing S and X and using the relation extr(%,S) = 1 — extr(S,X) we get the second
assertion.

7. Other cases. Construction of n-harmonic functions on M

We will enlarge the problem raised in section 6 by considering the limits of con-
densers of the general type I'( B, C) where B, C are relative continua tending to infinity.

7.1. LEMMA. — For every pair (B, C) of relative continua in M with Cap(B, C) <
+o00 let ugc be the normalized function defined on M by

usc = (Cap(B, €))""" "™ extr(B,C) .
Then forall0 < o < B < (Cap(B, C))l/(l_") we have:
(7.2)  Cap ({x € M| ugc(x) < a}, {x€ M| upc(x) > B}) = (B— o)l ",
Moreover, if M has at least two ends, for all (x,y) € M? we have
(7.3) lupc(y) — usc(x)) < dm(x,y)

in whichdy = Az(l_") is the A-distance on M (cf. Appendix).

Proof. — The first assertion immediately follows from Proposition 2.5. Now x, y
given, let assume ugc(y) > upc(x) for precision and let write

Cr = {x € M| upc(2) < upc(x)}, G = {z € M| upc(z) > upc(y)}-
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Then C, and C, are relative continua with x € C,, y € C, (cf. [F1]) and from
definition of Ay, we have Ap(x,y) < Cap(Cy, C,;). On the other hand, by taking & =
upc(x) and B = upc(y) in (7.2) we get

Cap(Cy, ) = (usc(y) — usc(x))' ™"

The claim follows.

7.4. COROLLARY. — Let assume that M has at least two ends and let (B,), (Cp) be
two sequences of relative continua converging to infinity. If the sequence (vp) = (us,,c,)
is not c-converging to +oo0, it contains a subsequence which is c-converging to a positive
n-harmonic function v defined on all M, possibly constant.

Proof. — The topology associated with the Ays-distance on any compact set K of
M agrees with the topology induced on K by the structure of manifold (cf. [F1]). The func-
tions v, are therefore equicontinuous and the claim follows from Ascoli Theorem com-
bined with (1.1).

Now we have to look for conditions ensuring that the sequence (v,) is bounded and
that the limit functions v are not constant.

7.5. LEMMA. — Let H be a compact set of M and let (B, C) be a pair of relative
continua with Cap(B, C) < +00. Then

my = ilr}fugc < Cap(B,H)I/(l_") .

Proof. — From definition H C {x € M | ugc(x) > my}. If H N B # 0, we have
my = 0. If H reduces to a single point Cap(B, H) = 0. In both these cases our assertion is
trivial. In all other cases we have

Cap(B, H) < Cap (B,{x € M | ugc(x) > my}) = my ™.

The claim follows.

7.6. LEMMA. — Let S, £ be two disjoint sub-boundaries of M, (B, C) a pair of rela-
tive continua and H, K two compact sets with B C Sy, C C Zx and Sy NZx = (. Then
my = infy ugc and ux = supg upc satisfy

Mk — my > (CaP(H»K))l/(I_") -

Proof. — Thesets X = {x € M | ugc(x) < my}and Y = {x € M | ugc(x) >
ux} are relative continua. By applying Lemma 2.4 to ugc on (M \ (Sy U k) itis easy to
seethat X C Sy and Y C 3k, hence

Cap(H,K) > Cap(dSy,9Zx) = Cap(Sy,Sk) > Cap(X,Y) = (ux — my)'~".
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The claim follows.

Now we can prove the following basic result.

7.7. THEOREM. — Let S, X be two disjoint sub-boundaries of M with CapX = 0
andlet (By), (C,) be two sequences of relative continua respectively converging to S, .

a) IfCap S > 0 and if, for all p, By, is a neighborhood of S, the sequence (v, = up,c,)
admits a c-convergent subsequence whose limit v is positive and n-harmonic on M. This
function v admits zero for cluster value at any end E € S with Cap E > 0, and +oo for
cluster value at Z, hence v(M) = R} .

b) IfCap S = 0 the sequence (v, = up,c,) is c-converging to +oo. However for any
fixed point a in M, the sequence (v, — vy(a)) admits a c-convergent subsequence whose
limit v is n-harmonic on M. This function v admits +oo for cluster value at X and —oo for
cluster value at S, hence v(M) = R

Proof.

First case. We assume that Cap § > 0 and that every B, is a neighborhood of S.
Then for all compact set H and all end E € S with Cap E > 0, we have, from Definition 3.2,
Cap(Bp, H) > Cap(E, H) > 0. Hence from Lemma 7.5

infu, < (Cap(E, H))"" ™.

As the functions v, are 1-lipschitzian in the A-distance dj, they also are equally
bounded on H and the first assertion in a) follows from Corollary 7.4. The limit function v
also satisfies

igfv < Cap(E, H)Y(—n) |

Then we can choose H = 9 E; and let E; tend to E. From Theorem 5.1 Cap(E,9Ey)
tends to +o0, hence infy v tends to zero, which implies that v admits zero for cluster value
atE.

Finally let H , K be two compact sets with Sy N Zx = 0. From Lemma 7.6 we easily
get

(7.8) sup v — infv > (Cap(H,K))l/(l_")
K H

hence v is not constant. If, H fixed, Zx tends to X, Cap(H, K) tends to zero, hence supy v
tends to 400, which implies that 400 is a cluster value of vat X,

Second case. Cap S = 0. Let first suppose that the sequence (v, = u,c,) is not c-
converging to +0c0. Then there must exist a c-convergent subsequence of (v,) whose limit
v satisfies (7.8). As Cap S = 0, Cap(H, K) tends to zero when, K fixed, H tends to S, hence
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sup v = +o00, which leads to a contradiction. The sequence (v,) is therefore c-converging
K

to +o0.

Now, since the v, are equicontinuous, the sequence (v, — vp(a)) admits a c-
convergent subsequence whose limit v is n-harmonic on M and satisfies (7.8). Hence
easily, as in the first case, I%imz sup v = +oo. Similarly, as Cap S = 0, Cap(H, K) tends to

-z K

zero when, K fixed, H tends to S. Hence Hhm' siﬂf v = —o00, which implies that —oco is a
_’
cluster value of v at S.

Remark. — In the first case Cap S > 0 we can also consider the functions vsc =
(cap(s, C))]/(l-") extr(S, C) where C is a relative continuum converging to X. By the
same kind of arguments we obtain:

7.9. THEOREM. — Let §, X be two disjoint sub-boundaries of M with Cap S > 0,
CapX = 0, and let (C,) be a sequence of relative continua converging to . Then the
sequence vs,c, admits a c-convergent subsequence whose limit v is a positive n-harmonic
function on M, admitting zero for cluster value at any end E € S with Cap E > 0, and +o00
for cluster value atX.

8. Improvement and conclusion

Theorems 7.7 and 7.8 can be considered as extensions of Theorem 3.27 in [H1}, and
we can say that the limit function v is a Green-type function with pole at Z if Cap S > 0
(resp. with poles at S, %, if Cap S = Cap £ = 0]. Our results are however less precise than
Theorem 3.27 of [H1] in what concerns the behaviour of v at the poles. For what concerns
the behaviour of v at §, it does not seem that we lost any precision since in [H1] it is not
proved that the Green function g(e, y) tends to zero at d M.

We will now also generalize Lemma 4.1 in [H1). For brevity we shall say that a neigh-
borhood C of a sub-boundary X of M is a r-neighborhood of X if it is a relative continuum.

8.1. THEOREM. — Let S, X be two disjoint sub-boundaries of M with Cap S > 0,
CapX = 0 and assume thatX = {F,, F,...} is the union of an enumerable set of ends.
Then there exists a positive n-harmonic function v on M admitting zero for cluster value
atanyend E € S with Cap E > 0, and +oo for cluster value at any end F;.

Proof. — For simplicity we shall use the functions vs¢ as in Theorem 7.9. For all
i € N* let y; be a r-neighborhood of F;. Then let write y = CI(Uy;) and Cap(S,y;) =
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t; Cap(S,y). Obviously 0 < t; < 1 and there exists a sequence (u;) with 0 < u; < 1

o0
and k = Z tiu; < +00. We can use Theorem 5.2 for constructing a relative continuum
i=1

Ci C y;suchthat Cap(S, C;) = u; Cap(S,y;). Then C = Cl{UC;) is a relative continuum
contained in y such that for all i:

o0
Cap(S, Gi) < Cap(8,C) < Y _ Cap($, Cj) = kCap(S,y) = kCap(8, C)/(tiu;) .
j=1

Asextr(S, C) > extr(S, C;) we have easily
vsc > (tiwi/k)Y (" Vg, .

Now, for allindex i, let yS-p )bea sequence of r-neighborhoods of F; converging to F;,

and C§p ) be the associated sequence in the above construction. Obviously C}p) tends to F;,
and C(P) = CY( UC,(p )) tends to Z. By extraction of subsequences we can assume that, for
all fixed i, the sequences (Us, C,w) are c-convergent, as well as (v (5 ). The limit functions

v;, v satisfy v > (t,-u,-/k)l/("“) v;, and from Theorem 6.9, v; admits +co for cluster value
at F;, which proves that v is a desired function.

Summary. — By gathering the results of sections 6, 7, and forgetting the process
of construction of the function v we can state:

8.2. THEOREM. — Let M be a Riemannian n-manifold with at least two ends, and
let S, X be two disjoint sub-boundaries of M.

a)IfCapS > 0, CapX > 0 there exists a bounded n-harmonic function v on M
which admits zero [resp. +1] for cluster value at any end E € S with Cap E > 0 [resp. any
end F € 3 withCap F > 0].

b) IfCap S > 0, Cap 3 = 0 there exists a positive n-harmonic function v on M which
admits zero for cluster value atanyend E € S withCap E > 0, and +o00 atanyend F of a
given closed enumerable subset of X.

c) IfCap S = Cap X = 0, there exists a n-harmonic function v on M which admits
—oo for cluster value at S and +oo for cluster value at 3.

By looking at what happens for domains of R” it appears that such a function v is
generally not unique. However, Theorem 8.2 seems to have some interest for the classi-
fication of Riemannian manifolds in nonlinear potential theory (cf. [HR2]). Moreover by
applying this theorem to two-ended Lie groups we obtain:

8.3. THEOREM. — Let G be a Lie group with two ends E, F, equipped with a left-
invariant Riemannian metric, and n = dim G. Then there exists a n-harmonic function v
on G admitting —oo for cluster value at E and +oo for cluster value at F.
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Proof. — From Theorem 5.3, necessarily Cap E = Cap F = 0 hence we are in the
case b) of Theorem 8.2.

Finally it is perhaps also convenient to recall the following application of Theo-
rem 5.3 which has been stated in [F4].

8.4. THEOREM. — Let M be a Riemannian n-manifold with a finite number p >
2ofends. Ifp > 3,0orif p = 2 with CapoM # 0, the conformal group C(M) of M
is compact; and more generally, for all real K > 1, the set Qx (M) of K -quasiconformal
automorphisms of M is compact.

APPENDIX: The function A, and the associated metric

For all non-compact Riemannian n-manifold M and all (x, y) € M? we set
(1) Am(x,y) = inf Cap(G, Ci)
COICl

where G, C, are relative continua with x € G, y € C; (cf. [F1], [F2]). We always have
Anm(x,y) > 0but a general problem is to decide whether A (x, y) is finite when x # y (or,
equivalently, whether A, is not identically zero on M, cf. [F5]).

By using Theorem 3.5 we can here prove (without using [F5]):

THEOREM A. — IfM has at least two ends E, F, Ap(x, y) is finite for all y # x, and
tends to zero when, x fixed, y tends to an end X with Cap X = 0. Hence dy = )\z(l—") is
a distance on M and, if Cap 0 M = 0, the dys-balls are all compact.

Proof. — Let x, y be given with y # x. There exist two compact sets H, L such that
EyNF; =0andx € M\ Fy,y € M\ Ey. Then we can construct two compact disjoint
paths yp, ¥; resp. joining x to Ey and y to F; withy, C M \ F andy; C M \ Ey. From
Theorem 2.3 and Lemma 2.6, we have Cap(yo Ud Ey, ¥, UdF;) = Cap(yoUEy, y1 UFL) <
+o00.

Now G = yo U Ey and C; = y; U F; are relative continua resp. containing x,
y- Hence Ay (x,y) < Cap(G, G) < +oo, which implies that djy is a distance on M. If
y € Fy wecantake G = F;, hence Ay(x,y) < Cap(yo UdEy,Fr). Thenif CapF = 0,
Cap(yo U dEy, F1) tends to zero when F; tends to F (cf. § 3) hence }1_1’1}c Am(x,y) = 0.The

last assertions follow.
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