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GENERALIZED CONDENSERS AND
CONFORMAL PROPERTIES OF RIEMANNIAN MANIFOLDS

WITH AT LEAST TWO ENDS

Jacqueline FERRAND

Introduction

In spite of important generalizations such as ^4-potential theory (cf. [HKM], [Hl],
[HR2], the conformai potential theory remains an essential tool for studying quasiconfor-
mal and quasiregular mappings of Riemannian manifolds (cf. [GLM], [H2], [HR1], [HR3]).
However, the usual définition of capacities is perhaps not always the most appropriate one
for studying the conformai properties of such a manifold M at infinity, as it only deals with
condensers defined by a pair (G, C) where G is a domain in M and C C G is compact.
This last restriction makes often necessary to consider some séquences of domains (G,-)
and pass (once or several times) to the limit.

It seems therefore worthwhile to set a theory of capacities for more gênerai con-
densers. In [FI], we studied condensers defined by a pair (Cb, Q) of closed but non nec-
essarily compact sets of M, playing the same rôle; if Q is compact this définition reduces
to the usual one with G = M \ Q> and C = Q. We will first extend this theory to the
limit case obtained by letting CQ tend to a set S of ends of M. Then by letting Q also tend
to infinity and assuming that M has at least two ends, we obtain condensers whose both
components Q, Q are sets of ends of M, with domain G = M. The extremal functions
relative to those condensers are n-harmonic on M (n = dim M). Hence the existence of
non-constant n-harmonic functions on M with a prescribed behaviour at infinity. We also
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28 J. FERRAND

obtain an obstruction to the existence of a séquence of AT-quasiconformal automorphisms
converging to infinity for a manifold M with two ends and Cap 3 M > 0.

The paper is organized as follows: in sections 1, 2 we present the basic properties
of condensers defined by two closed sets Q, Q of Af, only assumed to have at most one
compact connected component, and we set some non-obvious topological properties such
as Lemmas 2.4 and 2.6.

In section 3 we précise the notion of end of M and the topology of the (possibly
infinité) set 3 M of ends of M. We introducé the notion of sub-boundary of M and ex-
tend the theory of capacities to "hybrid" condensers T(S, C) whose first component S is a
sub-boundary of M. In section 4 we prove the existence of extremal functions for hybrid
condensers and in section 5 we study the behaviour of those functions when the second
component C tends to infinity. Then in sections 6,7 we can define condensers whose both
components are at infinity, and by using the same process of normalization of extremal
functions as in [Hl] and [HR2] we obtain non-constant n-harmonic functions on M of one
of the following types; i) bounded, ii) unbounded and positive, Ui) two-side unbounded.
Section 8 is devoted to some improvements.

The existence of non-constant n-harmonic functions has been proved in [Hl] and
[HR2] in the special case of a manifold M of the type M = N \ {ai,... ,a*} where
a\,..., at are some points of a compact differentiable manifold N; and the extension of
this result to the gênerai case is considered in [HR3] as obvious. The present proof has
however perhaps the interest of being synthetic and complete. It has been presented at the
"École de printemps" (Géométrie conforme, Analyse et applications) held in Domaine de
Seillac (France) in 1995.

1. Preliminaries

In what follows M will always dénote a non-compact connected Riemannian mani-
fold of class C1 with dimension n > 2, and dr its volume element. As in [FI] and [F2],
H (M) = C(M) Pi L\{M) will be the linear space of continuous real-valued functions u on
M whose distributional gradient Vu satisfies

= / |Vu | n dT<+oo.
JM

(we emphasize that u is not assumed to be in Ln(M)).

Then we will dénote H* (M) the set of functions u G H (M) which are monotone
on M. (Let us recall that a function u E C(M) is called monotone if its supremum and
infimum on any relatively compact domain D of M are respectively the same as on 3 D).
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The space H(M) will be equipped with two topologies:

a) the compact-open topology (c-topology for brevity)

b) the strong topology (s-topology for brevity) defined by the family of norms

\\u\\ = sup \u(x)\ + I(u,M)l/n

K

where K is any compact set of M.

If A is a subset of H (M) we will reserve the notation Z, or Cl A, for its closure in the
strong topology. However a subset B ofC(M) will simply be called bounded on a subset X
ofMiftheset

{u(x) | u G B, x G X} is bounded.

In what follows we simply dénote inf* u [resp. supx u] the infimum [resp. supre-
mum] of a function u on a set X of M; and the oscillation of u on X will be denoted
OSC(M,X).

As in [F2] a relative continuüm of M is a non-empty closed subset of M without any
compact connected component, and a compact continuüm is a compact connected set not
reduced to a single point.

At last, according to the usual terminology, a function u G C(M) D locL*(M) is
called n-harmonic if itisaweak solution of div(|VM|w~2Vu) = 0.

The following results are known (cf. [FI], [F2J, [GLM], [Hl]):

1.1. — The limit of a c-convergent séquence of monotone [resp. n-harmonic]
functions is monotone [resp. n-harmonic].

1.2. — Let C be a relative continuüm of M and assume that ù G C(M) is mono-
tone on M \ C, with u = Cte = k on C. If k = supM u or k = infM u, then u is monotone
on ail M.

1.3. — Let (wjt)be a c-convergent séquence in H (M) with m = liminf J(wjt,M) <
+00. Then u = lim(Mjt) belongs to H(M) with I(u, M) < m. If the séquence (u*) is s-
convergent,then/(w,M) = m.

1.4. — For every compact connected set C in M there exists a constant Jfc(C) such
that, for any M G H* (M):

oscn(u,C) < Jfc(C)/(«,M).

1.5.— For any k fixed, the set { u G H* (M) | I( w, M) < Jfc} is equicontinuous.
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2. Conformai capacities

In view of extensions we first observe that the elementary theory of conformai ca-
pacities is in fact based on the two following gênerai Lemmas.

2.1. LEMMA. — Let A beaconvexsubsetofH(M) andletwrite

m(A) = inf I(u,M).

//(wjt) is a c-convergent séquence in A with lim I(«*) = m(A), then the séquence (M*) is
s -convergent, hence u = lim(ujt) belongs toAwithI(u,M) = m(A).

Moreverifv G A also satisfies I(u, M) = m(A), then v - u = Cte.

Both these assertions follow from Clarkson inequality (cf. [M]).

2.2. LEMMA. — Let A andm(A) be as in Lemma 2.1. Let additionally assume that
A is bounded on all M and that there exists a map p : A —» A with an open covering (Ua)
of M such that for all u G A:

i) p( M) is monotone on every set Ua.

n) l{p(u),M) < l{u,M) andsupM \p(u)\ < supM \u\.

Then there exists a function v G ~Â satisfyingI{v,M) = m(A) and monotone on
every set Uu.

Proof. — Let («*) be a séquence in A with lim I(ujt, M) = m(A). Then the sé-
quence I(p(iik),M) also tends tp m(A). The restriction of the séquence (p(«jt)) to every
set Ua is equicontinuous, hence this séquence is equicontinuous on all M. As it is bounded
on M, it admits a c-convergent subsequence whose limit v satisfies the claim; and from
Lemma 2.1 such a function i/is unique except for addition of a constant.

Condensers and capacities.

As in [F2] we deal here with condensers whose both boundary components play the
same rôle, none ofthem being ossumed to be compact. For that reason we dénote T( Q, Q )
the condenser whose boundary components Q, Q are any closed disjoint subsets of M,
its domain being M \ (Cb U Q). The conformai capacity of r(Cb, Q) is

Cap(Cbf q ) = taf J(u,M)

where u runs into the set A(CQ, Q ) of functions u G H(M), called admissible for r(Q>, Q ),
which satisfy u = 0 on Q>, u = 1 on C\t and 0 < u < 1 everywhere. If A(CQ, C\) = 0
wesetCap(Q), Ci) = +oo. IfCap(Qj,Ci) < +ooitfollows from Lemma 2.1 that there is
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at most one function u G A(Co, Q) with I(u,M) = Cap(Q,, Q). Such a function will be

denoted extr(Cb, Q). The followingresuit isknown (cf. [FI], [F2]):

2.3. THEOREM. — Let ( Cb, Q ) be a pair of compact or relative continua ofM with

Cap(Cb, Q) < +oo. Then u = extr(Q), Q) exists and this function is n-harmonic on

MxtCbUQ).

IfCo>Ci are relative continua, uis monotone on ail M. In the other cases uis mono-

tone on the domain obtained by removing from M a point ofQ ifitis compact (i = 0,1).

Précisions. — It is easy to see that, for any open set V of M \ ( Q>U Q ), the function
M = extr(Cb, Ci) realizes the infimum of I(v, V) among all the functions v G H(M) which
satisfy v = u on d V. From this principle we get the following properties.

2.4. LEMMA.

a) For any domain D C M \ (Q U Ci) (notassumed to be relatively compact) the
extremal function u = extr(Q,, Ci) satisûes

inf u = inf u, sup u = sup u.
D dD D dD

In other terms the monotonicity of u still holds if we adopt the more restrictive
définition o f [M].

b) If(yo, y\ ) is anotherpair of compact or relative continua with y0 C Q> and y\ C

Ci, wehave

extr(y0, Q) > extr(CQ, Q) > extr(Cb,yi).

Proof. — Assertion a) is almost obvious. For proving assertion b) let us write u =

extr(Q), C\)tv = extr(y0, Q) and assume that V = {x G M | v(x) < u(x)} is not empty.
Then V C M \ (Q U Q) and v — u on 3 V. As u| v and i/| v both realize the infimum of
I(w,M)in{w E H( V ) \ w = uonS^Jwe have u = M on V, in contradiction with our
assumption. Hence V = 0, which proves the first inequality. The second one follows by
exchanging Q with Ci and y0 with y\.

Moreover, from Theorem B in [F3], which generalizes a classical resuit, we can state:

2.5. PROPOSITION. — With the same assumptions and notations as in Theorem 2.3

letwriteC' = { J C € M | u(x) < t} andC? = {x G M | u(x) > t}, (0 < t < 1). Then

for ail 0 < a < $ < 1 the function uap = extr(C~,c£) is defined by ua$ = 0 on C~,

= 1 on Cp and uap — (M - a)/(/î - of) on Da^ = {x G M | a < u(x) < fi), hence

Cap(C", Cf) = (̂  - a)1"" Cap(Q, Q) .
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Remark. — A sufficient (but not necessary) condition for having Cap(Cb, Q) <
+00 is that one at least of the sets Q» C\ is compact.

We complete this result by the following one.

2.6. LEMMA. — Let Q, d be two relative continua such that 3 Q> is compact If
CQ H Q = 0, Cap(Cb, Q) isfinite with

Cap(Q>,Q) = Cap(3Cb,Q) and extr(3Cb,Q) = extr(Cb,Q).

We point out that the existence of extr(3 Q>, d ) is here obtained without assuming
that 3 CQ is connected.

Proof. — We know that A(d Q>, d ) is not empty. If u G A(d Q, Q ) the fünction v
defined by v = 0 on Q and 1/ = M on M \ Q> is admissible for F(3Cb, Ci) and r(Cb, Ci),
with 7(z;,M) < l{u,M) if v ^ u. From (2.3) the fünction w = extr(Cb, Q) exists and
I(w,M) = Cap(Cb,Ci) < I(v,M) hencel (w,M) < / ( ^ M ) for all M € A(3Cb, Q). As
M; G >l(3Cb, Ci), wenecessarily have u; = extr(3Cb, Ci).

In what follows we shall consider generalized condensers whose one boundary
component at least is at infinity.

3. Condensers with one boundary component at infinity

Preliminaries.

Let recall that an end E of M is the projective limit of a family (EL), where L ranges
in the set tC(M) of compact sets of M and £ is a connected component of M \ L chosen
in such a way that K C L implies E& D Ei. Let 3M dénote the set of ends of M. It is
known ([Frl], [Fr2], [B], [Z]) that the topological structure of M can be extended to M =
M U 3 M in such a way that M and 3 M are compact. However for ail subset X of M we
will go on denoting ~X and dX, respectively, its closure and its boundary in M. The traces
on M of the neighborhoods of a subset S of 3 M will be called relative neighborhoods of S.
Particularly, for every end E, the family (£I)L€^(M) *S a basis for relative neighborhoods
of E. Let observe that for any pair (K, L) of compact sets in M, EK C\ EL D £JCUI» hence
Ejc n Ei is never empty.

Sub-boundaries.

For brevity the closed, hence compact, subsets of 3 M will be called sub-boundaries
of M. For ail subset S of dM and for ail I G fC(M) we will Write SL = (J EL.



Conformai properties of riemannian manifolds with at least two ends 33

3.1. LEMMA. — Let S bea sub-boundary of M.

a) For everyL G K{M), there exists a finite subset X ofSsuch thatSL = XLihence

SL has a finite number of components and ~SL is a relative continuüm.

b) The family (SI)LG;C(M) is a basis for relative neighborhoods ofS.

Proof.

a) From the compacity of S there exists a finite subset X of S such that XL = \J EL

is a relative neighborhood of S. Then for every end E G S, we have EL n XL ^ 0, hence

there exists an end F G X such that ELHFL ^ 0. As EL and FL are connected components

of M \ L, necessarily £L = FL. Hence SL = XL and SL = XL ~ U ^ i = U ^ i - A s e v e rY
_ _ £€S

set £/, is a non-compact continuüm, S/, is a relative continuüm.

b) Let Q. be a relative neighborhood of S. For every end £ G S there exists a set

C(E) G /C(M) with £C(£) C fl. From the compacity of S there exists a finite subset X of S

such that V = (J £ c ( £ ) is a relative neighborhood of S.Then V C fi and L = |J C(£)
Eex Eex

is a compact set.
For every end E G S, we have £/, n V ^ 0 and there exists an end F G X such that

EL H -FC(F) ¥" 0- A s
 £L C EC[F), the sets £C(F) and ^C{F) ^e tw0 intersecting connected

components of M \ C(F), which implies EC^F) = FC(F), hence EL C F C O. Finally
Si = U EL is contained in Q. The claim follows.

IGS

Remark.

a) From Lemma 3.1 b) it appears that every sub-boundary S of M is the pro-

jective limit of the family (S/,)IG^(M), which could allow to give a direct définition of

sub-boundaries, generalizing the définition of ends. We shall keep in mind that two sub-

boundaries S, Z are disjoint if, and only if, there exists a compact set L with SLni.L = 0.

In that case there also exists a compact set K such that S/, n ÏJC = 0.

b) The same proposition allows us to say that a map ƒ of M into a topological space

X admits a point JC of X for limit [resp. cluster value] at the sub-boundary S if, for every

neighborhood V of JC in X there exists a compact set L such that ƒ (SL) C V [resp. V n

f(SL) * 0].

At last we will say that a séquence (Bp) of subsets of M tends to a sub-boundary S

if, for ail L G K{M) there exists pL G N such that p > pL implies Bp C SL.

Hybrid condensers.

We will now consider hybrid condensers i.e. of the type T(S, C), where S is a sub-
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boundary of M and C a compact set or a relative continuüm of M. Then A(S, C) will dénote
the set of functions u E H (M) with u = 1 on C, u ~ 0 on Si for some choice of the
compact set L and 0 < u < 1 everywhere.

3.2. DÉFINITION. — With above notations the capacity of r(S, C) is deüned by

Cap(S, C) = inf I(u,M) = inf Cap(SL, C).
G4(SC) i

If S = 3 M and if C is a compact set of M we recover the usual capacity of C, simply
denoted Cap C.

If M is a domain of M" and if S is the union of a set of boundary components of M,
we recover a classical définition.

Propertiesof Cap(S, C).

In what follows we shall say that a set C is strongly disjoint from S if there exists a

compact set L with S/, D C = 0. This condition is always satisfied if C is compact and SL

sufficiently close to S. Then we have:

3.3. LEMMA. — IfCis a compact set, or a relative continuüm strongly disjoint from
S, then Cap(S, C) is Rnite.

Proof. — Let I b e a compact set with ÜL n C = 0. Then from Lemma 2.6
Cap(SL, C) = Cap(dSL, C) is finite and A(S, C) is not empty.

3.4. LEMMA.

a) IfS\ , S2 are two sub-boundaries of M with S\ C S2 and ifeach Q (i = 1,2) is a
compact set or a relative continuüm of M with Q C C2, then

Cap(Si,Q) <Cap(S2,C2).

b) If(Sj) is a family of sub-boundaries of M and (Cj) a family of compact sets or
relative continua,

Cap(USh UCj) < ^2 Cap(S/, q).

3.5. THEOREM. — Let S be a sub-boundary ofM. If there exists a compact con-
tinuüm K with Cap(S,K) = 0, then Cap(S,H) = 0 for any compact set H of M and
Cap(Si, H) tends to zero when Si tends to S.

In that case we shall write Cap S = 0. In the opposite case we write Cap S > 0
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Proof. — If AT is not contained in H Iet us choose a G K \ H and b G K \ {a}.
Then there exists a compact continuüm C with H L) {b} C C C M \ {a}. Hence the
existence of a constant k such that the inequality ose"(M, C) < kl(u,M) holds for any
M G H (M) which is monotone on M \ {a} (cf. Prop. 1.4).

Now, f > 0 given, there exists from hypothesis a function u£ G A(S, K) satisfying
I(u€, M) < 2~ne, and from Lebesgue straightening Lemma (cf. [M]) we can assume that u£

is monotone on M \ K, hence also o n M \ {a} from (1.2). By choosing e < 1/Jfc we have
therefore ose"(uf,C) < kI(u£tM) < 2~n

t hence ut > 1/2 on H. Then v = inf(2uf,l)
belongstOi4(S;H),henceCap(S,H) < 2nI{u£) < e, and Cap(S, H) = 0 by letting f tend
to zero.

If K C H we can choose a pair (H\,H2) of compact sets not containing K with H =
Hx U J72 and from above arguments Cap(S, Hi) = Cap(S, H2) = 0 hence Cap(S, H) = 0.

At last, it is obvious that the above notions of sub-boundaries and hybrid capacities
are conformally invariant. More precisely:

3.6. Let M, N be two Riemannian n-manifolds. Then every K-quasiconformal map
of M onto N can be continuously extended into a homeomorphism ofMUdM onto N U
dNt and for any pair (S, C), where S is a sub-boundary of M and C a compact set or a
relative continuüm of M, we have:

) < Cap(/S,/C) < KCap(S,C).

4. Extremal functions for hybrid condensers

With the same notations as in § 3, we can state:

4.1. THEOREM. — For any sub-boundary S ofM and any compact or relative con-
tinuüm C strongly disjoint from S the function v = supL extr(S/.f C) is the only one in
ClA(S,C) satisfyingI(v,M) = Cap(S, C). This function is the strongprojectivelimit of
extr(Si, C) when Si tends to S. Itsatisfies:

(4.2) / |Vi/|B-2Vi/ • Vu; rfT = 0
JM

for ail w G H(M) satisfying w = OonCU Si forsome compact L. Hence v is n-harmonic
on M \ C and monotone on M \ {a} for alla G C ifC is compact [resp. monotone on ail
M ifC is a relative continuüm], It will be denoted v = extr(S, C). If Cap S = 0 it reduces
to the constant L Moreover Proposition 2.5 still holds with v in place ofu, namely, for ail
0 < a < £ < 1:
(4.3) Cap({x e M | v(x) < a}, {x G M | v(x) > &} = (0 - a)1-nCap(S.C).
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Proof. — If Si is sufficiently close to S for having C f) SL = 0 the function vL =

exti(dSL, C) exists and from Lemma 2.6 extr(Si, C) = i/L. Now s > 0 given there is wf G

i4(S, C) satisfying I(u€, M) < Cap(S, C) + f and vanishing on SH for some compact set H.

For any compact set I with Si C S# the function vi = extr(Sx., C) satisfies

Cap(S, C) < I(i/If Af) = Cap(5L, C) < Cap(Sw, C) < 7(wf,M) < Cap(S, C) + f

hence ƒ (i/f M) = Cap(SL; C) tends to Cap(S, C) when SL tends to S. On the other hand vL

is monotone on M or at least o n M \ {a} for any a € C, the set i4(S, C) is convex, and

from Lemma 2.4 the inclusion Si C Su implies Vi > VH-

Then it follows from Lemmas 2.1 and 2.2 that the family (uL) is strongly converging

to v = supL y/, and that v is the only function in Cl A(S, C) satisfying J( v, M) = Cap(S, C).

Hence the variational condition (4.2) which gives an elementary proof of the fact that v

is Aï-harmonic on M \ C and makes the proof of Proposition 2.5 given in [F3] still valid.

Hence the claim.

4.4. PROPOSITION. — Let S, S' be two sub-boundaries of M with S C S', and let C,

C' be two compact or relative continua with CCC' , Then

(4.5) extr(S', C) < extr(S, C) < extr(S, C').

Proof. — From définition of sub-boundaries we have Si C S'L for all compact set

L of M, hence from Lemma 2.4:

extr(S[, C) < extr(SL, C) < extr(Si, C') < exu(S, C').

The first inequality (4.5) follows by letting S[ tend to S' and the second one by letting

SL tend to S.

Behaviour of extr(S, C) at S and C.

It is first obvious that v = extr(S, C) always satisfies v = 1 on C and 0 < i/ < 1 on

all M. If M CC N is a regular subdomain of a manifold N (cf. [Hl] it appears that v tends

to zero at S. In the gênerai case we can interpret (4.2) by saying that v is the weak solution

of div(\dv\n~1dv) = OonM \ C with boundary conditions v = 1 on C, v = 0 on S and

dv/dn = 0 on 3M \ S, but the two last conditions must be interpreted in a weak sense. In

fact we can only state:

4.6. PROPOSITION. — With the same notations as in Theorem 4.1, the function v —

extr(S, C) admits zero for cluster value at any end E € S with Cap E > 0. Consequently

v(M)=]0,l}.

The first assertion will be proved below as an application of Theorem 5.1. The sec-

ond one follows from Harnack inequality.
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5. Limits of Cap (S, C) when C tends to infinity and applications

We first assume that C is a compact set of the type C = BSL and that Si tends to S.

S.I.THEOREM. — LetSbeasub-boundaryofM with Cap S > 0. Then Cap (S, 3 Sx.)
tends to +oo when Si tends to S.

Proof. — Let suppose that there exists a séquence (Lp) of compact sets of M such
that SLp tends to S, with Cap (S, dSLp) < k < +oo for ail p. Then for ail p there exists q G N
such that q> qp implies SLq C SLp and also

Cap(SLqfdSLp) < Cap(S,dSLp) + k<2k.

After extraction of a subsequence we can assume qp — p + 1, hence
Cap(SLp+1,3SLp) < 2k for ail p. Now for ail q > p the domain DqtP = SLp \ SLfl of
the condenser T(SLq, dSLp) contains the q - p disjoint sets D ^ _ i , . . . , Dp+iiP. For conve-

/ _ \l/(l-«)

nience let write mPtq = ( Cap ( Sifl, 3 SLp ) J
From a classical inequality relative to moduli (cf. [M], 7.2) we have:

which proves that Cap(Sifl,3S/,p) = rnl
p~q

n tends to zero when, p fixed, q tends to +oo.
Hence Cap(S, dSLp) = 0 in contradiction with Cap S > 0.

Application. Proof of Proposition 4.6.

As JE1 C S from (4.3),

u = extr(£, C) > extr(S, C) = v

while from Theorem 5.1, with E in place of S, Cap(£,3£L) tends to +oo when EL tends

to£.

Let write mi = infa£L u. For ail compact set L with HiD C = 0, from Lemma 3.4

and (4.3) we have Cap(£,3£L) < Cap(£,{x G M | M(JC) > mL}) = mi""Cap(£f C).

Hence m[~n tends to +OD when EL tends to £, and rrti tends to zero. As v > 0 the claim

follows.

5.2. THEOREM. — 1er S, Z be two disjoint sub-boundaries ofM with Cap S > 0,
Cap Z = 0, and Jet C be a ciosed set in M.

Then Cap(S, C) tends to zero when C tends to Z.
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Proof. — Let K be a compact set separating S from Z, Le. such that UK n Z# = 0.
From hypothesis Cap(Z, AT) = 0. Then, e > 0 given, there exists a compact set L with
Cap(ZL, AT) < f. The function uL = extr(ZL, K) satisfies uL = 0 on ZL and w/. = 1 on ~SK.
For all closed set C C ZLl the function 1 - uL belongs to A(SK, C), hence

Cap(S,C) < Cap(S*,C) < I(uL,M) = Cap(ïi, tf) < f.

The claim follows.

Remark. — The behaviour of extr(S, C) and Cap(S, C) when C tends to some
boundary Z with CapZ > 0 will follow from Theorem 6.1 if we assume that C is of the
special type C = dI.L or C = Z/..

Application to séquences of quasi conformai automorphisms.

TheoremsS.l andS.Zwillallowustoprovearesultannouncedin [F4] (Prop. II 7.5).

5.3. THEOREM. — Assume that M has exactly two ends E, F and that there exists
a séquence (fk) of K-quasiconformal automorphisms of M which c-converges to inünity.
Then Cap E = Cap F = Cap 9M = 0.

Proof. — Let H be a compact continuüm separating E from F. After extraction
of a subsequence and composition with a fixed map if necessary, we can assume that the
maps fk preserve the ends of Af. Then fk(H) tends to some end of M, let E for précision.
As fk(H) séparâtes E from H, the assumption Cap E > 0 would imply

lim Cap (E,fk(H)) = +oo

in contradiction with the estimate Cap(£,/jt(H)) < KCap(E,H) (Proposition 3.6). Con-
sequently we have Cap E = 0, hence lim Cap(F, ƒ*(/ƒ)) = 0, with Cap(F, ƒ*(#)) >
AT"1 Cap(F, H), hence Cap(F, H) = 0 and Cap F = 0.

As3M = £UFwehaveCap(3M, K) < Cap(£, AT) + Cap(F, K) = 0 for all compact
K, or, in other terms, Cap d M = 0, as claimed.

This result is particularly interesting for non-compact Lie groups equipped with a
left-invariant conformai structure (cf. § 8).

6 Condensers with both boundary components at infinity

We will now consider condensers whose boundary components are two disjoint
sub-boundaries S, Z of M and we must distinguish three cases: a) Cap S > 0, Cap Z > 0, b)
Cap S > 0, CapZ = 0, c) Cap S = CapZ = 0.
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The first case leads to an easy generalization of rings in the n-space. The two other

cases will introducé Green-type functions with pôles at infinity. In ail cases we will obtain

w-harmonic functions globally defined on ail M.

6.1. THEOREM. — Let S, Z be two disjoint sub-boundaries ofM with Cap S > 0,

CapI > 0, andletA(S,I.) be the set of functions u G H (M) which satisfy u = 0 on SL

for some choice of the compact L, u = 1 on Z^ for some choice of the compact K and

0 < u < 1 eveiywhere. Let write

Cap(S,Z) = inf
€A(S

Then there exists a unique function v E ClA(S,t) with I(v,M) = Cap(S,Z). This
function is n-harmonic with 0 < z/ < 1 on ail M and wilî be denoted extr(S, Z). h satisûes
the variational condition

(6.2) / \Vv\n-2Vv-Vwdr = O

for ail w € H (M) which vanishes on SL U Z^ for some choice ofthe compact sets K, I.

Obviously Cap (Z, S) = Cap(S,Z) and extr(Z, S) = 1 - extr(S,Z). Moreover, as an

extension of (4.3), for ail 0 < a < & < 1;

(6.3) Cap ({x e M | v(x) <<x], {x G M \ v(x) > {&)}) = (0 - oc)l'nCap(SfZ).

Proof. — The arguments are the same as for proving Theorem 4.1. As S, Z are

disjoint there exist some pairs of compact sets (K, L) with Sj, H Z^ = 0 and Cap(S, Z) =

inf Cap(Si,Z/c) is finite.

Then the claimed function v is the projective strong limit of extr(S£,ZAr) =

extx(dSL, dI.K) when SL tends to S and I.K tends to Z. As extr(Si, Z) is increasing when SL

is decreasing while extr(Sf Zj<-) is decreasing withZ*, we also have

v = extr(S,Z) = supextr(S/,,Z) = infextr(5f£jc) -
L K

As obviously 0 < v < 1, the strict inequality 0 < v < 1 follows from Har-

nack inequality. The variational condition (6.2) follows from the strong convergence of

extr(Sif Zjc) to v, and makes the proof of Proposition 2.5 given in [F3] still valid with v in

place of ut hence (6.3).

Other properties.

Let S, SOl Z, Zo be sub-boundaries of M such that So C S and Zo C Z. If S, Z are

disjoint, by an easy extension of Lemma 3.4 and Proposition 4.4 we get:

(6.4) Cap(S0,Z0)<Cap(S,Z)

(6.5) extr(S,Z0) < extr(S,Z) < extr(S0,Z).
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Behaviour of v at S and Z.

6.6. PROPOSITION. — Let S, Z be two disjoint sub-boundaries of M with Cap S > 0,
CapZ > 0. The fonction v = extr(S,Z) admits 0 for cluster value at any end E G S with
Cap E > 0, and J for cluster value at any end F G Z with Cap i7 > 0. Hence v(M) =]0,1 [.

Proof. — Let £ € S be an end with Cap E > 0. Let write i/£ = extr(£,Z) and for
any compact set L

ocL = infvEt /iL = tafi/.

From (6.5) we have v < vE, hence /i/, < aL. As dEL C {x £ M \ vE(x) > <xL} we also
have from (6.3)

Cap(£,3EL) < Cap (E,{x G M | i;£(x) > <xL}) = «[""Cap^Z) .

Now from Theorem 5.1, Cap(£, S^z.) tends to +oo when £L tends to E. It follows
that ai and ̂ //, tend to zero when EL tends to E, which proves the first assertion. By ex-
changing S and Z and using the relation extr(Z, S) = 1 - extr(S,Z) we get the second
assertion.

7. Other cases. Construction of n-harmonic functions on M

We will enlarge the problem raised in section 6 by considering the limits of con-
densers of the genera! type T(B, C) where Bt C are relative continua tending to infinity.

7.1. LEMMA. — For everypair (B, C) of relative continua in M with Cap(B, C) <
+oo let uBC be the normalized function deûned on M by

UBC = ( Cap(B, C))1/(1"w) extr(B, C).

ThenforallQ < ex <p < (Cap(Bf C))1 / (1"n) wehave:

(7.2) Cap ({Jt G M | uBC(x) < « } , {x G M | uBC(x) > )?

Moreover, ifM has at least two ends, for aU(x,y) G M2 we have

(7.3) |«BC(y) - MBcto) <

M = ^M JS theA-distance on M (cl Appendix).

Proof. — The first assertion immediately follows from Proposition 2.5. Now x, y

given, let assume uBc(y) > uBc(x) for précision and let write

Cx = {x e M | uBC(z) < uBC(x)}, Cy = {zeM\ uBC(z) > uBC(y)} .
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Then Cx and Cy are relative continua with x e Cx, y G Cy (cf. [FI]) and from

définition of À M we have AM(*,y) < Cap(Çr, Cy). On the other hand, by taking a =

UBC(X) and jS = uBc(y) in (7.2) we get

Cap(Cx, Cy) = (uBC(y) - uBC(x))l~n .

The claim follows.

7.4. COROLLARY. — Let assume thatM has at least two ends and let (Bp), (Cp) be
two séquences of relative continua converging to infinity. If the séquence (vp) = (UBP,CP)

is not c-converging to +oo, it contains a subsequence which is c-converging to a positive
n-harmonic function v deûned on ail M, possibly constant

Proof. — The topology associated with the À M-distance on any compact set K of
M agrées with the topology induced on K by the structure of manifold (cf. [FI]). The func-
tions vp are therefore equicontinuous and the claim follows from Ascoli Theorem com-
bined with (1.1).

Now we have to look for conditions ensuring that the séquence ( vp) is bounded and
that the limit functions v are not constant.

7.5. LEMMA. — Let H be a compact set ofM and let (B, C) be a pair of relative

continua with Cap(£, C) < +oo. Then

mH = infuse < Cap(B,tf)1 / (1-n) .
M

Proof. — From définition H C {x € M \ uBc(x) > mH}. If H H B ^ 0, we have
mu = 0. If H reduces to a single point Cap(fî, H) = 0. In both these cases our assertion is
trivial. In ail other cases we have

Cap(B,H) < Cap (B, {x e M \ uBC(x) > mH}) = m]fn .

The claim follows.

7.6. LEMMA. — Let S, Z be two disjoint sub-boundaries ofM, (B, C) a pair of rela-

tive continua and H, K two compact sets with B C Su, C C Sx and Su D Zjç = 0. Then

uBc andixjc = sup^ uBc satisfy

Proof. — The sets X = {x € M \ uBc(x) < mH) and Y = {x G M | uBC(x) >

/ije} are relative continua. By applying Lemma 2.4 to uBC on (M \ (SH U Z.K) it is easy to

see that X C ~SH and Y C ïjc, hence

Cap(H,K) > Cap(dSH,dïK) = Cap(SHtSK) > Cap(X, Y) = fa - mH)y-n.
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The claim follows.

Now we can prove the following basic result.

7.7. THEOREM. — Let S, Z be two disjoint sub-boundaries of M with CapZ = 0
and let (Bp), ( Cp) be two séquences of relative continua respectively converging to S, Z.

a;ifCapS> Oandif,forallp,BpisaneighborhoodofS, the séquence (vp = uBpcp)
admits a c-convergent subsequence whose limit v is positive and n-harmonic on Af. This
function v admits zero for cluster value at any end E € S with Cap E > 0, and +oo for
cluster value atZ, hence v(M) = R+.

fa; If Cap S = 0 the séquence (up = UBPCP) is C-converging to +OO. Howeverforany
fixed point a in M, the séquence (vp — vp(a)) admits a c-convergent subsequence whose
limit v is n-harmonic on M. This function v admits +oo for cluster value atZ and - oo for
cluster value at S, hence u(M) = M.

Proof.

First case. We assume that Cap S > 0 and that every Bp is a neighborhood of S.
Then for all compact set H and all end E G S with Cap E > 0, we have, from Définition 3.2,
Cap(Bp, H) > Cap(£, H) > 0. Hence from Lemma 7.5

m f I V < ( C a p ( £ , t f ) ) 1 / ( 1 - ' ° .

As the functions vp are 1-lipschitzian in the A-distance du, they also are equally
bounded on H and the first assertion in a) follows from Corollary 7.4. The limit function v
also satisfies

Then we can choose H = dEL and let EL tend to E. From Theorem 5.1 Cap(£, 3EL)
tends to +oo, hence inf^ v tends to zero, which implies that v admits zero for cluster value
at£.

Finally let H , K be two compact sets with ~SH n Z^ = 0. From Lemma 7.6 we easily
get

(7.8) supi/-infi;> (Cap(H,K))l/(l~n)

hence v is not constant. If, H fixed, Z^ tends to Z, Cap(H, K) tends to zero, hence sup -̂ v
tends to +oo, which implies that +oo is a cluster value of v at Z.

Second case. Cap S = 0. Let first suppose that the séquence (vp = UBPCP) is not c-
converging to +oo. Then there must exist a c-convergent subsequence of ( vp) whose limit
v satisfies (7.8). As Cap S = 0, Cap(H, K) tends to zero when, K fixed, H tends to S, hence
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sup v = +00, which leads to a contradiction. The séquence ( vp) is therefore c-converging

to+00.

Now, since the vp are equicontinuous, the séquence (vp — vp{a)) admits a c-
convergent subsequence whose limit v is n-harmonic on M and satisfies (7.8). Hence
easily, as in the first case, lim sup v = +00. Similarly, as Cap S — 0, Cap(H, K) tends to

zero when, K fixed, H tends to S. Hence lim inf v = — 00, which implies that — 00 is a

cluster value of v at S.

Remark. — In the first case Cap S > 0 we can also consider the functions v$c =
( Cap(S, C))1 } extr(S, C) where C is a relative continuüm converging to Z. By the
same kind of arguments we obtain:

7.9. THEOREM. — Let S, Z be two disjoint sub-boundaries ofM with Cap S > 0,
CapZ = 0, and let (Cp) be a séquence of relative continua converging to Z. Then the
séquence vs,cp admits a c-convergent subsequence whose limit v is a positive n-harmonic
function on M, admittingzero for cluster value at anyend £ G S with Cap E > 0, and +00
for cluster value atl .

8. Improvement and conclusion

Theorems 7.7 and 7.8 can be considered as extensions of Theorem 3.27 in [Hl], and
we can say that the limit function v is a Green-type function with pôle at Z if Cap S > 0
[resp. with pôles at S, Z, if Cap S = Cap Z = 0]. Our results are however less précise than
Theorem 3.27 of [Hl] in what concerns the behaviour of v at the pôles. For what concerns
the behaviour of v at S, it does not seem that we lost any précision since in [Hl] it is not
proved that the Green function g(», y) tends to zero at 3M.

We will now also generalize Lemma 4.1 in [Hl]. For brevity we shall say that a neigh-
borhood C of a sub-boundary Z of M is a r-neighborhood of Z if it is a relative continuüm.

8.1. THEOREM. — Let S, Z be two disjoint sub-boundaries ofM with Cap S > 0,
Cap Z = 0 and assume that Z = {Fx, Fz,...} is the union of an enumerable set of ends.
Then there exists a positive n-harmonic function v on M admittingzero for cluster value
at any end E G S with Cap E > 0, and +00 for cluster value at any end Fi.

Proof — For simplicity we shall use the functions vsc a s in Theorem 7.9. For ail
i e N* let y,- be a r-neighborhood of F,. Then let write y — Cl(Uyi) and Cap(S,yi) =
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r,Cap(S, y). Obviously 0 < f,- < 1 and there exists a séquence (w,) with 0 < u, < 1
oo

and k — £ Uut < +oo. We can use Theorem 5.2 for constructing a relative continuüm

C, C y,- such that Cap(S, Q) = w* Cap(S, yt). Then C = Cl(UQ) is a relative continuüm
contained in y such that for all i:

oo

Cap(S, Q) < Cap(S, C) < J^Cap(S, C,) = JfcCap(S,y) = A:Cap(S,

As extr(S, C) > extr(S, Q) we have easily

Now, for all index ï, let y;- be a séquence of r-neighborhoods of Ff converging to F„
and C, be the associated séquence in the above construction. Obviously C,- tends to FIf

and C ^ = Cl( UCf') tends to Z. By extraction of subsequences we can assume that, for
all fixed i, the séquences ( v (p) ) are c-convergent, as well as ( yç rip) ). The limit fonctions

I;,-, y satisfy y > (r,-u,-/A:)1/(/l"1) i;,-, and from Theorem 6.9, i/,- admits +cx) for cluster value
at Fu which proves that v is a desired function.

Summary. — By gathering the results of sections 6, 7, and forgetting the process
of construction of the function v we can state:

8.2. THEOREM. — Let M bea Riemannian n-manifold with at least two ends, and
let S, Z be two disjoint sub-boundaries ofM.

a) If Cap S > 0, CapZ > 0 there exists a bounded n-harmonic function v on M
which admits zero [resp. +1] for cluster value at any end E € S with Cap E > 0 [resp. any
end F e Z with Cap F > 0].

b) If Cap S > 0, Cap Z = 0 there exists a positive n-harmonic function vonM which
admits zero for cluster value at any end E e S with Cap E > 0, and +oo at any end F of a
given closed enumerable subset o/Z.

c) If Cap S = Cap Z = 0, there exists a n-harmonic function von M which admits
—oo for cluster value atS and +oo for cluster value atX.

By looking at what happens for domains of Rn it appears that such a function v is
generally not unique. However, Theorem 8.2 seems to have some interest for the classi-
fication of Riemannian manifolds in nonlinear potential theory (cf. [HR2]). Moreover by
applying this theorem to two-ended Lie groups we obtain:

8.3. THEOREM. — Let G be a Lie group with two ends E, F, equipped with a left-
invariant Riemannian metric, and n = dim G. Then there exists a n-harmonic function v
on G admitting—oo for cluster value atE and +oo for cluster value atF.
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Proof. — From Theorem 5.3, necessarily Cap E = Cap F = 0 hence we are in the
case b) of Theorem 8.2.

Finally it is perhaps also convenient to recall the following application of Theo-
rem 5.3 which has been stated in [F4],

8.4. THEOREM. — Let M be a Riemannian n-manifold with a finite number p >
2 ofends. Ifp>3, or if p = 2 with Cap 3 M ^ 0, the conformai group C(M) ofM
is compact; and more generally, for ail real K > 1, the set QK(M) of K-quasiconformal
automorphisms ofM is compact.

APPENDIX: The function AM and the associated metric

For ail non-compact Riemannian n-manifold M and ail (JC, y) G M2 we set

(1) AM(jt,y)= inf Cap(Cb,Q)
Q),Ci

where Q>, Q are relative continua with JC G Q>t y G Q (cf. [FI], [F2]). We always have
&M(x>y) > 0 but a gênerai problem is to décide whether AM(*,y) is finite when x ^ y (or,
equivalently, whether \M is not identically zero on M, cf. [F5]).

By using Theorem 3.5 we can hère prove (without using [F5]):

THEOREM A. — If M has at least two ends E,Ff\M (x, y) is finite for ail y ^ je, and
rends to zero when, x fixed, y tends to an end X with Cap X = 0. Hence du — h M is
a distance on M and, if Cap 3 M = 0, the dM -baüs are all compact.

Proof. — Let x, y be given with y ^ x. There exist two compact sets H, L such that
^ n F i = 0 and x G M \ F/,, y G M \ JË̂ . Then we can construct two compact disjoint
paths yo, Y\ resp. joining x to £# and y to Ti with y0 C M \ Fjr and yj C M \ ~ËH . From
Theorem 2.3 and Lemma 2.6, we have Cap(y0U3£w,yiU3FL) = Cap(y0U£W,yi UFL) <
+oo.

Now Q) = y0 U £/ƒ and d = y\ U F/, are relative continua resp. containing JC,

y. HenceÀM(^y) < Cap(Cb, Q) < +oo, which implies that du is a distance on M. If

y G FL wecantake Q = FIf hence AM{x>y) < Cap(y0 U dEH,TL). Then if Cap F = 0,

Cap(y0 U dEH, FL) tends to zero when FL tends to F (cf. § 3) hence lim \M(x, y) = 0. The

last assertions follow.
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