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introduction

Maximum principles play a fundamental role in the development of deep results in
Geometry and Analysis. This has been particularly useful in the study of the mean cur-
vature equation. In this work we study this equation in the hyperbolic space, presenting
some new results on the existence and uniqueness of hypersurfaces with boundary in a
hyperplane and prescribed mean curvature.

We dedicate a chapter to deduce the classical Hopf maximum principle according
to Gilbarg and Trudinger. We then use this knowledge to deduce the maximum principle
for the mean curvature equation in the hyperbolic space. In fact the proof presented can
be applied for a large class of equations, for example, for the r-mean curvature equations
in the Euclidean space.

For completeness, in the first chapter we obtain the mean curvature equation, for
horizontal and vertical graphs in the hyperbolic space.

We make use of the knowledge of the classical umbilic hypersurfaces of the hyper-
bolic space to obtain a priori estimates for solutions of the Dirichlet problem for the
mean curvature equation of horizontal graphs with zero boundary data. These estimates
are sufficient to produce strong results on existence and uniqueness of solutions for the
mentioned problem. This was done following {6] and we use the opportunity to com-
plete the details of the original proofs and correct some minor mistakes of the mentioned
paper.

We observe that hypersurfaces with constant mean curvature represent soap bub-
bles trapping some air. This physical interpretation is particularly useful when one thinks
about the existence of such objects bounding some closed hypersurface I'of a hyperplane
of the ambient space. The open set bounded by I'is a solution with zero mean curvature.
By blowing air between this soap bubble and the hyperplane (imagine the hyperplane as
the surface of some solid object and the air being blown through a small hole in this ob-
ject) one produces hypersurfaces with small constant mean curvature. It agrees with our
intuition that such hypersurfaces will be initially graphs of functions. This is indeed the
case and it follows from the implicit function theorem in the context of Banach spaces,
as we point out.

When we blow more and more air inside the soap bubble, it may evolve to become
just an embedded or even an immersed hypersurface with constant mean curvature.
And we know that the value of the mean curvature can not surpass a certain constant
value that depends on the fixed boundaryI.

From the mathematical point of view, one of the questions related to this phenome-
non is: under which conditions on H and I' one can guarantee the existence of graphs
bounding I'with mean curvature H? This has been treated by several authors. We point
out that the best results have been obtained by the application of deep theorems on Par-
tial Differential Equations and the use of Maximum Principle to produce a priori esti-
mates for the solution and for its gradient. Following the ideas produced in [6}, Theorem
(6.4) in this notes gives new contribution to answer this question.
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As a simple application of the maximum principle we present the graph lemma
(Lemma 3.3) that is a hyperbolic version of a beautiful result proved by Braga Brito and
Sa Earp in [7] on the Euclidean space.

For the existence theorems it is necessary to use some results of Schauder theory for
elliptic quasilinear second order partial differential equations. At the end of these notes,
in appendix A, an overview of this theory is presented.

The first version of this work was presented in the Escola de Geometria held in Belo
Horizonte, Brazil (July 1998).

1. The mean curvature equation for graphs in the hyperbolic space

Consider the hyperbolic space H"*! (~1) identified with half space
{(x0,...,xn) € R"™, x, > 0}

endowed with the metric

dx?. 1)

i=0

ds® =

:kwl an

If X and Y are vector fields on R™!, x,, > 0, their euclidean inner product is given by
n
X Y= Z XiYi (2)
i=0
while their hyperbolic inner product is

(X,¥)= XY 3)
X

n

Each one of these metrics give rise to a notion of covariant derivative that will be repre-
sented by Dx Y, associated to the Euclidean metric, and Vx Y, associated to the hyper-
bolic metric. These two derivatives are related, as established in the following lemma
(see [20]).

LEMMA 1.1. — (Z,VyX) = (1/x2)Z - Dy X + (1 /3)(=X[xp]Y - Z - Y [x,]1Z - X +
Z[xx1X - Y)

Proof. We know that Y(Z,X) = (VyZ,X) + (Z,VyX). On the other hand we may we
may write:

Y(Z,X) Y[(1/x3)Z - X]
-(2/)Y[x,)Z - X +

(1/2)DyZ - X+ (1/2)DyX - Z.

|
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Similar formulas can be obtained for X(Y, Z) and Z(X, Y ). It follows that

—(2/X)Y [xa)Z - X

+ (1/22)DyZ - X+ (1/x3)DyX - Z
-2/X3)X[xp)Z - Y

+ (1/2)DxZ - Y + (1/2)DxY - Z
-2/x3)Z[x,]Y - X +

(1/x2)DzY - X +(1/x2)DzX - Y

(VyZ,X)+(Z,VyX)

(VxZ,Y)+(Z,VxY)

(VzY,X)+(Y,VzX)

Adding the first two equations and subtracting the last one, we obtain:

([Y,Z1,X) +([X,Z),Y)+(Z,VyX)+(Z,VxY)
= 2/XNUZ[x,)Y - X = YIx,)Z - X = X[x,)Z - Y}
+ (1/x)DyZ - X+ (1/x3)DyX - Z+ (1/%)DxZ - Y
+ (1/X2)DxY - Z - (1/x2)DzY - X - (1/x2)DzX - Y

Using the fact that [X,Y] = VxY — VyX = DxY — Dy X we may cancel four terms in
the above equality and reach the desired result.

If M c H™!(-1) is a hypersurface, the restriction to M of the two mentioned met-
rics give rise to distinct metrics and distinct connections on M. These connections will
be represented by VxY and Dx Y . Let n and N represent vector fields normal to M. As-
sume the first is a unit vector in the euclidean sense, while the second is a unit vector in
the hyperbolic sense. Then we may assume

N=x,n.

Define
AX = -VxN.

Itis clear that, if X and Y are vector fields tangent to M, then we have:
VxY =VxY +(AX,Y)N .
Similar formula is true in the euclidean case.

Ifax: (-¢6) - M, x(0) = p, is a differentiable curve, parametrized by arclength
in the hyperbolic sense, then its normal curvature at p, in the hyperbolic sense, will be
given by:

k=(Vyo N). )]
Similarly, if 8 : (—&,&) — M, B(0) = p, is also a differentiable curve, parametrized

by arclength in the Euclidean sense, then its normal curvature in the Euclidean sense will
be:

k=DgB -n. (5)
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LEMMA 1.2. — Fora given curve in M we have k = kx,, + n,,, where n,, stands for the
last component of the vector n.

Proof. Given a curve in M, represent by T its unit tangent vector in the hyperbolic sense
and by ¢ its unit tangent vector in the euclidean sense. We then have: N = x,n, T = x,t
and (N, T) = 0. Hence:

1=(N,N)=(1/x2)n-n,
1=(T,T)=(1/x3)x%t - t.

Using Lemma 1.1 it follows that:

kK = (VrT,N)
= (1/2)DrT-N+ (1/x)N[x,T - T
= (1/x2)DypeXnt - xnn + (1/X3)xanlxn)x50 - t
= xnDit - n+tlx,)r - n+nlx,)
= Xpk + nlx,]
= xpk+n,.

This concludes the proof of the lemma.

Now, consider a hyperplane P of H"*!(—1). Parametrize this space using the hy-
perplane model in such way that P is the given by xp = 0. Given a domain Din Pand a
function u : D — R, we define the horizontal graph of u in the hyperbolic space by:

G(u) = {(u(xy,... ,xp), x1,... ,xp); (0,x1,... ,x,) € D} . (6)

Assume that u € C2(D) and represent G(u) by M. The euclidean unit normal vector to
M is given by

1
n=——';-(l,—u],...,—u,,) (7)

where u; = du/ox; and W(u) = (1 +> u,"'-’)l/2 . The unit normal vector to M in the
hyperbolic sense is then

N=xun. (8)

Represent by h and H, respectively, the mean curvatures of M in the euclidean and in
the hyperbolic sense. A simple way to compute the mean curvature in a point p is to
consider an orthonormal frame field in a neighborhood of the point and then to compute
the average of the normal curvatures in the directions of the vectors of the frame. Let
ei, ... ,en be an orthonormal frame field, in the hyperbolic sense, on M. Represent by



48 J. L. M. BARBOSA & R. SA EARP

k, the (hyperbolic) normal curvature of M in the direction of e¢;. Then we have H =
(1/n) 3" k;. By Lemma (1.2) we obtain:

EEi=x,,Zk,~+nn,,.

Hence
H=x,h+n,. 9)
Therefore

H = xph— u,/W(u) . (10)

LEMMA 1.3. — The mean curvature of hyperbolic horizontal graphs satisfy the equa-

div( vu )=i(H+ Un ) (11)
W (u) Xn W (u)

where V u represents the euclidean gradient of u.

tion

Proof. First of all we observe that for graphs in the euclidean space we have

h——l-d‘v( vu ) (12)
_nl Wu ) -~

It follows now from equation (10) the desired result.

In the literature there also exists a notion of vertical graph. One starts with a positive
function u : D — R where D is a domain of the asymptotic hyperplane x, = 0. The
euclidean graph of this function considered as a hypersurface of the hyperbolic space is
known as vertical graph. For reference on such graphs one may see [35], [36], [33], [18]
and [25].

LEMMA 1.4. — The mean curvature of hyperbolic vertical graphs satisfy the equation

i Vu _n _ 1
dw(W(u))—u(H W(u)) (13)

where V u represents the euclidean gradient of u and the euclidean normal vector was
chosentoben = W}T)(""‘O' —uy,...,—Up_1,1).

The proof is the same as the previous one just observing that now the expression
that takes the place of equation (10) is

H=uh+1/W(u). (14)
At last, there is also the notion of Killing graph, when one measures the value of

the function u along geodesics normal to the hyperplane. This has been studied, for
example, in [24], [22] and [39].
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Oliker [26]) has considered graphs over spheres in the euclidean and hyperbolic ca-
ses, when the function is measured along rays issuing from the center of the sphere.

In this last two cases, although the definitions seems more natural, the resulting
equations are much more complicated.

2. The Hopf maximum principle

In this section we will make a review of the classical maximum principle using [12]
and [27] as basic references.

Consider real functions a; j(x), b;(x) and ¢(x), 1 < i, j < n, defined and continu-
ous on a domain D of R" . Represent by L the operator

o 2
L= j——+ Y bi— +c. 15
Za”ax,'ax}' 'ax,- ¢ (15)

Assume that a; ; = a j;. We will say that L is elliptic in D when the quadratic form

QED =) aiEE; (16)
is positive on all points of D. For any elliptic operator L on D we have
Ax)IE1? < QuUEE) < A THE? a7

for a positive function A. We say that L is uniformly elliptic when A(x) is bounded away
from zero, i.e., there exists a number Ag such that A(x) = Ap > 0.

It is clear that uniformly ellipticity implies ellipticity. It is also clear that ellipticity
implies uniformly ellipticity on the interior of each compact domain contained in D.

Let f(x) be any continuous function defined on D. Next we are going to consider
solutions of the partial differential equation

Lu=f (18)

for u e C°(D) n C?(D).

THeEOREM 2.1 (Classical maximum principle). — Let L be an elliptic operator on a
bounded domain D of R". Assumec = 0 and Lu > 0 on D for a function ue C*(D) n
C%(D). Then the function u can not have a local maximum in the interior of D.

Proof. Assume there exists p € D where u attains a local maximum. At such point we
have (ou/dx;) =0,1 < i < n,and

Pu
—UE8; 0. 1
Zax,-axjg‘gf < (19)
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Since L is elliptic, we know that Q.(§,E) = 5 a;j(p)&;E; > 0for |§] > 0. Since, further-
more, (a;;) is symmetric, then we can change coordinates so that the quadratic form
Q.(&, &) can be diagonalized to become a positive sum of squares, that is, there is a sym-
metric invertible matrix G such that (aq; ;) = G' G. It follows that, at the point p,

L“'Ea”ax, _Ezaxax &igrj <0 (20)

Since by hypothesis we have Lu > 0, we reach a contradiction that proves the result.

COROLLARY 2.2. — Under the same set of hypothesis of Theorem (2.1), if Lu < 0 on D
then u can not have local. minimum in the interior of D.

CorOLLARY 2.3. — Under the same set of hypothesis of Theorem (2.1), if we assume
< 0 on D the same conclusion holds for positive local maximum.

The proof is the same with the observation that, at the point p, we have Lu — cu > 0
(since —c 2 0and u(p) > 0).

We observe that the classical maximum principle is true even when D is not
bounded and u is not even defined on 8D. This is the content of the following Propo-
sition.

PROPOSITION 2.4. — Let L be an elliptic operator on an open set D of R". Assume
¢ =0andLu > 0 on D for a function u € C>(D). Then u can not have a local maximum
in the interior of D.

Proof. Suppose u reaches a local maximum at a point p € D. Take a ball B centered at
p and properly contained in D. We then have that u|g € C>(B) n C°(8B), Lulg > 0in B
and u| g has alocal maximum at p, what is forbidden by the classical maximum principle.
This proves this proposition.

We observe that, under the hypothesis of the classical maximum principle we have

max u = max u (21)
b 3D
In fact, this equation is true for any domain B contained in D. To reach this conclusion it
is essential to have D bounded. The above equation is false otherwise, even if we change
max by sup . Take, for example, D to be the half plane y > 0in the x, y-plane and consider
the operator L= A = 5% + %. The function u = y? satisfy Lu = 2 > 0, while the values
of uin D are always greater than the value of u along aD, that is zero.

THEOREM 2.5. — Let L be an elliptic operator for which | b;| [ A is bounded for some i,
1 < i < n,inadomainD. Ifc = 0 and Lu > 0 on D for a function u € C?>(D) then for
any bounded domain Q such thatQ) C D we havemaxg u = maxaq U .
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Proof. Let Q be any bounded domain whose closure is contained in D. In Q consider the
function v = e"*!. We have

Lv = (a1 y* + biy)e"™ > (A(x)y? — bA(x)y)er™

where (ib;|/A) < by. Hence, we may choose y big so that Lv > 0. Then, foreache > 0
we have L(u + ev) > 0. By theorem (2.1) we conclude that, for each € we have:

max(u + ev) = max(u + €v) .
o) 0

Making € — 0 we conclude that maxq u = maxaq u .

REMARK 2.1. — We observe that theorem 2.5 is still true if the hypothesis about | b;| [ A
e weakened to: is bounded on each compact subset of D.

COROLLARY 2.6. — Let L be an elliptic operator for which |b;| [ A is bounded, 1 < i <
n, in a bounded domain D. Ifc < 0 and Lu > 0 on D for a function u € C°(D) n C¥(D),
we have

sup u < supu’t
D aD

where ut = max{u,0}.

Proof. Let D* = {x € D; u(x) > 0} and Ly = L — c. Assume D* = ¢. Then, on D*, we
have Lyu > —cu 2 0. Hence

supu=supu.
D* aD*

Since u € 0in D — D* and u > 0on D*. Then we have sup;, u = sup,p+ u and
supp u = supp+ 4. On the other hand, if D* = ¢ then u < 0 on D and u* = 0 on D. This
implies that supp u < 0 = supyp u™.

COROLLARY 2.7. — Let L be an elliptic operator on a bounded domain D of R". As-
sume ¢ < 0. Consider the bounded value problem:

Lu=f on D,

u=y on oD.
This problem has at most one solution on C°(D) n C?(D).

Proof. Given solutions u; and u,, define v = u; ~ u,. Observe that
Lv=0 on D,
v=0 on oD.

We have supp v < sup,p v* = 0 that implies u; < u;. Considering the function -v we
conclude that u, < u;. Hence the result.
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REMARK 2.2. — The hypothesis about c can not be omitted in Corollary 2.7 as shown
by the following example.

The boundary value problem

”

u +u=0 on {[0,2m]

u(0) =u2n)=0

has many solutions: u = ¢sin x.

LEmMA 2.8 (Hopf). — Let L bean uniformly elliptic operator with ¢ = 0 and bounded
coefficients in a domain D. Let u € C°(D) n C?(D) for which Lu > 0. Let xy € 3D be such
that

a) ueC!inx;
b) u(xg) > u(x) forallx € D; and
¢) 8D isC? on x,.

Then (3u/dn)(xg) > O wheren is the exterior normal to 3D at xy. If ¢ < 0 and u(xg) > 0
then the same conclusion holds.

Proof. Take a ball Bg(y) ¢ D such that 8Bg(y) is tangent to 8D at x3. For0 < p < Rand
o > 0, define a function

v(x) = e — g F, r=lx-yl>p.

A simple calculation yields
Lv= e_arz{40(2 Z a,j(x; —yi)(xj—yj) - 2a Z(aii+ bi(xi—y)}+cv2

e {40PA0) 7 — 203 ai+ |blr) + ¢}

Here we have used Q. (£, ) > A(x)]EI?, > bi(xi—y) < |blr,and cv 2 ce~®" . Uniform
ellipticity implies that A(x) > A¢ > 0 and by hypothesis the functions a;; b; and ¢ are
bounded. Then we conclude that

Lv> e (4rgped — Ga+ G} .

Hence we may find a positive number « so that Lv 2> 0 in the annulus 22 = {x; p <
lx — y| < R}. Since u — u(x) < 0in 3B,(y) then there exists an € > 0 such that
w = u - u(xy) + ev < 0on dB,(y). The same inequality is clearly true in 3Bg(y). It
follows from the previous result that w < 0 on.z/. We then have for ¢ < 0 that

u(xg +tn) — u(xp) vixg +tn)
2 —€ .

t t
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It follows that
ou ov
= S e .
an (x9) 2 eaf] (x0)
But
0 d
) =-2Y(R) = aeF2R> 0.
on dr

This proves the lemma.

THEOREM 2.9 (Hopf interior maximum principle). — Let L be an uniformly elliptic
operator in a domain D. Assume L(u) > 0 for a function u € C*(D). Then,

a) ifc = 0 and u attains its maximum in D then u is constant.

b) ifc < 0 and u attains its maximum in D, and this maximum is nonnegative, then
u is constant.

Proof. Assume u attains its maximum in a point xy of D. Let Q be a bounded domain
whose closure is contained in D such that xy € Q. Set M = maxp ¥ = maxq uand Q™ =
{x e Q; u(x) < M}.

Assume u is not constant in Q. Then Q~ is an open set contained in Q and 6Q~ N
Q = ¢. Choose x; € Q™ such that d(x;,0Q7) < d(x;,9Q). Consider the largest ball B
contained in Q~ centered at x,. Then 9B has a common point y with Q™ n Q. Then, we
have u(y) = M > u(x) for any point x in B. By Hopf’s lemma we have Du(y) # 0. Buty
is point of maximum for u (since u(y) = M). Therefore we have reached a contradiction.
This contradiction shows that u must be constant on Q.

Observe that we may choose Q = Qg as the set of points that are in a ball of radius R
centered in xy whose distance from 2D is larger than €. Of course, for sufficiently small £
this definition makes sense. The above conclusion yields u constant in Qp  for any value
of R and for all ¢ sufficiently small. But this clearly implies that ¥ would be constant in
D. We observe the proof works well in the (a) and (b) cases, by making use of the two
statements in the lemma (2.8).

THEOREM 2.10 (Hopf boundary maximum principle). — Let L bean uniformly ellip-
tic operator with ¢ = 0 in.a domain D with C? boundary aD. Let u € C°(D) n C?(D) for
with Lu > 0. Let xy € 8D such that

a) ueClinxy;
b) u(xg) > u(x) forallx € D; and

¢) (du/on)(xg) = O wheren is the exterior normal to 0D at x;.

Then u = u(xy). Ifc < 0, and furthermore u(xy) 2 0 then the same conclusion holds.
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Prcof. If u(xg) > u(x) for each x € D then, by the Lemma(2.8), we conclude that the
normal derivative of u at the point xp can not be zero. On the other hand, if there is a
point x in D where u(xp) = u(x) then the result follows from theorem (2.9).

This concludes the review on Hopf’s maximum principle.

3. Maximum Principle for the mean curvature equation

Let M, and M, be connected hypersurfaces in the hyperbolic space H n+1(_1) that
are tangent and have the same unit normal vector at the tangency point p. We may
choose local coordinates for the hyperbolic space so that the common tangent space at
the point pis tangent to the hyperplane P = {x; xp = 0}, and the common normal vector
is given by (1,0,... ,0). In aneighborhood of this point these hypersurfaces are horizon-
tal graphs of functions f) and f, defined over some open set D in the hyperplane P.

We say that M, lies above M, in Dif f; > f,, and we will denote thisby M, 2> M,.
With this notation the maximum principle for the mean curvature equation can be stated
as follows.

THEOREM 3.1. — (Interior maximum principle) Let My and M, be hypersurfaces of
the hyperbolic space as above. Represent by H, and H,, respectively, their mean curvatures.
In a neighborhood of a common tangent point, if we have M, 2 M, and Hy < H, then
M, = M, on the neighborhood.

It is also important to consider the case of hypersurfaces with boundary, with the
tangent point p being located at the boundary. In this case, as before, we assume that M,
and M, are tangent at the point p, and that the unit normal vectors of both hypersurfaces
agree at the point p. But we need more in this case. We also need that the boundaries oM,
and oM, are differentiable and tangent at the same point p and the interior conormals
to the boundaries, n; and nj, also agree at the point p. Under these hypothesis, one may
choose local coordinates for the hyperbolic space so that the common tangent space at
the point pis the hyperplane & = {x; xp = 0}, the common normal vector is given by
(1,0,...,0) and the common conormal is given by (0,... ,0,1). For these choices, the
hypersurfaces are given by graphs of functions f and f, defined on the closure of the
domains D; and D, of 4 such that:

1. pedDy NaDy;
2. oD, and 9D, are differentiable and tangent at p; and

3. D = D) n D, is an open set that has p at its boundary.

We say that M; > M, when fi 2 f2 on D. With this notation we may prove the
following result.
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THEOREM 3.2. — (Boundary maximum principle) Let M; and M, be hypersurfaces
with differentiable boundary in the hyperbolic space, which are tangent and have the same
unit normal at a point p of their boundaries. Assume also that, their boundaries are tan-
gent at this point. Represent by Hy, and H, , respectively, their mean curvatures. If we have
M, 2 M, and H; < H, then M, = M, on a domain D having p at its boundary.

We will be dealing, most of the time with hypersurfaces of constant mean curvature.
It is well known that such hypersurfaces are analytic. Hence, if two of them agree on
an open set then they will agree wherever they intersect. Because of that, maximum
principle is a natural tool to prove uniqueness results in the theory of constant mean
curvature hypersurfaces.

The above two theorems are consequences of Hopf’s maximum principles for ellip-
tic equations introduced in the previous chapter.

Proof (Interior Maximum Principle). We may always assume the tangent plane T,M; is
the hyperplane .# = {xo = 0}. If p= (0, x3,... ,x,) thenweseta = (x;,... ,x,). Then
M, and M; are locally represented by functions f) and f, for which fi(a) = f;(a) =0
and f; 2 f; insome open set D of .# that contains a. We also know that these functions
satisfy equation (11). We rewrite that equation in the form

F(x,q,r) = nH, 22)

where g = (q;), g; = du/dx;, r = (rij), rij= azu/ax,-ax,-, F is a smooth function defined
inD x R" x R™ given explicitly by

F(x,q,1) = -'——)r”—— (23)

h+|q‘2z l+| |2 Y ,1+iq12

and H is the hyperbolic mean curvature of the graph of u. When u = f; we will use, in
equation (22), the notation g, r’ and H;. Since we are assuming H, < H,, then we have

F(x,¢*,P)-F(x,q", ") >0. (24)
Let us now define
(t)=F(x,tg@+(1-0qg,tP+1-1r"). (25)

By the equation (24), we have a(0) < a(1). It follows from the fundamental theorem of
calculus that

1
/ or(t)dt = a(1) — x{(0) > 0
0

From this, using the chain rule we may write:

Lw —E/ - ”(E)dt w,,+Z/ —(Bdtw; >0 (26)
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where w = f, - fi, wj = dw/dxj, wi; = Pw/dx;dxjand E = E(1) = (x,t¢* + (1 -
t)g', 1 + (1 - t) r') . The left hand side of the above inequality defines an operator L
whose coefficients are

1 1
oF oF
a;j =/ —(&)dt and bj=/ —(&)dt 27)
o Orij 0o 99;
where & was defined above. These coefficients are continuous functions of x. It is easy to
see that they are bounded, a;; = aj; and the quadratic form Q; associated to the matrix
(a; ) is positive definite.

Since Lw 2 0, w(a) = 0 and w < 0in D, we are in position to apply the Hopf's
interior maximum principle to obtain w = 0 on D, thatis, f = f5, concluding the
proof.

Proof (the boundary maximum principle). This can be proved following the same ar-
gument as before, with few changes. The main difference is that the functions f; are
defined in the closure of the domain D. The point p, and so a, belongs to aD. Using the
same notation and same arguments of the previous proof, one concludes that Lw > 0
and w 2 0in D. The hypothesis about the tangent spaces of dM; implies that, besides
w(a) = 0, the derivative of w in the direction normal to the boundary of D, at the point
a, is zero. The result now follows from Hopf's boundary maximum principle.

REMARK 3.1. — The argument for the proof of the maximum principle for the mean
curvature equation, presented above, applies to a large class of equations.

Indeed, it applies to equations given by (22) for which the function F is C! in DxR"x R™"
and is elliptic in the sense that the matrix (3F /dr; ;) is positive definite. There are many
examples of elliptic equations that appear in Differential Geometry for which the above
proof applies to show they satisfy maximum principle. Examples of such equations are
the r-mean curvature equations in R” (when they are elliptic) (see [4], [22], [29] and [10]),
and the equation for special Weingarten surfaces in R® and H3 (see [8), [31], [37] and
[28]). In the case of plane curves, when the curvature takes the place of the mean cur-
vature, maximum principle and some of its applications has been presented by Sa Earp
and Toubiana in their book [34].

We conclude this section by establishing, as an application of the maximum princi-
ple, the hyperbolic version of the graph lemma proved first by Braga Brito and R. Sa Earp
in [7] on the Euclidean space.

Let & be a hyperplane of the hyperbolic space. Taking suitable coordinates we may
identify the hyperbolic space with the half space x, > 0 of R™! in such way that # is
given by xo = 0. Represent by #~ the half space xo < 0, and by #* its complement.
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If 2 is a set in .#, the cylinder over # is defined as
C(R)={(t,x1,....,X); (x1,...,Xxn) € R} .

We consider a compact embedded hypersurface M of the hyperbolic space such that
OM = M n & . Let 2 represent the region in & bounded by M. If M is transverse to &
then .22 is the union of open sets whose boundary are closed hypersurfaces of #.

LemMa 3.3 (The graph lemma). — Assume MC %~ and it is transverse to # along
oM. Assume also that M is contained in a compact constant mean curvature embedded
hypersurface M of the hyperbolic space with 0M c #*. If dM is-not contained in the
cylinder over 2 then M is a graph over a domain in .

Proof. We will use Alexandrov Reflection Principle applied to the 1-parameter family of
totally geodesic hyperplanes and will follow a plot originally executed in the euclidean
space (see [32]).

Consider a region #2(¢) obtained as the union of all balls of radius ¢ in the hy-
perplane ¥ with center in Z. Represent by C(¢) the cylinder over Z(¢). If € is suffi-
ciently small 22 (&) will be a union of disjoint open sets whose boundary are closed hy-
persurfaces of # and aM n C(e) = @. Since 3M C C(e) and dM N C(e) = @ then
(]T/f — M) n aC(¢) = ©. We consider the component of M U ((M -M)n C(s)) that
contains M and denote it by M (¢). Itis clear that oM, (&) € 2C(¢) .

Now we apply Alexandrov Reflection Principle to the hypersurface M, (¢) using the
family of hyperplanes ., = {(xp, x),... ,xp)ixp =1}, -0 <t £ 0.

For t small it is clear that # N M, (¢) = ¢. As we increase t, %, will eventually touch
M (¢). >From there on, for each ¢, we consider the reflection, with respect to &, of the
part of M, (&) below . Call this reflected surface ;.

Initially S; does not intersect M;(g) N 3. As we keep increasing t, we either reach
avalue t = g for which S, and M, (¢) n &7 are tangent, or we reach the value t = 0
without S, ever intersecting M, (¢) n %7. When a tangent point occur, it may belong
to the interior of S, or to the boundary of S;. In both cases we are in position to apply
maximum principle to conclude that S, = M) (¢) n % . But this would imply that M (¢)
is a closed compact hypersurface. This a contradiction with the fact that M, (¢) has a
boundary.

Therefore there will be no point of contact for ¢ < 0. Hence the part of M, (¢) in %
is a graph. Since 3 = # this part is exactly M. Hence M is a graph as we wished to prove.

4. Applications of the maximum principle to basic hyperbolic geometry

We start this chapter by recalling some basic facts about the hyperbolic space. Ref-
erences for the classical Hyperbolic Geometry are [34] and [3). Umbilic hypersurfaces
of the hyperbolic space are, besides the spheres, the horospheres and the equidistant



58 J.L. M. BARBOSA & R. SA EARP

hypersurfaces. A horosphere can be described as the envelope of a family of spheres
with center on a ray and passing through its origin. An equidistant hypersurface is a
connected component of the set of points equidistant from a given hyperplane. Hyper-
planes themselves are examples of equidistant hypersurfaces. At any of these umbilic
hypersurfaces, the second fundamental form is a (constant) multiple of its metric. Hence
they have constant mean curvature. In fact all its principal curvatures are equal every-
where. It is a simple exercise to verify that, properly choosing the unit normal vector,
spheres have mean curvature greater than one, horospheres have mean curvature one,
and equidistant hypersurfaces have mean curvature in the interval [0,1).

Except for the case of the hyperplane, each one of those hypersurfaces bounds ex-
actly one convex closed region of the hyperbolic space that we call its inside. If S is one
such hypersurface we will represent its inside by I(S). In the case of the hyperplane,
that bounds two convex regions, any one of them can be called the inside, it is a matter
of choice. Except for the case of the hyperplane, the mean curvature vector AN of an
umbilic hypersurface S points to its inside.

The following statement is well known and we present it here only to simplify our
reasoning in the proof of some propositions in this work. Its proof is simple and will not
be presented.

LEMMA 4.1. — Given a hyperplane P in the hyperbolic space, a point p in this hyper-
plane, and chcosing 1(P), for each positive number h there is an umbilic hypersurface of
mean curvature h contained in 1(P), tangent to the hyperplane at the given point. Fur-
thermore, for any two positive numbers hy < h,, the corresponding umbilic hypersurfaces
S) and S; satisfy 1(S;) € 1(S;).

Let Pbe a hyperplane of the hyperbolic space and D be adomain in P whose bound-
ary is a compact manifold I. Let M" be a compact manifold with smooth boundary and
x : M" — H"™1(-1) be an immersion with constant mean curvature h such that x|z
is a diffeomorphism onto I. Represent by # (h) the family of umbilic hypersurfaces S of
the hyperbolic space with mean curvature h such thatI' ¢ 1(S), and represent by #" (h)
the subfamily of & (h) consisting of the ones such that x(M) c I(S).

LEMMA 4.2. — Any one of the following conditions imply ¥ (h) = &' (h).

a) |hl <1;
b) |hl > 1and F'(h) + ¢;
c¢) |hl > 1, F(h) = ¢ and x(M) is the graph of a functiong : D — R.

Proof.

(a) Assume |h] < 1. Take S € F(h). We will show that S € #'(h). Choose any line
y perpendicular to S at a point p, and a one parameter family %(t) of rigid motions of
the hyperbolic space which acts in y as a translation in the direction opposite to the one
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of the mean curvature vector of S. This motion will translate the umbilic hypersurface
S describing a one parameter family of isometric umbilic hypersurfaces S;, all of them
perpendicular to y, that moves away from S, = S. As they do so, 1(Sp) ¢ I(S;) for
anyt > 0. Since I(¢) will grow and, as ¢ — o, it will contain any compact set of the
hyperbolic space, there is a value of ¢z, say 7, such that I(z) contains x(M) and so it
belongs to #' (h).

Now, move backwards making ¢ decrease from ¢#; to 0. If some point of x(M) lies
outside of I(S) then for some #; > 0 we will have S, N x(M) = ¢ and x(M) C I(S,).
This intersection can not include any point of T which is contained in I(S). Hence, at the
intersection points, M will be tangent to S;,. By maximum principle x(M) must then be
contained in S,,, which is impossible since the points of I'are not in S,, . Therefore, no
point of x(M) lies outside of I(S). But then, S € &' (h).

(b) Assume now |h| > 1. The elements of #(h) and of F’(h) are spheres of the
hyperbolic space. Take S € # (h). We will show that S € #'(h). By hypothesis there exists
S" € #'(h) such that x(M) is contained in the interior of I(S'). If S = S’ there is nothing
to prove. So, assume they are distinct. Let y represent the line connecting the centers
pand p’ of these two spheres. Take the 1-parameter family of rigid motions 4(z) of the
hyperbolic space which translates points along this line and moves p in the direction of
p’. The motion will translate the sphere S describing a 1-parameter family of isometric
spheres S, starting with S, = Sand S,, = S'. Fixed this notation, the proof of (b) can be
finished in the same way as we did for the proof of (a).

To prove (c) we first need to fix some notation. Assume H"*!(~1) represented by
half space model (x, > 0) where the hyperplane P is given by x5 = 0. For each sphere
Sin H"*1(~1) we consider the hemispheres T(S), and T(S), obtained by cutting S with
a suitable hyperplane xy = c. Fix one of the these hemispheres and call it simply T(S).
Denote by C(S) the set

C(S) = {(Axpg, x1,... , Xp); (X0, X3,... ,Xn) €S and Ae€R)

We observe T (S) separates C(S) in two connected components, one of which is convex.
This convex component, represented by L(S), will be called the interior of T(S). We also
observe that there is a 1-parameter family of rigid motions G(z) of the hyperbolic space
which moves the sphere S isometrically along C(S) in such way that, if ' = G(¢)S then
C(S') = C(S). In fact we may choose the parameter ¢ in such way that, if G(¢)T(S) =
T(S;) then L(S) C L(S;).

Assume that x(M) is the graph of a function g : D — R with mean curvature h. If
{h| < 1then, from (a) there is nothing to prove. So, we assume |h| > 1. Take S € F (h).
Then S is a sphere of mean curvature h containing I. We will prove that S e &’ (h). Since
x(M) is a graph over D whose boundary isT C 1(S) then x(M) c C(S). Choose one the
hemispheres T(S) of S. ThenT c L(S). Use G(t) to move way T(S) until it reaches a
position T(S’) such that x(M) c L(S’). Move backward the hemisphere. By maximum
principle, it can not touch x(M) first than S. Therefore x(M) c I(S), thatis Se F(h).
This completes the proof.
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COROLLARY 4.3. — Let P be a hyperplane of the hyperbolic space and D be a domain
in P whose boundary is a compact manifoldT. Let M™ be a compact manifold with smooth
boundaryandx : M" — H"*'(—1) bean immersion with constant mean curvature h such
that x,,,, is a diffeomorphism ontoT. If |h| < 1, or |h| > 1 and x(M) is in the interior of a
sphere of mean curvature h, or if |h| > 1, #(h) = ¢ and x(M) is a graph, then

xMyc () IS :=K(h
Se.#(h)

being K (h) a convex set. Furthermore, ifT is a sphere then there exists S € # (h) such that
K(h) = I(S) n I(S’) where S’ is the reflex of S with respect to P.

Itis convenient to introduce the following definition. Let hy be a positive number. A
C? hypersurface I' of a hyperplane of the hyperbolic space is hg-convex if all its principal
curvatures are greater than or equal to hyg.

PROPOSITION 4.4. — If a closed compact hypersurface T of a hyperplane P is hgy-
convex then, for each h such that |h| < hy, we have # (h) + ¢.

Proof. Since I'is a compact closed hypersurface of P then there exists an sphere with
mean curvature close to one that contains I. We may then consider the smallest sphere
S containingI. Let h; represent the mean curvature of S. We claim that h; > hg. This
is clear if hy < 1. So we assume hy > 1. Since S is the smallest sphere containing I’
then S must be tangent to I'in more then one point. Furthermore such points must be
so located that any closed hemisphere of S contains at least one of such points, that is,
if we cut S by any hyperplane L containing its center, any of the closed hemispheres so
determined must contain at least one of the tangency points. (Indeed, if not, we could
translate the sphere by moving its center, a little bit, along a line perpendicular to L, to
a position where there is no tangency points, showing that S is not the smallest sphere
containingT.) It follows that there is at least one closed hemisphere of S containing more
than one tangency point. Let p and g be such points. Cut I' with the 2-dimensional
plane determined by p, g and the center of S. The curve «, so obtained, being a curve
of I, must have normal curvature larger than or equal to k. In this plane take the line
! perpendicular to the segment pgq at its center. Consider then the family of circles in
this plane, with center in the line ! and curvature h;. One of such circles, say C, will be
tangent to an arc of «, joining p to g, at a point different from p or g. By the maximum
principle for plane curves we have to conclude that h; > hy, that is, the sphere S has
mean curvature larger than or equal to hy. Consequently, for any number h, with |h| <
hy there is an umbilic hypersurface with mean curvature h containingT.

We are now in position to prove the following lemma.

LEMMA 4.5. — IfT is hy-convex and hg > |h| thenT C 0K(h) and, forany p € T,
thereare S,S’ € F(h) such that:

i) §5=SnP=SnP>p;
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ii) (8) >D;
iii) § is umbilic (in P) with mean curvature hy.

iv) SandS' make with P at the point p an acute angle 0 that depends only on the values
of hand hy.

Proof. We know that T ¢ K (h). To show thatT ¢ 8K (h) it is sufficient to show that, for
each p € I'there exists S € F(h) such that p € S = 21(S). To show this, we first observe
that, sinceT'is hy-convex with hy > hthen, given any point p of I, there exists an umbilic
hypersurface $ of the hyperplane P, with mean curvature hy, that is tangent to I'at the
point p and such thatT ¢ 1(S). Since hy > h then, there are exactly two elements S, S’
of # (h) whose intersection with P is S. Using them we conclude the proof of the lemma.
We observe that the value of tané can be explicitly computed in terms of h and hy by
using classical hyperbolic geometry.

5. Height and gradient estimates

Assume H™!(-1) represented by the half space model. Consider a hyperplane P
in the hyperbolic space H"*!(~1). Let D be a domain in P whose boundary is a closed
differentiable manifold I. Represent by D the closure of D.

In what follows we will deal with the notion of horizontal graph in the hyperbolic
space over the domain D. To study them we will consider the half space model in which
the hyperbolic space is identified with the half space

{(x0.... ,Xp) € R x, > 0},
of the Euclidean space, endowed with the metric
1<
ds® = > > dx (28)
n =0
in such way that the hyperplane P is identified with the subset x; = 0.

The horizontal graph of a function g : D — R in the hyperbolic space is defined as
the set:

G(g) = {(g(x1,... v Xn)X1,... ,Xp); (0, X1,... ,X,) € D} . (29)

Givena C** functionh: D — R, k > 1,0 < & < 1, we want to investigate the existence
of a C¥*22 function g : D — R, with gir = 0, whose graph has mean curvature h. This
means to find a solution to the following Dirichlet problem:

. Vg n 8n
= e -+ ,
div (W(g)) Xn (h W(g)) on D

g=0 along T.

(303



62 J.L. M. BARBOSA & R. SA EARP

n 1/2
where W (g) = (1+ng) .
i=1

To solve this Dirichlet problem we plan to use Theorem (A.7) of the Appendix. For
that we need to have a priori bounds for any solution of this problem and for its gradient.
We consider first the case h = constant.

PROPOSITION 5.1. — Assume that the boundary T of the domain D is hy-convex. If
g: D — Risasolution of (30) for constant h and | h| < hy then there exist numbers ¢, and
c2, depending only onT, such that, for any point in D,

a) lgl<a,

b) IVgl < c2.

Proof. By Corollary (4.3)

graphofgc () I(S)=K(h hy).
S € .F(h)

Therefore g is bounded and the bound depends only on I. By Lemma (4.5) we know
thatT € 8K (h, hy) and that |Vg| < tg6 where tgé = f(h, hgy) is a number that can be
explicitly determined by classical hyperbolic geometry. Therefore, we have |Vg| < ¢
alongT.

To conclude the proof we need the following lemma

LEMMA 5.2. — Let D be as beforeand h : D — R be a C** function. Consider the

Sfollowing problem
Vu n u
di =—|h+ — ,
at (W(u)) x, ( W(u)) on D

u=f on the boundary of D .

Suppose there exist two numbers ¢, and c; such that, for any C%% (0 < & < 1) solution u
of this problem, |u|l < ¢ on D and |Vu| < c¢; ondD. Then there is a number c;3 such that
|IVul < cgonD.

Proof. This lemma was proved in {23]. For completeness we present that proof here. We
start by observing that if H € C"*(D) and u € C>*(D) is a solution of the above problem
then u is a solution of an elliptic partial differential equation of second order whose coef-
ficients are of class C!**(D). It follows from the regularity theory for such equations that,
in fact, u € C3*(D) (see, for example, [12) Theorem 6.17).

To estimate |V u| in D we shall obtain a priori bound for z = |Vule*” where A is a
positive constant to be chosen later.
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If z achieves its maximum on 8D then, by the estimates in the hypothesis, we are
done. So we will assume z has its maximum at a point x € D.

Up to an orthogonal change of coordinates in the Euclidean space, we may assume
that |Vu(x)| = u;(x) > 0, and so u(x) = 0 for k > 1. As x is the point of maximum for
z, it is a maximum for the function In(z) = Au + In|Vul. It follows that at x

U
;‘+Auk=0 for k=1,...,n.
u

Hence

un=-Auf, and u;, =0 for k=2,...,n. (31)

Furthermore, at x, we have %5 < 0. A simple computation yields
k

Pz _ o D Wit T w0 )’ 32
ox Kk IVul? IV ul®
This derivative computed at the point x yields
azlnz U ufl
= Aupy+— - —
BXf (x) 1 u Uf
2’1 1 Ui
T = Auwt— S e+ 2 for k>0
oxy uy i1 u)
Using (31) it follows from this that
un € 2A%43,  and u € ~Auwu k=2,...,n. (33)

We remark that u, [Vu| and div(Vu/W (u)) are invariant by an orthogonal transforma-
tion of # but Vu is not. Hence, under an orthogonal transformations the mean cur-
vature equation changes. Let O be the matrix of the rotation and let oy,... , &, be the
coefficients of the lastline of O (o < 1, k = 1,..., n); the mean curvature equation in
the rotated coordinates (that we still denote by (x;,... ,x,)) is

. Vu\_ n 3 opug
dlv(W(u)) = T (H(x)+ W ) . (34)

Denote by ¥ € C' (D x R x R?) the second term of this equation. Then

n
> aijuij =YW w3, (35)
i j=1
where a;; = W(u)?8;; - ujujfor i, j = 1,...,n. By differentiating equation (35) with
respect to x; and calculating it at x we have

oY
un+(1+ Uf) E Wk +2uyuy Z Upi = 3W (W up ¥+ W(u)a— .

ox
k>1 k>1 1
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Before proceeding, we observe that the equation (35) at the point x simplifies to

; e = YW ) = St (36)
Substitution of the equations (31), (33) and (36) in this equation yields,
2 40— 1) +AYuy W) 2 < LAy (37)
(u? +1)5/2 ox)

On the other hand, from its definition, the derivative of ¥ with respect to x,, at x, is given

b 4 no; u o n Ao
ox) (X &ix;)? W) 3 apxi W(u)
where H and H, are the values at x of the mean curvature function and its derivative,
respectively, and we have used (31) in the last term. Set s = 3 «;x;. Now, by substituting

the value of ;T": in the equation (37) and used the definition of ¥ computed at the point
X, we obtain

2us(ud=1)  nAHw _ nHey nH, . nuy o ? 38
(B +1)5/2 ° sW(u)? =~ 2 s SSW(u)

We remark tha: the inequality
<1/2 (39)

yields a bound for u;, and hence for max|Vule#“. By equation (38), inequality (39) is
implied by

l( nAHu, nHay, nH, nu,cxlz) 1
sW (u)? s? s S2W (u)

o < 5 (40)

Thus, to complete the proof it is sufficient to find a constant A such that inequality (40)
holds. Now, let A = infy¢q |x] and

n n n n
K=max{ﬁsglel+nglexl+ﬁ, ngplﬁl}

By a straightforward computation we have thatif A > K + VK2 + 2K then equation (40)
and so (39) holds. We remark that A does not depend on u.

COROLLARY 5.3. — Let D and h be as before. Consider the following Dirichlet problem

. Vu \ _nflo) Un
div (W(u))— -~ (g(a')h+w(u)) on D,

u=0 on the boundary of D .
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where f,g: [0,1] ~ Rarefunctions satisfying| f (0)| € a, |1g(0)| € a; foranyo € [0,1].
Suppose there exist two positive constants c, and c; such that, for any u € C** solution of
this problem, we have lul < ¢y on D and |Vul < ¢; on dD. Then there is a number c3
such that|Vu| < ¢3 on D.

Proof. The proof of this corollary is the same as the proof of the Lemma (5.2).

PROPOSITION 5.4. — Assume that 3D is hy-convex with hy > a. If, for a C*** function
h:D — [-a,al,0 < & < 1, u is a C*>* solution of (30) in D, then there exist numbers ¢,
and c,, depending only on dD, such that, for any point in this domain,

a) lul<q,

b) IVuI < C .

Proof. The proof is just an application of the maximum principle using the same argu-
ment done in Lemma 4.2 to compare solutions u with mean curvature h with the ones
with mean curvature a, say g and —g, where u and g are defined on D and are zero at its
boundary. The conclusion is that

lul< g

and we are in position to use the estimates obtained in the previous proposition and the
previous lemma to conclude the proof.

6. Existence results

We begin stating two existence results that are an immediate consequence of the
implicit function theorem (See Theorem A.9).

PROPOSITION 6.1. — Let D be a bounded domain in R” withdD =T € C**“ for some
o, 0 < a < 1. Then, there exists a positive constant ¢ = &(D), such that, if h satisfies
0 < h < &, the Dirichlet problem for the euclidean constant mean curvature h,

diu( Vu) = h on D
W (u) " "

u 0 along T

is uniquely solvable for u € C**(Q}).

PROPOSITION 6.2. — Let D be a bounded domain in # with oD =T € C** for some
«, 0 < o < 1. Then, there exists a positive constant n = n(D), such that, if H satisfies
0 < H < n, the Dirichlet problem for the hyperbolic constant mean curvature H,
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diu( vu ) = L+ 22 ) on D
W (u) Xn W(u)
u = 0 along T

is uniquely solvable for u € C%*()).

This result does show that, for any domain D in the hyperplane # and values of H
close to zero, there is a function u defined in D, whose graph has constant mean cur-
vature H. We are interested in the existence of such a solution u when H is not close to
zero. For that it is natural to consider domains D convex in some sense.

THEOREM 6.3. — Let D be a bounded domain in a hyperplane of H"*'(~1) whose
boundary is an hy-convex, C** closed manifold, for some0 < o« < 1, withhy > a 2 1.
Forany C'* function h : D — [-a, a), there always exists a C** function u : D — R, that
is zero on 9D, whose graph is a hypersurface of mean curvature h in the hyperbolic space.

Proof. For any C2* function u defined on D, and any number o in the interval [0, 1],

define the operator
. Vu no Up
h,u) = -—— | h+
Qo (h, u) le( (u)) x (h (u)) 41

and consider the family of Dirichlet problems in D given by

Qo(h,u)y=0 on D,
{ u=0 along aD. 42)
We observe that the graph of a solution of this problem has mean curvature
ho = Ch+ (0 = 1)—2 (43)

W(u)

and that
lhgl K ca+l1-o0<a.

Here we have used a 2> 1. It follows from Proposition (5.4) that there exist a priori bounds
for any solution u of (42) and its gradient.

Observe that
Qo =) a;j(Dw)u;;+ b(x, Du; 0) ,

where { wu o
iuj Up
%= W 0T W' & =
It is clear that ) _ a; juij is elliptic and that b(x, Du;0) = 0. Furthermore, the other hy-
pothesis of Theorem (A.7) are satisfied. Therefore, the existence of a priori bounds for u
and Vu, independent of o, implies the solvability of (42). This proves the theorem.

).
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This result tell us that, if D is sufficiently convex, say hy-convex with hy > 1, then
there exist functions, that are zero at the boundary of D, whose graphs have prescribed
mean curvature H, provided |H| < hy.

The restriction hy > 1 is a somewhat strong restriction on D. It would be nice if the
previous result would be true without this restriction. The next theorem improves the
result in this direction.

Before stating the theorem we set some notation. Given a bounded domain D in ¥
we represent by £(D) the value of ¢ obtained in Proposition (6.1) and set

C(D)=1-&(D) irl_;fx,. . (44)

THEOREM 6.4. — Let D be a bounded domain in % whose boundary is an hy- convex,
C?* closed manifold, for some0 < « < 1, with hy > C(D). Let H € C'*(D) be a real
function satisfying |H| < hy. Then there exists a function u € C*>*(D) that is zero on 9D
and whose graph has prescribed mean curvature H.

Proof. If hy > 1, this theorem reduces to the previous result. So, we will assume hy < 1.
Choose a number a such that

max{C(D),mglel} <a<h<1l. (45)

This is possible since C(D) < 1, |H| < hgand C(D) < hy £ 1.
Choose b € (0, 1) and define functions f,g:[0,1] — [0,1] by:

oc(l-a)/b if 0<o<b,
flo) = (46)
(1-a)1-b)/(1-b-aoc+ab) if pb<o<1l,
and
0 if 0<o<b,
glo) = (47)

(c-b)/(-b) if p<o<1l.

Observe that, for our choices of a and b these functions are continuous, piecewise
smooth and «-Hoélder continuous.

For any C>* function u defined on D, and any number o in the interval [0, 1], define
the operator

v
.‘.'la(H,u):div( “ )—- nflo)

Un
Wi (g(a) H+ ) , (48)

W (u)

Xn

and consider the family of Dirichlet problems in D given by

{ Q,(H,u)=0 on D, 49)

u=0 in oD.
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A simple calculation shows that the mean curvature H, of the graph of an arbitrary
solution u of the problem (49), satisfies

u"
= —_— - . 50
H, = f(o)glo)H + Wi )(f(a') 1) (50)

When b < o < 1 we maywrite f(o) = (1 - a)/(1 - ag(o)). Since0 < f(o) € 1and
|H| £ athen, for o > b, we obtain:
[Hl, < f(o)glala+1- f(o)
= f(o)(glola-11+1 (51)
= —-(1-a)+1

= a.
We now can apply Proposition (5.4) to get, when o 2 b, heightand gradient a priori
estimates for the solutions of the problem (49).

If 0 < o < bthenitis easy to see that the euclidean mean curvature, say Hgn+1, of
graph of u verifies

l V n
Hpnor = —div( - )= floun (52)
n W(u) xpnW(u)
When o < bwehave f(o) < 1 - a,then
1~
Hper| < 5= o, (53)
infp x,

where, to prove the last inequality, we have used equations (44) and (45). It follows from
Theorem (6.1) the existence of functions that are zero at dD and whose graphs have con-
stant mean curvature h = (1 — a)/ infp x,,. These graphs can be used as "barriers" to
produce height and gradient at the boundary a priori estimates of solutions of the prob-
lem (49). It is then a consequence of Lemma (5.2) the existence of C! estimates of that
problem.

The proof of the theorem can now be concluded in the same way as we did in the
proof of the previous theorem.

7. Main uniqueness result

Combining Theorem 6.3 with the Flux Formula (see appendix B) we derive the fol-
lowing uniqueness theorem.

THEOREM 7.1. — Let P be a hyperplane of H™'(~1) and D a domain of P whose
boundary is a smooth manifoldT which is hy-convex. Let M be a compact connected n-
dimensional manifold with smooth boundary oM and x : M — H"*'(-1) an immersion
with mean curvature H such that x| is a diffeomorphism onto T. Assume H is constant
or is the restriction of a smooth function defined on a domain of H™'(-1) which depends
only on the variables x,, . .. , x, and that one of the following two conditions hold:
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a) 0<|H|I<landhy > 1,

b) hy > 1, hy > |H| > 0 and x(M) is contained in an open ball of the hyperbolic
space whose boundary is a sphere of mean curvature hy;

Then x(M) is the graph of a function g : D — R given by Theorem 6.3.

This theorem was proved in [6].

Proof. We start by repeating the argument done in the proof of Proposition (5.1). By
Corollary (4.3)
graphofgc () I(S)=K(hh).
S€ Fth
Therefore g is bounded and the bound depends only on I. By Lemma (4.5) we know
thatT C 9K (h, hy) and that [Vg| < tg6 where tgd = f (h, hy) is a number that can be
explicitly determined by classical hyperbolic geometry.

Now, according to Theorem(6.3) there exists a function f : D — R, which is zero at
the boundary I' of D, whese graph G( f) is a hypersurface of prescribed mean curvature
Hin H™(-1).

We translate G( f) perpendicularly and away from the hyperplane P until G( f) is
disjoint from x(M). Then we translate it backward until a first contact point is reached.
This point will be an interior point for both surfaces unless x(M) lies bellow G( f). In the
case of an interior point the normals given by the normalized mean curvature vectors
have to agree, by the maximum principle.

More precisely, as the mean curvature of these graphs are positive everywhere, the
mean curvature vector of such graphs (think at a highest point) during this backward
movement, is pointing into the direction of P, forcing that the normals of M and the
graph agree at the interior tangent point of contact.

Using again the maximum principle we conclude that x(M) is the graph of f. We
repeat the same argument using now the function — f. The conclusion is that x(M) is
either the graph of f or - f unless it is contained in the region bounded by the graphs of
these two functions. These two graphs and x(#/) have the same mean curvature H and
these three surfaces have the same boundary: I.

Set n, n; and n; to be, respectively, the inward unit normal vectors, along the bound-
ary, of x(M), G( f) and G(- f). If Y is any vector field normal to P then, at each point of
T, the number (Y, n) will lie between (Y, n;) and (Y, n;). Wechoose Y = J = (1,0, ...,0).
For this choice of Y we may apply the Corollary of the flux formula to M, G( f) and
G(-f).

Since the right hand side of that formula will be the same for these surfaces (even
if H # constant in our hypothesis), then so do the left hand side. But, this implies that
(Y, n) has to agree with either (Y, n,) or (Y, nz). But then, by the boundary maximum
principle, x(M) must coincide with either G( f) or G(- f). This finishes the proof of the
theorem.
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This theorem tell us that, under our hypothesis, we have uniqueness of solution to
the problem of finding an immersed hypersurface with constant mean curvature whose
boundary lies in a hyperplane. In particular, under the same hypothesis we have unique-
ness of solution for the Dirichlet problem set by Equation (30).

Simple examples of graphs in the hyperbolic space are the geodesic disks of umbilic
hypersurfaces (spheres, horospheres and equidistant hypersurfaces). We observe that
when the ambient space is the Euclidean space, for each sphere of radius one in a hyper-
plane, there exist at least two hypersurfaces with constant mean curvature h < 1 having
the sphere as its boundary, namely: the two spherical caps of a sphere of radius 1/|h|.
These two caps are distinct submanifolds with the exception for the case |h| = 1.

During a certain time it was asked if these were the only examples of hypersurfaces
M whose boundary is a sphere of radius one of a hyperplane. Barbosa [3] has shown that
this is the case if we assume that M is contained in a cylinder of radius 1/| h|. Kapouleas
[14] has proved the existence of surfaces of genus greater than two, immersed in R, with
constant mean curvature whose boundary is a plane circle. Braga Brito and Sa Earp [7),
considering the case of surfaces in R® proved that the hemisphere is the only surface with
{hl = 1 whose boundary is a circle of radius one. Related results can be found in [9], [19]
and [30]. The following corollary was proved in [6].

COROLLARY 7.2. — Let M be a compact connected n-dimensional manifold with
smooth boundary dM and x : M"™ — H™(-1) be an immersion with constant mean
curvature h whose boundary is a sphere S"~' (1) of a hyperplane of the hyperbolic space.

a) If h = 0 then M is the geodesic ball D bounded by "~ (1);

b) If0 < !h| < 1 then M is a geodesic disk of an equidistant hypersurface;

c) Iflh| = 1 then M is a geodesic disk of a horosphere; and

d) If|hl > 1 and M is contained in a ball of radius r with cothr = |h| then M isa

geodesic disk of a sphere.

There are several papers with related results. This is the case of the works (21}, [17],
[24], [37) and [35].

A. An overview of Schauder’s theory and implicit function theorem

The purpose of this section is to summarize some fundamental results on ellip-
tic quasilinear second order PDE that are used in these notes. We will give a sketch of
Schauder’s theory in according to Gilbarg-Trudinger [12], which is a well-known treatise
on this subject, and [13].

Terminology (Holder spaces). Let Q be a set in R"*! and f be a function defined on Q.
For0 < o < 1,itis said that f is Holder continuous with exponent « in  if the quantity
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[f]a;ﬂ = sup M (54)
X.yEQ x=y lx =yl

is finite. Let now Q be a open set in R"*!. The Holder spaces C¥*(2) and C**(Q) are de-
fined as the subspaces of C¥(Q2) and C*(Q), respectively, consisting of functions u whose
k-th order partial derivatives are Holder continuous with exponent o in Q.

We observe that for open bounded domains the Holder space C>*(Q) is a Banach
space equipped with the norm

Iulz;a:=mf_§iXIul+E mﬁaxlu;I+§ m(_?xlu.-jl+z [uijlaa
i ij ij

and C*(Q) is a Banach space with the norm |ul, = maxg lul + [ u s . We also note
that the product of Hoélder continuous function is still Hoélder continuous, ie. if u €
C*(Q), v € CF(Q) we have uv € C™"*8) For simplicity we denote C** = C* .

Let us now state some results of second order linear elliptic Schauder’s theory that
are crucial for the existence of the Dirichlet problem that we will focus later. Consider
the linear elliptic second order operator

Lu=Y_ aj(x)D;ju+y byx)Dju+cx)u,  ay;=aj; (55)

whose coefficients are defined in an open set Q@ ¢ R™!. The operator L satisfies the
strictly ellipticity condition if and only if

> a(0EE; 2 AE?  VxeQ, EeR" (56)
forsomeA > 0.

Set
{Dulo.q' = E sup |u;l ,
- o
1

and
IDZUIQ;Q’ = E sup |u;jl, [Dzu]a;n' = E [uijlacq -
o

ij ij
The following result is known as the fundamental Schauder interior estimate:

THEOREMA.l. — Let u € C>*(Q) and f € C*(). Consider the equation Lu = f
in a bounded domain Q where L satisfies 56 and its coefficients are in C*(Q). Then, if
Q' c c Qwithdist(Q',0Q) > d, there is a constant C such that
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d|Dulg,q + d?|D?ulg.q + d*** [ D?uleor < Clulga+ 1 flocq) (57)

where C depends on the ellipticity constant A, the C*(S) norms of the coefficients of L, as
well on n, «, and the diameter of Q.

The next result is known as a priori global Schauder estimate.

THEOREM A.2. — Let Q be a C** domain in R" and let u € C**(Q), be a solution
of Lu= f inQ where f € C*(Q). Suppose L satisfies 56 and its coefficients satisfy, for a
positive constant A,

laijlo.;a < A, Ibilo,ac < A, [clo.ao S A.

Let p(x) € C*>*(Q), and suppose u = ¢ on dQ. Then
lulz, 0 € Clulg,a + 1Pl 00+ 1 flo.a;0) (58)

whereC = C(n, o, A, A, Q).

It follows from this theorem that, to obtain global estimates in the linear theory,
there is no need to require a condition on the sign of the constant ¢ in the definition of
L, see 55. Those estimates are basic to the geometrical approach of nonlinear elliptic
equations that arise from Differential Geometry (See, for instance [6}, (10}, [23)}).

THEOREM A.3. — Let L be strictly elliptic in a bounded domain Q, with ¢ < 0, and
assume f and the coefficients of L belong to C*(Q). Suppose that Q is a C** domain and
that ¢ € C>*(Q). Then the Dirichlet problem,

Lu=f in Q, u=¢ on 29, (59)

has a (unique) solution which belongs to C**(<)).

We now set the interior and global Holder estimates for the first derivatives of a
solution of a quasilinear elliptic equation in divergence form. We will consider elliptic
operators

2u = divA(Du) + B(x, u, Du) (60)

where the vector function A € C'(Q x R x R") and B € C°(Q x R x R").

We write p=(py,..., pa) = (u3,... , up) == Duand z = u, as usual in PDE theory.
Observe that divA (Du) has a second order term of the form )_ a; j(Du)D; ju. For this
termz a;j(PE&Ej 2 A(p)IEIZ. VE € R".
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Suppose there exist constants Ag, Ak, ux such that
Ax 2 D, Al(p)]
vk 2 |B(x,z,p)l,
VxeQ, lzl+|pl <K, i, j=1,...,n
THEOREM A.4 (Ladyzhenskaya and Ural'tseva interior estimates). — Let ueC?*(Q)
satisfy Z2u = 0 in Q where 2 is elliptic in Q and is of divergence form (see equation (60))
withA € C1(Q x R x R"), B € C%(Q x R x R"). Then, forany Q' c ¢ Q we have the
estimate
[Du), oy <Cd™* (61)

where

O
|

C(n, K, AK/AK, UK/AKu diam Q),
luly;q = sup(ul + |Dul),
Q

=
]

dist(Q',9Q) and o= a(n, Ax/Ag) > 0.

To conclude we now give the global Hélder estimates of Ladyzhenskaya and
Ural'tseva

THEOREM A.5. — Let u € C?(Q) satisfy 2u = 0 inQ where 2 is elliptic in Q and is of
divergence form(see equation (60)) withA € C'(Qx Rx R"), B € C°(Q x R x R"). Then
ifoQ € C? and u = ¢ on 3Q we have the estimate

[Dulaa<C (62)

where

C C(n, K, AK/AK, ”K/AKr Q; (l)),
K = Iull,np
o {plan and o= a(n, Ag/Ak, Q) > 0.

We recall that a continuous mapping between two Banach spaces is compact or
completely continuous if the images of bounded sets are precompact, i.e. their closures
are compact.

THEOREM A.6. — (Leray-Schauder fixed point theorem) Let 8 be a Banach space and
let T be a continuous mapping of #8 x [0,1] into 28 such that T (x,0) = 0 forallx € 2.
Suppose there exists a constant C such that

lixllz < C

forall (x,0) € # x [0,1] satisfying x = T(x,0). Then the mapping T, of % into itself
given by Ty (x) = T(x, 1) has a fixed point.
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The next result is well known. We state it and prove it here.

THEOREM A.7. — Let Q be a bounded domain in R" with boundary 3Q € C** and
letp € C>*(Q). Let 2,, 0 < o < 1, bea family of elliptic operators in divergence form
(see 60) such that

2, = Y a;j(DwDiju+bx, u, Du;0)=0  inQ
u = o¢p ond, 0<o<Kl.

Assume that

(i) &y =2andb(x,z, p0) =0;
(ii) the operators 2, are elliptic inQ forall o € [0,1]);

(iii) a;; € C1(Q2x Rx R") and b € C*(£2 x R x R") for each o € [0, 1) and considered
as maps from [0,1] into C*(Q x R X R"), they are continuous.

If there exists a constant C, independent of u and o, such that every C* *(Q) solution
of the Dirichlet problem 2, = 0inQ, u = o¢ onoQ,

0 < 0 < 1, satisfies

Hulleigy = sup lul +sup |Dul < C,
Q o

then the Dirichlet problem 2u = 0 inQ, u = ¢ on 3Q is solvable in C*>*().

Proof. The proof will be based on classical arguments involving linear theory, Schauder’s
estimates and Leray-Schauder fixed point theorem (See [12)).

Consider the following family of linear Dirichlet problems:

S a;;(Dv)D,ju+bx,v,Dr;0) = 0 in Q
u = o¢ on 9.

Define an operator T : C'# x [0,1] — C%*#(Q) by setting u = T (v, o) be the unique
solution of the above problem for given (v, o). Existence and uniqueness of u is ensured
by Theorem A.3. Clearly, the solvability of the Dirichlet problem 2u = 0in, u = ¢ on
2Q, in the space C*>*(Q) is equivalent to the solvability of the equation u = T(,1) in
cl8(Q), with T(1,0) = 0, Vv € C#(Q). We now note that by virtue of global Hélder
estimates of Ladyzhenskaya and Ural'tseva, (see Theorem A.5), in order to apply Theo-
rem A.6 to prove Theorem A.7 we just need to show T is continuous and compact. Notice
now that the fact that T maps bounded sets in C!'#(Q) into bounded sets in C**#(Q)) isa
consequence of global Schauder estimates (see Theorem A.2). It turns out that C>*8((})
is precompact in C%(Q}) and C"#(}), by Arzela’s theorem. The continuity of T follows
now from his definition.
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Let 98, and ., be Banach spaces and let E( .48,, %, ) denote the Banach space of
bounded linear mappings from 43, into %, with norm given by

[1Lv|].2,

LI =
vesmv=0 HVllzg

If 8, 98, and X are Banach spacesand G : #; x X — 9, is (Fréchet) differentiable at a

point (u,0),u € #,,0 € X, then the partial derivatives, G,(u, o) and Gx(u, o) are the
bounded linear mappings from 48, X, respectively, into 98, defined by

DGy0)(h, k) = Gy(u,0)(h) + G (u, o) (k)

for h € #,, k € X, where DG means the (Fréchet) derivative of G. The following useful
criterion of differentiability is obtained by straightforward computations in [13] (This is
an exercise in {12]).

PrROPOSITIONA.8. — Let 2[ u] = divA(Du)+B(x, u, Du) = 0 bean elliptic equation
where 2 = 2 (x, u, Du, D? u) is a differentiable function on the setT = Q x R x R" x R™".
Then the operator 2 is Fréchet (continuously) differentiable as a mapping from C%*(Q)
into C>*(Q), forany & < 1, if the function F = 2(x,z, p, q) € C*~(D.

We now state the implicit function theorem.

THEOREM A.9. — Let %3, %3, and X be Banach spaces and G a mapping from an open
subset of 8, x X into ;. let (uy, 0p) be a point in B, x X satisfying:

1) Glup, 09} =0;
ii) G is continuously differentiable at (ug, 0¢);
iii) the partial derivative L = G, (ug, 0y) Is invertible.
Then there exists a neighborhood % of o in X such that the equation
Gl u,0] =0, is solvable for each o € %, with solution u = u, € 2.
Consider fully nonlinear strictly elliptic equations of the form
Flul=F{x,Du,D*u) =0

where F is a smooth real function on the set I' = Q x R" x R™". We observe that,
if F is not depending on u, the linearized operator L = F, restricted to the subspace
# ={ueC**Q)u=0 on aQ}isinvertible, forany u € C>*(Q) provided L = F,
is strictly elliptic and aQ is C%* (See Theorem A.3).
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B. The Flux Formula

Robert Kusner [16] in his doctoral thesis, has proved the so called Flux Formula for
constant mean curvature immersed hypersurfaces. This has been applied (and redis-
covered) to obtzin several results in the theory. It has been used to treat problems in the
hyperbolic space in (21}, [15] and [23]). We have generalized Kusner result in [6] for the
case of nonconstant mean curvature in a form suitable to prove a uniqueness theorem
for prescribed mean curvature hypersurfaces.

Let M™ and D be n-dimensional compact manifolds (not necessarily connected)
with smooth boundaries 9M and aD. Let U ™! be an orientable piecewise smooth, com-
pact, connected manifold with boundary 09U = M + D (as an equation on n-chains), and
M"*! be an orientable Riemannian manifold. Assume there exists a continuous map
@ : U — M which is an isometric immersion whenever U is smooth, in particular being
smooth on D and M.

Lemma B.1 (Flux Formula). — Let Y be a Killing vector field on Mand let h be a real
smooth function which is constant along the trajectories of Y . Under the hypothesis of the
above paragraph, ifx = @iy : M = M has mean curvature h(x), then:

/ (Y,n) = n/ h{(Y,N),
M D

wheren and N are the inner unit conormal and normal to 9M and 8U , respectively.

Proof. The proof of this result is essentially Kusner's proof with the aid of the following
remarks.

a) IfY is aKilling vector field on a domain then
div(Y) =0. (63)

This is a consequence of the fact that div(Y ) measures the infinitesimal distortion
of volume by the flow generated by Y plus the fact that Y is a Killing vector field.

b) Ifdiv(Y) = 0 and h is constant along the trajectories of Y then
div(hY) =0.
This is a simple consequence of the formula

div(hY) = (Vh,Y)+ h-div(Y).

c) If Y is a Killing vector field on M and @ : U — M is alocal isometry then the pull
back @*Y of Y is a Killing vector field on U.
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We now outline the proof. First of all, one uses the fact that Y is a Killing vector field
to conclude that

0=A(0)= / divy(Y)dM .
M

Next, decomposing Y into its tangent and normal components one may rewrite this
equality as

(Y,n) = —n/ h{Y,N) . (64)
aM M

where n is the inner unit conormal to dM. Now, using the map @ : U — M, the hypoth-
esis 3U = M + D, and remarks (a), (b) and (c) above, one obtains:

0=/div(hY)=/ h(Y,N)+/h(Y,N) . (65)
U M D

Substitution of this into equation (64) finishes the proof.

When M = H"*!(-~1), M is a n-dimensional Riemannian manifold with smooth
boundary and x : M — H"™!(-1) is an immersion such that x|z is a diffeomor-
phism onto the boundary I' of a domain D c P, we consider the Killing vector field
J = (1,0,...,0) to obtain the following corollary. We point out that this corollary has
the same statement in R"*!.

CoOROLLARY B.2. — Under the above hypothesis, if the mean curvature h of M is the
restriction of a function defined in a domain of H"* (~1) which depends only on the vari-

ables x,, ... ,x, then we have
/ (Jin) = n/ h{J, Np)
oM D
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