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ON MULTIPLY CONNECTED MESOSCOPIC
SUPERCONDUCTING STRUCTURES

Jacob RUBINSTEIN and Michelle SCHATZMAN

Abstract

An introduction to models of superconductivity is given. The Ginzburg-Landau
theory is applied to multiconnected mesoscopic superconductors, i.e. thin structures
whose thickness is small with respect to the cohérence length. From the mathematical
point of view, this amounts to minimizing the Ginzburg-Landau functional over an open
set û(a) which is a fattening of an imbedded graph M in R2: away from the vertices of
the graph, M is fattened so as to be of thickness 2f ; close to the junctions, in order to
avoid ail difficultés related to angular domains, the fattening is OU). The unknowns in
the full Ginzburg-Landau functional are the two-dimensional vector potential A and the
complex order parameter u.

The model in the limit as the thickness tends to zero is a variational problem
on M whose unknowns are a scalar function and n integers, n being the number of in-
dependent cycles of the graph, or alternately the dimension of the cohomology group
of degree 1 of û{s). We prove that a subsequence of minimizers of the approximating
problem tends to a solution of the limit problem if we define an appropriate notion of
convergence.

1. Introduction

In this article we describe how the study of a set of thin superconductiong net-
work of strips and rings leads to a simple variational problem on an imbedded graph.

It turns out that this variational problem on a singular manifold is obtained as
the limit of a more complicated problem on a thin manifold with boundary, which is an

Classification math. : 35Q40,82D55,35B25,35J50.
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appropriate fattening of the graph.

A similar problem has been treated in [45] for the case of a ring. From the physical
point of view, this case is related to the Little-Parks experiment [36], [37] (which is one
of the well known démonstrations of the physical effect of a vector potential in a région
where its curl, the magnetic field, vanishes.)

The article [45] gave a justification of the équation used in [12] and [13] to predict
previously unobserved behavior in the Little-Parks setup.

Parks conjectured in [44] that for a multiply connected mesoscopic structure, the
order parameter could vanish at some points (in the one dimensional model) stopping
the current from flowing in the corresponding branch. Bruydoncx et al recently per-
formed a set of experiments on multiconnected mesoscopic superconducting strips [14],
and they found oscillations which differ qualitatively from those described by Little and
Parks. The theory of these oscillations has not yet been formulated, but it is clear that
there is much interest in mesoscopic superconducting structures.

The reason for the présence of this article in this volume is that the limiting pro-
cess that we perform is reminiscent of works of Yves Colin de Verdière [25], Bruno Colbois
and Colette Anne [4], [5], [6], [7]. The second author of this article realized in March 1997
that studying the limit of a Laplace operator on an almost singular manifold, for instance
a smooth manifold with thin handles glued to it, or a smooth manifold with small holes,
had been very active subjects, with few connections to physical applications.

On the other hand, we were aware of an extensive literature of applied mathemat-
ics around Ciarlet, Le Dret, Destuynder and other authors [19], [20], [18], [21], [27], [34]
who systematically derived mechanical models of lower dimensional structures by pass-
ing to the limit on the thickness of structures of higher dimension, possibly with junc-
tions between structures of different dimensionality. At the beginning of this systematic
effort the thin structures themselves were flat. The theory of shells is the typical scientific
subject where thin structures and geometry meet; much has been done there, and much
remains to be done: see for instance [22], [23], [24] and their extensive bibliography, and
also, with time or pseudo-time dependence, [8], [26].

It is a pleasure to thank here the organizers of the seminar, and in particular
H. Pesce, to whose memory this volume is dedicated, for giving the opportunity to the
second author to talk to an audience of geometers about problems of physical origin.
The exercise has been quite unusual, and quite éducative, at least for the speaker, and
hopefully also for the audience of the seminar.

We are also grateful to Giles Richardson for discussions pertaining to this article,
and a careful reading of an early version.

2. About models of superconductivity

For this section, we have intensively used [28] and [51 ] which are among the basic
books of the field; moreover, the recent book [35] has proved very useful.
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Superconductivity has been discovered in 1911 by Kamerlingh Onnes in Leiden,
who observed that "the electrical résistance of various metals such as mercury, lead and
tin, disappeared completely in a small température range at a critical température Tc"
[33]. Another feature of superconductivity discovered by Meissner and Ochsenfeld [42] is
that a magnetic field applied to a superconductor is expelled from it as it is cooled below
Tc: this is the Meissner effect. Thus, the superconductor is a diamagnetic material: the
induction B vanishes inside the sample.

The existence of such a réversible Meissner effect implies that the superconduc-
tivity will be destroyed by a critical magnetic field Hc. This thermodynamic critical field
Hc has been found empirically to be quite well approximated by a parabolic law

Hc(T)*Hc(0)[l-{T/Tc)
2].

A more detailed study shows that the field pénétrâtes on a very short distance
inside the sample. The characteristic length of the pénétration of the magnetic field is
denoted A and is called the pénétration length. Empirically, A is found to be approxi-
mately described by

A ( D « A ( 0 ) [ i - ( r / r c ) 4 ] - 1 / 2 .

When observing the behavior of superconductors subjected to an increasing or a
decreasing magnetic field at fixed température, one finds two different types of behav-
iors: certain superconductors remain diamagnetic when the applied field is increased
up to Hc(T)t and become normal beyond Hc\ they are called type I superconductors;
on the other hand, when starting from a normal initial state and decreasing the mag-
netic field, this type of material becomes superconducting again at the nucleation field
HC2{T) < HC(T), because it is difficult for type I superconductors to nucleate supercon-
ducting régions inside the sample.

The corresponding phase diagram is of the form given in fig. 1, at least for type
I superconductors. This diagram applies to a long cylinder, with magnetic field applied
parallel to the axis. In reality, the nucleation at superconductivity dépends on the ge-
ometry, and in a different setup geometry dependent effects appear: in particular, for
fields between (1 - r\)Hc{ T) and HC(T), normal and superconducting régions coexist; q
dépends on the geometry of the sample.

For some other superconductors, the perfect diamagnetism holds only for H ^
HCl(T) < HC(T)\ beyond HCï, the magnetic field progressively pénétrâtes in flux tubes,
called vortices: magnetization progressively decreasing until the nucleation field HQ is
reached, where superconductivity disappears. In such materials, called type II super-
conductors, it is very easy to nucleate superconducting régions, and for this reason, tfQ

can be much larger than the thermodynamic critical field Hc. This is a useful property
in applications (e.g. superconducting magnets). Between HCl and H^, the material can
be considered as subdivided into superconducting régions, with vanishing résistance,
and a network of flux tubes which can be considered as normal régions: this state is the
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Figure 1: Phase transition diagram for type I superconductors.

mixed state, also known as the Shubnikov phase [48], [49]. Finally, at the boundary of
the sample with an insulating material, Saint-James and de Gennes [47] have shown that
it is possible to observe a "surface" supraconductivity up to H^ * l.SdSH^. Hence the
complicated phase diagram for a cylindrical type II superconductor, with axial applied
field, in figure 2. At the Hc transition curve (dashed line), no transition is observed.

Once again, this phase diagram does not tell all the story: it dépends on the ge-
ometry; between H^ and H^t there are some very weak vortices in the bulk; between
HCl and HC2, the vortices in the bulk may look like an Abrikosov lattice, ([1] and see also
below); as the field nears HCv the vortices are expected to be more and more distant.
Crossing the HCx line either by increasing or by decreasing the magnetic field may in-
volve superheating or supercooling phenomena.

For a mathematical study of this phenomenon, see for instance [17] and [10].

In both cases, the phase transitions are altered when the material is "dirty" i.e.
contains impurities or defects; in particular, for type II superconducting materials, the
vortices can be pinned at the defects, which causes some very important hystérésis phe-
nomena.

Thefirsttheoryofsuperconductivity is the London theory [38], [39], [40], [41] that
accounted for the expulsion of the magnetic fields and the quantization of the magnetic
fluxoids.

The Ginzburg-Landau (GL) theory of superconductivity was proposed in 1950
[29]; Ginzburg and Landau introduced a complex pseudowave function u as an order
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Figure 2: Phase transition diagram for type II superconductors.
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parameter; u describes the superconducting électrons, and is such that at x the density
of superconducting électrons is | u(x)\2.

Ginzburg and Landau wrote down an empirical functional, the GL energy, which
they postulated took the form

r / t» \ / oi* \ 2 b \
a\u\ + -lui I dx. (2.1)2 J

Hère Fm is the free energy of the normal state, Q is the domain occupied by the
superconductor, Ho is the applied magnetic field, A is the magnetic vector potential, e
and m are respectively the electron's charge and mass, c is the velocity of light, ft = h/2n
is Planck's constant; a < 0 and b > 0 are two constants depending on the material and
température. It is assumed that a is proportional to T - Tc. Finally, the applied field Ho

must be given.

The cohérence and pénétration lengths are given by

2

(2.2)

and the scales of spatial variation of u and A are respectively Ç and A. It should be ob-
served that A and Ç diverge as (Tc - T)~1/2 for T close to 7C. It turns out that the GL
parameter K = A/Ç is approximately independent of température.

In 1957, a microscopic theory based on first principles was proposed by Bardeen,
Cooper and Schrieffer [9]; the main idea of this theory is that superconducting électrons
are bound in pairs; the électron pairs follow statistics similar to the Bose-Einstein statis-
tics instead of the Fermi statistics, that single électrons follow. At very low températures
and magnetic fields, the électron pair states are energetically favored over the single élec-
trons states.

Gorkovshowedin 1959 [30], 131], [32] that the BCS theory provides a microscopic
foundation for the GL theory, for T süfficiently close to Tc. This interprétation related
the cohérence length g to the distance between the members of a pair of coupled BCS
électrons.

However, it is important to see that the BCS theory is not usable except over mi-
croscopic states and there remains a wide field of application of the GL theory (which is
valid over a surprisingly large température range).

If K is large instead of small, Abrikosov predicted in 1957 [1], [2], [3] that the en-
ergy associated to a domain wall between the normal and the superconducting states
is négative; the break point between the two regimes is K = l/%/2. For materials with
K > l/v^2, he found that the superconductor sample would be subdivided into domains
of microscopic scale Ç; hence there would be a mixed state where the flux pénétrâtes
in an array of flux tubes; within each cell of the array there is a vortex of supercurrent
concentrating the flux toward the vortex center. The core of the vortex center is almost
normal and \u\ vanishes at the center of the tube.



On multiply connectée! mesoscopic superconducting structures 213

This short history cannot be concluded without mentioning two other facts: the
first one is that the discovery of the first high température superconductor with a critical
température of 35 K (11] has challenged theoreticians and experimentators for the last
eleven years. Since that time, the largest Tc attained is about 130 K for mixed oxydes of
thallium, baryum, calcium and copper; the second is that there does not yet exist a good
theory of time dependent superconductivity on which physicists definitely agrée.

3. A GL model on multiconnected thin strips

The graph M is an imbedded finite planar graph; it has a set of edges ê identified
with curves in R2, and a set of vertices V. Each edge is numbered by j € {1 , . . . , | S \} and
is parameterized by a mapping qtj of class C2 and of rank one from an interval [ÛJ, bj]
to R2; without loss of generality, the parameter is the are length. Loops are not forbidden.
We ask that the arcs intersect one another only at the vertices of the imbedded graph.

For each vertex v € y f define

J(v) = i(j,aj,+l) : Vj(aj) = v) u {(j,bj,-l) : tyjibj) = v } . (3.3)

If Ç belongsto J{v), itscomponentsare denoted (Ç[l],Ç[2], Ç[3]).

The last condition we impose on Af is a transversality condition: for every v e T,
and for every distinct éléments Ç and qofjiv),

(3.4)

Thusf two edges cannot leave a vertex along the same tangent and in the same direction.

Let £ be a strictly positive number, and let ƒ be a subinterval of [cij, bj] and let p
be the rotation by an angle of TT/2; we define the following set

€ ƒ, |t| < f}.

If 7 equals (aj,bj), we use the simpler notation Sj{e) - Sj(£Aajfbj)) and wesay that
Sj{e) is the strip of width 2s centered in the j-th arc of M; if I is one of the intervals
(ajt (dj + bj)/2) or ((üj + bj)/2, bj)), we say that Sj(s, 1) is a half-strip.

We dénote O (e) the union of the strips Sj(e).

For all n > 0, let V (n) the union of the balls of radius r\ around the vertices of M.
Our assumptions, and in particular (3.4), imply that there exist strictly positive numbers
f0 and R such that for all f € (0, f0). any two distinct half strips intersect only inside
V(R£).

The "lace" €(E) is defined for e e (0, fo): it contains ó(t) and is contained in
O(e) u V(RE)\ the boundary of the intersection û(e) u V{Re) is smoothed in such a
fashion that OU) is an open set with boundary of class C2. The details of the smoothing
do not affect the asymptotic limit.
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We will consider branches of C(E), i.e. the sets S(£, \as + y/ë, bj - y/ë]); the con-
nected components of the complement of these branches in O(e) are called junctions,
and there is one around each vertex v € f.

We rescale the Ginzburg-Landau functional defined in (2.1; we scale the magnetic
flux with respect to the quantum fluxoid, and we scale the distances in terms of the scale
of the domain, and we obtain:

G£{utA) = I (/i[-|w|2 + \u\4J2] + |(ï"V + J4)U|2) dx
JûU) (3.5)

f |V xA-H
Jtt2

+K2 f |V xA-He\
2dx.

J2

Notice that the parameter y is température dependent. The applied magnetic field He

is a given vector field in the direction orthogonal to the plane, and v and K are positive
parameters. The set R2 \ O(e) without its unbounded component is denoted «?(f ). We
observe that &(e) consists of finitely many components F/(f ). As e tends to 0, the bound-
ary of F/(f) tends to a cycle of the graph M; this set of cycles is denoted SB, the number of
components of & is equal to | £\> which is also the number of independent cycles of Af.
The flux of He through F/ is denoted by */,f.

Since the network is thin, the induced current has a negligible effect on the mag-
netic field. More precisely, the following estimate holds

THEOREM 3.1. — Let(u£, A£) bea minimizer ofG£; writeA£ - A + A^, where V x
= tfe. Then

1. V x Ai vanishes in the unbounded component o/R2 \ OU) and on every component
F/ (f) of&is) it is equal to a constant ofsize O{e ).

2. |Vx

The proof is essentially the same as in Lemmas 4 and 5 of [45].

To study the limit of the minimizers (ue,A£)t we have to study the limit of the
bilinearenergyformon H ^ U ) ) x Hl(óU)) given by

/
Je

Vu-Vudx. (3.6)

The (positive) Laplacian on O(e) is Lapf - -A with Neumann boundary conditions.

Similarly, if ƒ is a continuous fonction from M to R, such that ƒ o i//;- is in
Hl (aj, bj), we say that ƒ belongs to H1 (Af), and we dénote ƒ<>(//; = fj. The energy
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bilinear form on Hl (M) x H1 (M) is given in local coordinates by

rbj

while the L2 scalar product is

~ fifidO. (3.8)

Thus, LapM is the operator defined by

(LapM/, ƒ) = £ ( ƒ , ƒ ) , VfeHl{M). (3.9)

An element ƒ of the domain of LapM vérifies ƒ,- € H2{aj, bj) for ail j ; moreover, in-
tégration by parts yields the following Kirchhoff-like transmission condition at all the
vertices v e 1/\

ç [ n 0. (3.10)
tej(v)

We relate the energy on O(E) and the energy on M via the following construction:
there exists a mapping I\ from H1 (M) to H1 (6(e))t which acts almost as an extension
and a mappping Pi from H1 (û{e)) to H1 (M), which acts almost as a projection.

Roughly speaking, F\ extends functions on each edge as constants in the direction
normal to the edge, while fy replaces functions in Hl(û(e)) by their normal averages.
The construction is appropriately modified in the junctions. It is similar in principle to
the construction of [50], but the structure of Pi and the estimâtes near the singular set 1/
are very delicate [46]. The same techniques work for a fattened graph imbedded in RN.
A similar resuit for integer lattice graphs was independently proved in [16].

Related results can be found in [25], which obtains estimâtes close to ours in or-
der to construct metrics on a Riemannian surface for which the multiplicity of the first
eigenvalue of the Laplace-Beltrami operator can be arbitrarily large.

We are able to prove estimâtes which substantiate this intuitive description:

LEMMA 3.2. — There exists a constante such thatforall sufficiently small e, for ail
ƒ inHl{M) and ail u € H1(6(E)) the following inequalitieshold:

* J ' • ^ i ~ * ' l i . * ICI Cil f ^ i l ^

2s(1 + CE))£( ƒ, ƒ ) ^ E£(Pi f, Pi ƒ ), (3.12)
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l*Cy/ïE€{u,u), (3.13)

2 f
f \u\2dy-Cjï [ |grad«|2dyV (3.14)

JOU) JóU) I

A conséquence of Lemma 3.2 is that the p-th eigenvalue (counted with its multi-
plicity) of Lap£ converges to the p-th eigenvalue of LapM (counted with its multiplicity)
as s tends to 0.

We introducé now the functional

19 (3.15)

where J47 is the tangential component of Ae o qjj.

Using Theorem 3.1 and estimâtes analogous to those of Lemma 3.2 we get

THEOREM3.3. — Let{u£,A£) be the séquence ofminimizers ofG£(-, •). Thenevery
subsequenceofwc = ft(uf) converges strongly in Hl (M) to a minimizer f

The local current density for the minimizer of G£ is given by

. (3.16)

Consider the j-th branch of O(e). Let Tbe a curve in this branch Connecting one bound-
ary of ó(e) to another. The current flux through Tis defined as <&ji€ = JTI£ • v, where v is
the normal to T. It is constant along the branch.

The Euler-Lagrange équation for GQ is

jj j l \é\h (3.17)

together with the Kirchhoff conditions for all v € y

) 0. (3.18)

The current lj in the y-th edge is defined by the constant

7fj-iAjfj))- 0.19)

Since the currents are the main physical observable quantity, the following theorem is of
much practical importance.
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THEOREM3.4.— Thefollowingholds

/2f = Ij, V j e {1 , . . . , |<£ |} . (3.20)
f /

The minimization of GQ concerns a complex valued function ƒ on M and the data
are given by the auxiliary function Ae. It is therefore remarkable that it can be reduced
to a minimization problem involving a scalar function y on M and a finite number of
integers; the data are now a finite set of real numbers. For this purpose we introducé the
vector k with components

Jt, = 2TTJV/ - */, / = 1 I m (3.21)

where the N/'s are integers, and */ = lim£-o */,£» and the matrix A is defined by

Ai Am), A/ = J^ / \fj\'2. (3.22)
J

The edge-node incidence matrix is an \é\ x |T | matrix denoted,^. The component^,,
is equal to 1 if v is the origin of the edge et but not its end, to - 1 if it is its end, but not its
origin, and 0 otherwise. The edge-loop incidence matrix «â? is an | S | x | SS\ matrix whose
entry 3Bt\ is equal to 1 if the edge e belongs to the loop / and has the same orientation as
/, -1 if e belongs to / and has the opposite orientation to /, and 0 otherwise [15].

With these définitions, the intégration of the phase équation derived from (3.17)
and (3.18) leads to the followinglinear System for I = (I\,... , I\t\):

êSTAI = k, ^TI = 0 (3.23)

Generalizing classical graph theory arguments, we can prove

THEOREM 3.5. — The System (3.23) possesses a unique solution l(k) that satisfies
theidentityI(k)TAl(k)

Moreoven minimizing the energy GQ is equivalent to minimizing

bJ

(3.24)

Hère y = | ƒ | and k is a vector taking discrete values (3.21). The number |J2?| of
unknown integers is the dimension of the cohomology group of degree 1 of û{e); it is
also the number of independent cycles of M.
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