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1. Introduction

Let M be a complete, non-compact Riemannian manifold, A the Laplace-
Beltrami operator on M, e', t > 0, the heat semi-group, and p,(x,y), x,y € M, t > 0,
the heat kernel.

The main question we shall address in this survey is: how can one connect the
behaviour of sup ., p; (x, x), or p; (x, x), for fixed x € M, as a function of ¢ — +oc0, with
the geometry at infinity of M?

By geometry at infinity we mean essentially volume growth and isoperimetric
type properties. The connection with the decay of the heat kernel will be made through
a scale of Sobolev inequalities, which incorporates the relevant geometric informations.
These informations are much more robust than curvature assumptions.

Suppose one has identified classes of manifolds where the heat kernel behaves
more or less as it does in the Euclidean spaces. Then another question one can ask is
which part of real analysis (boundedness of Riesz transforms, H!-BM O duality) can be
performed on such manifolds.

The same questions can be asked in a discrete setting, i.e. for random walks on
graphs, see the survey [14]. Note that there one has to face a lot of additional difficulties,
especially if one deals with discrete time.

In fact, one can connect directly the behaviour of the heat kernel on a manifold
with the behaviour of random walks on a discrete skeleton via some discretisation tech-
niques. There are results on heat kernels on manifolds that, up to now, can only be ob-
tained in this way (see [21], Theorem 8 and [13], §VI). We won't develop this matter here,
we refer the reader to [37], [52], [6], [10], [22], [13] and the references therein.

There exist already several (longer) surveys on heat kernels on non-compact
manifolds, for example [48]. The one by Grigor'yan ({33}) is very informative and close
in spirit to the present one. Grigor'yan recently wrote another quite interesting survey
(134)), which is however less oriented towards estimates of the heat kernel. Another pos-
sible complement to the present paper is {12].

In the last fifteen years, this field has undergone an important development and
one cannot hope to give a comprehensive approach in a few pages, nor to quote all rele-
vant papers. What follows is nothing but a subjective and partial account.

In §2, we shall explain why the control of the heat kernel decay is intermediate
between an isoperimetric inequality and a volume lower bound, at least in a polynomial
scale. In §3, we shall see that all three properties are in general different, but coincide for
Lie groups or manifolds with non-negative curvature. In §4, we shall consider, among
manifolds with the doubling property, the ones that satisfy Euclidean type estimates of
the heat kernel, and we shall state real analysis properties for them, such as the bound-
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edness of Riesz transforms and H! — BM O duality. In §4, we shall characterise very gen-
eral on-diagonal upper bounds for the heat kernel in terms of suitable L? isoperimetric
inequalities. In §5, we shall give sufficient conditions for on-diagonal lower bounds.

2. The basic picture

It is essentially due to Varopoulos, around 1984, 85 ([49], {50], [51]), and may be
summarised as follows:

Vix,r) 2 Gr°, vxeM, r>0
¥
Iflzo SGIVSlz, Vfe & (M) < supeypiix,x) < Gt P2 vyes>o
Tty
1015 < Glaql, VO cc M.

Here V (x, r) denotes the Riemannian volume of the geodesic ball B(x, r) of cen-
ter x and radius r. The L? norms are taken with respect to the Riemannian measure, and
V is the Riemannian gradient. If Q is a compact domain in M with smooth boundary
(this is the meaning of @ cc M), 2Q, Q| denotes its volume and [8Q| the superficial
measure of its boundary.

Remarks.

- To write down the Sobolev inequality, one has to assume that D > 2; this limi-
tation is not serious, one can always write instead the Nash inequality

2 2
LFi,"2 S CUFIBIV iV f € €2 (M),

(see [3), where a systematic use of such inequalities was introduced). When D > 2, these
two inequalities are equivalent (see 1], [27]) and we shall see in section 4 below that fi-
nally the Nash inequalities are more adapted to the treatment of non-polynomial volume
growth situations.

- Provided one considers a manifold with a reasonably uniform local geometry,
all the properties we consider can be localised at infinity, i.e. restricted for large time
and large space, and then the relationship between them remains the same. This can be
done through the discretisation techniques of [37}, [6], [10}, {22]. If one does not perform
such a localisation, all the above inequalities can be valid only if D > n, where n is the
topological dimension of M.

In the rest of this section, we shall sketch the proof of the implications that hold
in the basic picture.

The two bottom-top vertical arrows are easy: the co-area formula shows that

11" < GlaQl, vV Q ¢ M, compact with smooth boundary
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is equivalent to
Wl e <GV fihVfe % (M).

This inequality applied to f “5-7° together with Holder gives the L2 Sobolev inequality.
We shall see in section 3 below that conversely, the L? Sobolev inequality does not imply
in turn the corresponding isoperimetric inequality.

Assume now that the Sobolev inequality holds, and apply it to a € approxima-
tion of the tent function
fx)=(r-dx,x)),,

where xo € M is fixed. Since |V f| = 1 on B(xg, r), O elsewhere, and f > r/2 on
B(xp, r/2), one gets
D-2

r
EV(Xo.TIZ) 2D L CVi(xg, 1), Vo €M, r>0.

An iteration argument yields then

Vixg, r) > crP.

This is due to G. Carron (]4], {5]).

The horizontal arrow is due to Varopoulos ([49]), and it was the starting point
of the whole subject. It relies on an abstract semi-group theorem. If e™’4 is symmetric
submarkovian (but this can be weakened considerably, see [7], [8]), then

le™ M- < Ct™% = I fI0. < G(AS, ).V f € H(A).

D

This gives the claimed equivalence because

le'®lli~w = sup p,(x,x)
xeM

and

(-Af, )=V fl3.
Let us give a trivial proof, taken from [8], of the implication from left to right. Replacing
fbye 4 fin

11 <GS, f)
gives
¢ 4

2 ds

Integrating between 0 and ¢ yields, since e~5# contracts the L spaces,

- 2 —SA 2
le™** fli%p < lle II3.
fligp < f15

G

- (IF1E - ne™** £13),

t

—tA —SA 2

the ™4 flip s/ lle™* fli%p ds <
D-2 0 D-2
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therefore
—~tA ’ _]/2
e p <Ct Vit>0.
" f"z_._gTz B3 ’

Now an extrapolation lemma due to the author and Yves Raynaud ([7], §II) gives

e flli- < C't7P2,
The other implication was proved already in [49] as follows: one writes

+00
A2 c/ ¢~12g=1A gy
0

and using the L? — L9 estimates on e~ ‘4, one shows that A-1/2 is bounded from L? to

L%, Aswe already said, the up-to-date approach goes rather from the (more general)
decay to some (more general) Nash type inequalities (see [13] and section 5 below).

It is easy to see that p,;(x,y) < \/ p:(x,x) p; (¥, y), but one expects p;(x,y) to be
much smaller when x, y are far apart. Indeed, there are now sophisticated techniques to
obtain bounds on p, (x, y) from bounds on p; (x, x) and p;(y, y) even for fixed x, y ({25],
[32]). By semigroups methods relying on a trick due to E.B. Davies [24], one can prove
that

sup pr(x,y) SCt™22, ¢ 50
xy

self-improves into

2 D2 d2
p,(x.y)SC't'DlZ (1.,,.‘1(.#).) exp (— (:t'y)) Vx,yeM,t>0.

This estimate is due to Davies and Pang ([26]). For a simple proof, see [9]; this paper
is aimed at the case of heat kernels on Lie groups, but the proof goes over to abstract
submarkovian semigroups. Contrary to what one thought a few years back, the above
estimate is not sharp, and can be slightly improved (see [47]).

Notice that the basic picture is not adapted to non-polynomial growth situations
and says nothing about lower bounds of the heat kernel.

3. Volume growth and isoperimetry

Let us now concentrate on the two top-bottom negative arrows in the basic pic-
ture.

1. There exist manifolds such that V (x, r) > crP, r>0but where the inequality
SUPyep Pr (X, X) < Ct™P/2, >0, is false.

The example is due to Varopoulos in [54]. Take a Euclidean strip, and glue it
smoothly with two half hyperbolic half-planes. The resulting manifold obviously has
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uniform exponential growth, but it is conformal to the Euclidean plane, therefore it is
recurrent. This very interesting but somewhat mysterious example is studied further
in [18]. Also, one can ask what happens if the volume is really polynomial, i.e. cr? <
V(x,r) < CrP. The answer is also given in [18], see §6 below.

2. There exist manifolds such that sup,., pr(x,x) < Ct™22, ¢t > 0, but
Q1% < G19Q], ¥V Q ¢ M, compact with smooth boundary is false.

Assume that

sup p(x,x) < Ct~D2

xXeEM

2> 0.

This upper estimate does imply an isoperimetric inequality for large sets, but for a weaker
exponent. Indeed, it is equivalent to the Sobolev inequality

I flizp < GIVfllz,V f € € (M)

Assume that M has a reasonably uniform local geometry (for example positive injectivity
radius and Ricci curvature bounded from below, but much less is required, see [22]).
Then the same inequality holds on a discretisation X of M ([37)), i.e.

112 <CIVAIZ= > 1f)~fWEYS ea).
- x,yeX.x~y
Now taking f = 1q yields
101%* < cleal,

wheredQ = {x € Q;3y € QF,y ~ x}.

This discrete inequality can be brought back on M and gives the isoperimetric

inequality Q| A < Cl2Q|, where Q ranges over the compact subsets of M with smooth
boundary containing a geodesic ball of fixed radius (this is what Chavel and Feldman
call a modified isoperimetric inequality, see [6}), with D’ = D/2. Note that the greater
D', the better the isoperimetric inequality for large sets; on the other hand, if M has
boundeld geometry and, say, topological dimension D, then for small sets €, the inequal-

ity 1015 < Cl2Q| can hold onlyif D’ > D.
This easy isoperimetric inequality is in fact all what one can get in general, as it

was shown in [20].

THEOREM 3.1. — For every integer D > 6 and every real D' > D/2, there exists a
D-dimensional Riemannian manifold M with bounded sectional curvature and positive
injectivity radius such that

) sup, yem Pi(X,y) = O(t7P12),t — +oo,

ii) the isoperimetric inequality | Q| e < CloQ)|, where Q2 ranges over the compact
subsets of M with smooth boundary containing a geodesic ball of fixed radius, is false.
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The above result was improved by Carron in his thesis ([4]): he builds a manifold
such that (i) holds and the estimate in (ii) is false for every D’ > D/2.

These examples are rotationally invariant manifolds, with some narrow parts that
destroy the isoperimetry, but do not affect too much the heat flow.

We can sum up what has been seen so far by saying that, at least in the polynomial
scale, the isoperimetric inequality controls from above the decay of the heat kernel,
which in turn controls from below the volume growth, but the converses are false.

There are however interesting situations where one can close the circle, namely
where

Vix,r) 2 cr®’, vr>o0
implies
D-
Q15 < G121, VQ ¢ M, compact with smooth boundary.

These situations are the following:

- Manifolds with non-negative Ricci curvature (this was announced in [51], and
can be seen by using the Li-Yau gradient estimates of [38]),

- Lie groups (or discrete groups) with polynomial volume growth ([53}).

There is a unifying principle behind these phenomena, that allows one to treat
more general situations and also to go beyond the polynomial scale.

DEFINITION 3.2. — Denote f,(x) = -‘ﬁ f s J(¥) dy. We say that M satisfies
the pseudo-Poincaré inequality (PR) if

Nf—-fili CrilVfll,, Vfe € M), r>0.

The following theorem is due to Laurent Saloff-Coste and the author ([21]).
THEOREM 3.3. — Suppose(PR ) andV (x,r) 2 V (r), whereV isstrictly increasing
to infinity. Then, there exist ¢, C > 0 such that

1Ql

—— L CloQY},
vl Clac)

for every Q compact subset of M with smooth boundary.

Proof. — Write

pUfIZ2 Ay Spllf = frl 2 A2} + pil fr] > A/2).

Since

I fily

<
Hfrll < Vi

’»
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for ro = V=1 (21L11) one has p{l f,,| > A} = 0,and

2
pilfl 2 A <pllf - frl 2472} < Xllf— frolla-
Now
W= frolh < RlV fih
by (PR ), and one gets

Wl F1> A1 < ;v-‘ (9'{—”‘) IV £lh.

Taking A = 1and f a smooth approximation of 1g gives the claim.

Now, when does (PR ) hold?
1. If M satisfies the doubling property

(D) Vx,2r) < CV(x,r),vxeM, r>0

and if the following family of Poincaré inequalities holds:

(R) / lf—fr(x)I<Cr/ IVfLVXEM, r>0
B(x,r)

B(x,Cr)

therefore on manifolds with non-negative Ricci curvature (but also on manifolds with
a reasonably uniform local geometry that are roughly isometric to manifolds with non-
negative Ricci curvature, see [22]).

2. On Lie groups of polynomial or exponential volume growth (see [21], §1). The
same theory works for finitely generated groups, again whatever the volume growth.

Theorem 3.3 also applies for co-compact coverings, see {21], §4. There, it is not
clear whether (PR ) holds on not. But the fact that it holds on the deck transformation
group suffices by discretisation.

Examples. — If V(x,r) > rP and (PR) holds, one gets the classical Euclidean
type inequality
1% < claql.

IfV(x,r) 2 ce and (PR) holds, one gets

1Ql
log I1Q]

< CloQ|.
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The latter inequality is sharp; indeed, C. Pittet showed in [39] that on all polycyclic
Lie groups with exponential growth, there exists a sequence of sets 2, whose volume
tends to infinity such that
1Qn|
log |22,]
(in fact, he is now able to prove the same fact on any solvable Lie group with exponential
growth).

2 cloQyl

Note that the isoperimetric inequality of Theorem 3.3 implies the following L2
version, called Faber-Krahn inequality (such inequalities where introduced in {30}):

c

——— < A1 (),
p¥clan
where g is the reciprocal volume growth function V1.

So far we have encountered two Sobolev type inequalities associated with an ex-
ponent D: the L! inequality
IIfII% SCIVfh.Vf e € M),
and the L? inequality
Ilfllg_gz SCIV fll2,V f € € (M).
We also dealt with the property
Vix, r) 2 crP.

It is natural to consider the latter estimate as an L* Sobolev inequality. Let us call these
inequalities (S}), (53) and (S3). One can fill in the gaps, and write down a complete
scale of Sobolev inequalities for 1 < p < +oo. For example for 1 < p < D, (S}) will be

IIfII_ng_ SCGlIVSflpY f e &G (M),

andfor D < p < +o,
1-2 D
Il flle S Cpllfilp PUIV SIS,V f € € (M).
What is more interesting is that they can take the same form for all p € [1, +], namely

I fllp < ColQIYPUY fllp, V f € €5°()

(see [11], [12]). Behind this, there is a general principle that all reasonable forms of
Sobolev inequality associated with a dimension D and an exponent p are equivalent (see
[1]). One advantage of the above reformulation is that the dependences on p and on D
are completely split. Also, it is tempting to interpret 1Q|}/? as @(IQ) = V-1(IQ]) and to
write the more general scale of inequalities

(55) 1 fllp < CoeUQDIV fllp,V f € € (Q).
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Again, (S}, is equivalent to

Q| < CleQ|
el ’

(Sz) is equivalent to
Vix,r) 2 cpl(n),

and (S2) is equivalent to the Faber-Krahn inequality

c

— < A} (Q).
2uan Sh@

Also, (S5) implies (S¢) for1 < p < g < +o. We shall see in §5 below that (52) is
equivalent to an upper bound of the heat kernel. At this point, we shall therefore have
reached a full generalisation of the basic picture to non-polynomial volume growths.

Note that, contrary to the polynomial scale, (Sé) does not imply any more (S3):
there are heat kernel decays that are more rapid that one could predict from the volume
growth. Indeed, in [40], Pittet and Saloff-Coste construct for any n € N* manifolds with
exponential volume growth whose heat kernels behaves like e~ ™ (the typical "good"

1
behaviour for exponential growth is e~ ">

a spectral gap).

, whereas e~ ' corresponds to manifolds with

Pseudo-Poincaré enables one to go down from (S3) in the scale: for1 < p < +e,
define

(PPp) Wf=frillp,<CriV flp Vf e & (M), r>0.

Then (S) together with (PP,) implies (S3), see [12].

If one comes back to the polynomial scale, assuming (S3) i.e. V(x,r) > crP,
then the Poincaré inequalities allow to get stronger Sobolev inequalities from the scale
(Sp). Indeed, if M satisfies (D) and

Vfe€g M), VxeM, r>0,

P,
(Fp) / If(y)-fr(X)l"dySCr”/ IV fNIP dy,
yEB(x,r) B(x,C'r)

then for 1 < p < D, one gets the global Sobolev inequality
nf- c(f)llbg_% < CIV fHllp,

forall f € @ (M) suchthat|lIV flll, < +o0, where c( f) is some number depending on
f (see [45]), and for p > D the Lipschitz embedding

D
1f(x) = fFOI S Cdx ' 2NV fill, V fe M), Vx,yeM

(see [11] where the case p = D is also treated).
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Note that the inequalities (Pp) (where D is the topological dimension and/or the
volume growth exponent) play a role in the topic of quasi-conformal mappings between
manifolds (see {36) and [23]) and that, if crP? < V (x, r) < CrP, a characterisation of (Pp)
can be obtained for D - 1 < p < +x in terms of a new distance on M defined by means
of the L? norm of the gradient (see [19]).

4. Analysis on manifolds with regular volume growth

After the pioneering work by Li and Yau which gave the behaviour of the heat ker-
nel on manifolds with non-negative Ricci curvature, the question was to understand the
heat diffusion under more robust assumptions, that would be for instance stable under
quasi-isometries. The two papers [44] and [29] gave an essentially complete answer for
manifolds with the doubling property.

One says that M has regular volume growth, or satisfies the doubling property, if
there exists C such that

(D) Vix,2r) < CV(x,r), Vxe M, r>0.

One says that M satisfies a relative Faber-Krahn inequality (see [29)) if there exists
¢ > 0, v > 0such that, for every x € M, r > 0, and for every measurable subset Q of M
with positive measure contained in B(x, r),

c
> —
(FK) A(Q) 2 2 (

Vix,r) )V
10}

Finally one says that M satisfies the Poincaré inequality if there exists C > 0 and
C' > 1such that

Vfie4 (M), VxeM, r>0,

/ Lf(y) - fr(x)12dy < CP IV f(N1?dy,
YEB(x.1) B(x,C'r)

(P)

where

frix) = f(y) dy

V(x, r) B(x,r)

(in the notation of section 4, (P) is nothing but (B)). The relationship between the above
three properties is the following: (FK) implies (D), and, together with (D), (P) implies
(FK). This is explained for example in [17], §2.

Among manifolds satisfying (D), (FK) and (P) characterise some heat kernel
estimates.
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THEOREM 4.1. — Let M be a complete Riemannian manifold satisfying (D). Then
the upper on-diagonal estimate

p(x,x) < Vt>0,xeM

C
Vix, V1)’
is equivalent to (FK). If (FK) holds, one has in fact

_dz(x.y)
Ct

Cc
» € &— ’ )y Ay .
p;(xy)\v(x”/.t_)exp( ) Vt>0,x,yeM

It is easy to see that together with (D), the upper Gaussian estimate of p; (x, y) implies
the on-diagonal estimate

pe(x,x) 2 Vt>0 xe M.

c
Vix, V1)’
The off-diagonal lower estimate requires more.

THEOREM 4.2. — Let M be a complete Riemannian manifold satisfying (D) and
(P). Then

c (_ d*(x,y)

— e < ,
Vix J1) exp o ) < pe(x,y)

_d*(x,y)

L — ,Vt>0,x,y€e M.
‘V(x.mexp( Ct ) Y

Theorem 4.1 is due to Grigor'yan ([29]); Theorem 4.2 was also obtained by
Grigor'yan in the same paper, and independently by Saloff-Coste ([43], {44]). In fact,
both authors deduce from (D) and (P) a parabolic Harnack inequality that is equivalent
to the upper and lower Gaussian estimate of the heat kernel. Saloff-Coste proves in ad-
dition that conversely, these estimates imply (D) and (P). For all this, see also the survey
[46].

It is very easy to build manifolds that satisfy (FK), therefore (D), but not (P);
take for instance R" without the unit ball, glue smoothly two copies of this manifold with
boundary along the unit circle. The resulting manifold, call it R” | | R”, satisfies therefore
all the above heat kernel estimates except for the off-diagonal lower bound.

Contrary to the Li-Yau gradient estimates, the parabolic Harnack inequality pro-
vides no pointwise upper bounds for the gradient of the heat kernel. However, integrated
upper bounds for the gradient follows from the bounds on the heat kernel itself ({31]); to-
gether with a new theorem on singular integrals due to Duong and McIntosh ([28)), this is
enough to get the boundedness of the Riesz transforms. The following theorem is proved
in [15].

THEOREM 4.3. — Let M be a complete Riemannian manifold satisfying the dou-
bling volume property and such that

pi(x,x) < , V>0, xe M.

_c
V(x, /1)
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Then the Riesz transform T = V(-A)"Y/2 is weak (1,1), and bounded on L?, 1 < p < 2.
That is, there exists Cp,1 < p < 2, such that, V f € €5 (M),

N9 £, < G| -ar2 1| 1< p<2,
and
19 fllhe < G| =22 F].

The above theorem admits a local version.

THEOREM 4.4. — Let M be a complete Riemannian manifold satisfying the local
doubling volume property

Vro>0, 3C,suchthatV(x,2r) < C,V(x,r), Vxe M, r €10, rl,
and whose volume growth at infinity is at most exponential in the sense that
V(x,0r) < Ce®V(x,r), VxeM, 6>1,r< 1.

Suppose that

4

Vix, Vi)'
forallx € M andt €]0,1). Then there existsCp,1 < p < 2, such that, ¥V f € € (M),

pe(x,x) <

NV £, < G (| are sl +1 £11,). 1< p<2,

and

19 fllhe < G (|27 1 £11L)-

By the same token, one can also treat manifolds with negative curvature. Indeed,
aspectral gap suffices, together with small time estimates of the heat kernel and doubling
for small radii. This gives an easy proof of some results by Lohoué.

THEOREM 4.5. — Let M be a complete Riemannian manifold such that

Vix,2r) <CV(x,r), Vxe M, relol],
Vix,0r) € CePVix,r), VxeM 0>1,r<1,
and

4

V(x, V1)’
Assume further that M has a spectral gap A > 0:

Al fllz <=2 fllz, V f € & (M).

pe(x,x) < VxeM,te€]ol]

Then there exists Cp, 1 < p < 2, such that,

97, < G| 21|V f € & (M.
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The previous theorems cover a much wider class of situations than what was pre-
viously known (see the references in [15] to the work of Lohoué, Bakry, Alexopoulos), but
only for 1 < p < 2, whereas all the known results covered the case p > 2. In fact, one
cannot go further with the sole assumptions above.

Indeed, consider again R” [ [ R”, for n = 2. It has polynomial growth of exponent
2, and p,(x, x) is estimated from above and below by %, uniformly in x. Now, for p > 2,
the Sobolev imbedding holds and says that

2
Lf(x) = FOI K Cpd(x, N %IV fillp, V f € € (M), x,y € M.

Assuming that
MV flllp < CH=AY2 £,

and applying Sobolevto p, (x,.), one would get an oscillation estimate on the heat kernel,
therefore the off-diagonal lower bound (see [15] for details). But we already said that
R? | | R? does not belong to the class of manifolds with (D) and (P).

If in addition M satisfies (P), then the operator V(—A)~!/2 is in fact bounded
from H! to L'. Also, the atomic H! space coincides with the space defined through the
heat kernel, and as a consequence, the H! - BMO duality holds. Again, R? ][ R? is a
counter-example. These results are due to E. Russ ([41], [42]). This was basically known
for manifolds with non-negative Ricci curvature (see in particular the work of Bakry and
the references in [41], [42]), but it is striking that one only needs proper heat kernel esti-
mates.

5. Non-polynomial growth situations: Nash type inequalities and
ultracontractivity

Another major breakthrough as far as heat kernel estimates are concerned was
the paper (29] where the non-polynomial decays are treated for the first time in a com-
pletely satisfactory way. Previously, there had been the work of E.B. Davies (see [24] and
the references therein), where one-parameter families of logarithmic Sobolev inequali-
ties were used to characterise decays of the type

IT:lh-e < m(2),

for fairly general functions m and abstract Markov semigroups T;. But first, logarith-
mic Sobolev are rather adapted to characterise hypercontractivity, i.e. an infinite dimen-
sional phenomenon; this is why one has to parametrise them in order to capture ultra-
contractivity (this is another name for the fact that |le*2||; - is finite for all ¢). It was
thus natural to ask for a more direct route. Second, these logarithmic Sobolev inequali-
ties have no clear isoperimetric interpretation.

In contrast, Grigor'yan shows, in the case of the heat kernel on a a Riemannian
manifold, that

sup p;(x,x) < m(t)
xEM
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if and only if
1

2 ’

@<(1Q20)

where the functions m and @ are deduced from one another by an explicit transforma-
tion.

A (Q) 2

In [13], one gives an abstract semigroup version of Grigor’yan’s result. The advan-
tage of this purely functional analytic proof is that it extends to discrete time and discrete
space, i.e. random walks on graphs.

THEOREM 5.1. — Let (X,E) be a o-finite measure space and T; a symmetric
Markov semigroup on L*(X,€), with infinitesimal generator ~A and kernel p,. Let m
be a decreasing C' bijection of R} satisfying (5). Then

sup p(x,x) < m(t), Vt >0,
xeX

is equivalent to
1

(el
for every Q with finite measure in X, where m and @ are related by —m’ (t) = ;2%

A (Q) 2

The above equivalence is up to multiplicative constants: one identifies m(.) and Cm(c.),
@(.) and Cep(c.). Condition (&) is a technical condition that affects the regularity of m
but not its rate of decay.

In the above statement A, (Q) is defined as inf ¢ %@, where f ranges over the
2

functions of Z(A) supported in Q. The Faber-Krahn type inequality (in other words (S:‘;,)
in a geometric setting)

AQ) > ————
160 > 2 han

is equivalent to the Nash type inequality

Il £1I
i fi3

I fi3 e( ) < Re(Af, f), V f € @A),

where 6(x) = ;;-(’;/—x) (see [1]).

It is interesting to note that the two implications in Theorem 5.1 have different
sets of assumptions as far as T; is concerned; to deduce the decay from the Nash in-
equality, one only needs a control of the L! — L} and L® — L* norms, whereas to go back
from the decay to Nash, one uses a symmetry assumption. This is no wonder; roughly
speaking, the geometry of the underlying space governs all reasonable diffusions, includ-
ing non-symmetric ones, but one cannot conclude from the behaviour of a diffusion to
the geometry of the space unless the diffusion is symmetric (the influence of a drift could
override the geometry!).

The first implication is contained implicitely or explicitely in the works of Nash,
Carlen-Kusuoka-Stroock, Tomisaki (see the references in [13]).
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PROPOSITION 5.2. — Let T; be a semigroup on LP(X,8),1 < p < +o, with in-
finitesimal generator —A. Suppose that T, is equicontinuous on L' (X,%) and L (X, ),
iLe.

sup I ll1-1,SuUp I Tt lowoo S M < +0,
t t

and that

0l flI3) < Re(Af, f). Vfe A, lfih<M,
where 6 :10, +o0[~]0, +oo[ is continuous and satisfies [*~ -‘%; < +o0. Then T, is ultracon-
tractive and

ITl~e €< m(2), VI >0,

where m is the solution of
—-m'(t) = 8(m(t))

on )0, +oo[ such that m(0) = +o, or alternatively the inverse function of p(t) = ,+°° ’c%'

Note that if one puts together Proposition 5.2 and the fact that (S},) implies (S3,),
one gets the following.

COROLLARY 5.3. — Suppose that m and @ are as above. Then, if M satisfies the
isoperimetric inequality
1Q]

Q)
for all compact domains Q of M with smooth boundary, one has

< ClaQ|,

sup p;(x,x) < m(t), Vt > 0.
xeX

For a long time, unless m was a negative power, one did not know how to come
back in an optimal way from the ultracontractivity estimate of a semigroup to a Nash
or Sobolev type inequality. The methods of [51] and [3) induced a loss (see for example
[51), §6). The only way was to use the one-parameter logarithmic Sobolev inequalities of
Davies. However, it turned out that the converse is quite simple.

PROPOSITION 5.4. — Let T; be a symmetric contractive semigroup on L?, with in-
finitesimal generator - A, that satisfies

T~ < m(t), Ve > 0.

Then
BUIFIZ) S (Af, ), VfedA), Iflh <1,

where 8(x) = sup 3 log 3.
>0
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Sketch of proof: One starts with the following inequality, that can be proved by applying
Jensen to the spectral resolution of A

AL D IT £113
e"p( 2T ’) SR

Now, by hypothesis, | T; fii2 < m(t)l| fI2. Fix f € @(A) \ {0} such that || fll; < 1. One
has
(Af, ) ) m(t)
exp|-2—3"1) < —, V>0,
P ( £ T
hence ’
(Aﬁf)>-ll ”fM,Vt>Q

NfFIZ = 2t &)
This proves the Proposition.

Now a calculus lemma due to Grigor'yan proves that if m satisfies (6) one can
replace 8by 8= —-m’ o m™!,

6. Lower bounds for the heat kernel

The only lower bounds on the heat kernel we have seen till now are obtained
either as consequences of upper bounds, or at least at the same time than upper bounds.
Also, (D) and (P) are very restrictive conditions, and one would like to have criteria than
ensure lower bounds for manifolds with more rapid volume growth or without (P). In
[16], one derives sufficient conditions for on-diagonal lower bounds in terms of what we
call anti-Faber-Krahn inequalities, without going through upper bounds.

THEOREM 6.1. — Let m and @ be as in Theorem 5.1. Suppose that, for every € €
R, there exists Qg such that |Qg| < §andA\(Qg) < 7. Then

sup p(x,x) 2 m(ct),Vt > 0.
xeX

It is natural to ask whether anti-isoperimetry implies lower bounds on the heat
kernel: suppose that, for every £ € R}, there exists Qg such that |Qg| < € and 19Q¢l <
EZE'T- Can one get the same conclusion as in Theorem 6.1? Some partial results are given
in [16], but the theory is not yet complete.

One can also get pointwise lower bounds for p, (x, x) from upper bounds on the
volume growth.

PROPOSITION 6.2. — Fixx€M and suppose that M has bounded geometry around
x. Suppose thatV (x,r) < Cr?, VY r > 1. Then
c

pi(x,x) 2 W. v

t21,

and this bound is sharp.
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Results for more general volume growths can be found in [16], §6.

Coming back to sup, p;(x, x), one may ask what is the range of possible be-
haviours, say when the volume is really polynomial, i.e. cr® < V(x,r) < CrP. Using the
above tools, one can give in this case a complete answer.

THEOREM 6.3. — Let M a manifold with bounded geometry such thatV (x, r) sat-
isfiescr® < V(x,r) < CrP. Then

, D
<sup pr(x,x) S Ct7 DT,

! -

ct

NI

and both bounds are sharp.

The lower bound is a consequence of [16], Theorem 2.7. It follows from the in-
equality

e—A[(Q)t
sup p;(x,x) 2 sup{ }
x€EM Q Q|

and from the fact that on a manifold that satisfies the doubling property
(D) Vix,2r) < CV(x,r), Ve M, r>0,

one has

C
A1 (B(x, 1)) < = vVxe M, r>0.

The upper bound comes from [21], Théoréme 8, and uses discretisation.

The optimality of the lower bound is no mystery. The fact that there exists a man-
ifold with exponential volume growth of exponent D and such that

sup pi(x,x) 2 ct"b—lz_l

xXeM
comes from [18], where more results are to be found on the connection between the
volume growth alone and the heat kernel decay. In particular, it is proved there that in
the example of Varopoulos quoted in §3, the behaviour of sup, p;(x, x) is close, up to a
logarithm, to the maximum allowed for a non-compact manifold, i.e. 7.

Let us close this survey by making clear that many aspects of the large time heat
kernel behaviour are largely unknown and still wait to be explored. Let us mention for
instance off-diagonal bounds without (D) and (P), good estimates on manifolds with
a spectral gap, and the study of the heat kernel on differential forms (see [2) for very
preliminary results). See also [35] and [18] for some recent new directions.
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