GABRIEL P. PATERNAIN

Hyperbolic dynamics of Euler-Lagrange flows on
prescribed energy levels

Séminaire de Théorie spectrale et géométrie, tome 15 (1996-1997), p. 127-151
<http://www.numdam.org/item?id=TSG_1996-1997__15__ 127_0>

© Séminaire de Théorie spectrale et géométrie (Grenoble), 1996-1997, tous droits réservés.

L’acces aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique 1’ac-
cord avec les conditions générales d’utilisation (http:/www.numdam.org/legal.php). Toute utili-
sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=TSG_1996-1997__15__127_0
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Séminaire de théorie spectrale et géométrie
GRENOBLE
1996-1997 (127-151)

HYPERBOLIC DYNAMICS OF EULER-LAGRANGE FLOWS
ON PRESCRIBED ENERGY LEVELS

Gabriel PR PATERNAIN

Abstract

The aim of this paper is to describe some recent results concerning the dyna-
mics of Euler-Lagrange flows on prescribed energy levels. We show that if an Anosov
energy level has a splitting of class C! then it must contain minimizing measures with
non-zero homology.

1. Introduction

The aim of this paper is to describe some recent results concerning the dynamics
of Euler-Lagrange flows on prescribed energy levels. These results have been obtained
using variational methods. Throughout this paper the Euler-Lagrange flows the we shall
consider are generated by convex and superlinear Lagrangians on closed connected ma-
nifolds M.

A very interesting aspect of the dynamics of the Euler-Lagrange flows is given by
those orbits or invariant measures that satisfy some global variational properties, instead
of the local ones that every orbit satisfy. Research on these special orbits goes back to M.
Morse [39] and Hedlund {25] and has reappeared in recent years in the work of V. Bangert
[2], M.]. Dias Carneiro (12}, A. Fathi [14], [15], R. Mafié [35), [36] and ]. Mather [37], [38].
For autonomous systems, like the ones we are considering, these distinguished orbits
and measures have the remarkable property of living on certain energy levels related to
minimal values of the action. This link was discovered by M.J. Dias Carneiro {12] and later
exploited and enhanced by Mafié in his unfinished manuscript [35). The proofs of the
theorems stated in {35} have been given by Gonzalo Contreras, Jorge Delgado and Renato
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Iturriaga in [9], [10]. A key element in Mafié’s work is what he called the critical value of
a Lagrangian, whose meaning and properties shall be explained in Section 2 as well as
its relation with Mather’s theory. By considering the lift of the Lagrangian to a covering of
the manifold it is possible to obtain many different critical values. Among them, there are
two which are particularly relevant: the critical value c, (L) associated with the universal
covering and the critical value c, (L) associated with the abelian covering. It is quite easy
to see that ¢, (L) < ¢a(L), but in general they may be different.

Using the machinery developed in Section 2, we shall be able to give various par-
tial answers to the following general question:

Question. — What type of dynamics can arise on a prescribed regular energy le-
vel?

The “types” of dynamics considered here are those of hyperbolic nature. In Sec-
tion 3 we shall study regular energy levels on which the Euler-Lagrange flow is Anosov
and we shall explain the results obtained in [11], {40], [44], [45]. We find that the energy
of these levels has to be strictly bigger than ¢, (L) and the levels are free of conjugate
points. In Sections 4 and 5 we continue the study of Anosov energy levels, but we look
for those which have regularity properties of the Anosov splitting. We shall say that the
Anosov splitting is of class C¥ if the strong stable and strong unstable bundles are both of
class C*. We find that Anosov energy levels with splitting of class C! do not exist for an im-
portant class of Lagrangians, namely that given by a Riemannain metric and a non-trivial
magnetic field {46]. We prove in Section 5 a new result that links the existence of Anosov
energy levels with C!-splitting and the critical value c,(L). More precisely we show:

THEOREM 1.1. — Suppose that M admits a Riemannian metric of negative curva-
ture and suppose that the energy level k of the Lagrangian L is Anosov. If the Anosov split-
ting of the energy level k is of class C!, then k > c,(L). In particular, the energy level has
minimizing measures with non-zero homology.

We should mention that there are examples of Anosov energy levels with energy
k < ca(L) on surfaces of genus 2> 2 (cf. Section 2 and [44]). These levels do not support
minimizing measures and by the theorem, their splitting is never of class C’.

Finally in Section 6 we consider regular energy levels on which the Euler-Lagrange
flow is expansive and dim M = 2. We classify these levels up to topological equivalence,
and we find that they are also free of conjugate points. The results in this section genera-
lize and complete the results in [41]. :

Acknowledgement. — The author thanks the hospitality of IMPA while this work
was being completed.
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2. Critical values of Lagrangians

Let M" be a closed manifold andlet L : TM — R be a C* Lagrangian satisfying
the following hypotheses:

~ Convexity. For all x € M, the restriction of L to T, M has everywhere positive defi-
nite Hessian.
— Superlinear growth. Let || || denote a Riemannian metric on M. Then

L(x,v)
im = +00,
Nvli=e  ||wl|

uniformly on x € M. This condition is clearly independent of the choice of Rie-
mannian metric, since M is compact.
Since M is compact, the Euler-Lagrange equation,

d (oL .\ aL,_ .
7 (a(x.x)) - a(x.x) =0

generates a smooth complete flow ¢; : TM — TM which is defined as follows. Given
(x,v) € TM, consider the unique solution x : R —~ M of the Euler-Lagrange equation
with initial conditions '

x(0) = x, x(0) =
Now define ¢, : TM — TM by

b (x,v) = (x(2), X(2)).
Recall that the energy E : TM — R is defined by

E(x,v) = -a—L(x, v).v - L(x, v).
ov

Since L is autonomous, E is a first integral of the flow ¢;. Observe that forallx € M, E
restricted to T, M is a function that achives its minimum at (x, 0). Let us set

e =max E(x,0) = —~min L(x,0).
XEM XEM

Note that the energy level E~(k) projects onto the manifold M if and only k > e and
for any k > e, the energy level E~} (k) is a smooth closed connected hypersurface of TM
that intersects each tangent space TyM in a sphere containing the origin in its interior.

We shall denote by & : TM ~ T*M the Legendre transform which is defined by
(x,v) ~ % (x, v). Our hypotheses on L assure that & is a diffeomorphism. If © denotes
the canonical 1-form on T* M, then the Euler-Lagrange flow of L can also be obtained as
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the Hamiltonian flow of E with respect to the symplectic form on T M given by - £*d@.
In other words, if X denotes the vector field associated with the Euler-Lagrange flow then
ix£*do = -dE.

Recall that the action of the Lagrangian L on an absolutely continuous curve u :
[a, b] — M is defined by

b
AL(u)=/ L(u(t), u(r)) dt.
a

Given two points, x; and x; in M, denote by €(x,, x;) the set of absolutely continuous
curves u : [0,T] - M, with u(0) = x; and u(T) = x,. For each k € R we define the
action potential®; : M x M — R by

®r(xy, x2) = inf{Ap(u) : u € €(x,x;)}).
Marié showed [35], [9] that there exists ¢c(L) € R such that
- if k < c¢(L), then ®;(x;, x3) = — o0, for all x; and x,;
— ifk 2 c(L), then ®;(x;, xp) > —oo for all x; and x, and & is a Lipschitz function;
- if k 2 ¢(L), then
Dr(x),x3) < Pi(x), x2) + Pr(x2, x3),
for all x;, x; and x3 and
& (x1, ) + Pr(x2,x1) 20,
for all x; and x3;
- ifk > c(L), t/hen for x; #+ x, we have
Di(x1,x2) + Pp(x2,x3) > 0.
Observe that in general the action potential &; is not symmetric, however defi-
ningdy : M x M - Rby
di(x)1,x3) = ®p(x1, %) + Br(x2,17),

the properties above say that d; is a metric for k > ¢(L) and a pseudometric for k = c(L).
The number c(L) is called the critical value of L.

It is important for our purposes to indicate that the results above also hold for
coverings of M, i.e. suppose M is a covering of M with covering projection p. Take the lift
of the Lagrangian L to M which is given by

L(%, D) = L(p(%),d p(D)).
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Then we define for each k € R the action potential &, just as above and the results hold
for L. Thus we have a critical value for L.

Moreover, if M, and M, are coverings of M such that M, covers M;, then
c(Ly) < c(Lp), 2.1)

where L, and L, denote the lifts of the Lagrangian L to M, and M, respectively. Also note
that if M, is a finite covering of M, then

c(Ly) = c(Lp). (2.2)

Among all possible coverings of M there are two distinguished ones; the universal
covering which we shall denote by M, and the abelian covering which we shall denote by
M. The latter is defined as the covering of M whose fundamental group is the kernel of
the Hurewicz homomorphism m; (M) — H; (M, R). When m; (M) is abelian, M is a finite
covering of M.

The universal covering of M gives rise to the critical value

def

() F e,

and the abelian covering of M gives rise to the critical value

ca(L) L c(D).
From inequality (2.1) it follows that
cu(L) < cq(L),

which naturally raises the following,

Question. — Isit true that ¢, (L) = c,(L)?

The answer to this question is negative. In [44] we gave an example of a Lagran-
gian on a closed surface of genus two for which the inequality becomes strict.

We shall explain now the relationship between the critical values and Mather's
theory. We begin by recalling the main concepts introduced by Mather in [37].

Let.# (L) be the set of probabilities on the Borel o-algebra of T M that have com-
pact support and are invariant under the flow ¢,. Let H) (M, R) be the first real homology
group of M. Given a closed one-form w on M and p € H,(M, R), let {w, p) denote the
integral of w on any closed curve in the homology class p. If y € #(L), its homology is
defined as the unique p(y) € H,(M, R) such that

(w, p(u)) =/wdu.
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for all closed one-forms on M. The integral on the right-hand side is with respect to u
with w considered as a function w : TM — R. The function p : #(L) — H; (M, R) is sur-
jective [37]. The homology of an invariant measure is the projection of Schwartzmann’s
asymptotic cycle [51}].

The action of p € 4 (L) is defined by

Ap () =/Ldu.
Finally we define the function 8 : H(M,R) — Rby
B(y) =inf{AL(p) : p(u) =¥}

The function B is convex and superlinear and the infimum can be shown to be a mini-
mum [37] and the measures at which the minimum is attained are called minimizing
measures. In other words, u € (L) is a minimizing measure iff

Blp(p)) = AL(p).

Let us recall how the convex dual & : H!(M,R) —~ R of B8 is defined. Since B is convex
and superlinear we can set

a(fw]) = max{{w,y) - B(y) : y € Hi(M,R)},

where w is any closed one-form whose cohomology class is [w]. The function « is also
convex and superlinear. It is not hard to see that [37}:

a([w]) = —min {/(I. —w)du: pe JL(L)} . (2.3)

M.J. Dias Carneiro proved [12] that if 4 is a minimizing measure with homology
¥, then its support is contained in a fixed energy level k and k = a([w]), where [w] is
the slope of a supporting hyperplane through (y, 8(y)).

Manié€ {35}, [9] established a connection between the critical values of a Lagran-
gian and «, the convex dual of Mather’s g function. He showed that

c(L) = —min {/Ldu T HE .ll/(L)} , 2.4)

and therefore combining (2.3) and (2.4) we obtain the remarkable equality
c(L - w) = a([w]), ' (2.5)
for any closed one-form w whose cohomology class is [w].

Much more can be said about the support of the minimizing measures, but first
we give a few definitions. Note that for every absolutely continuous curve u : [a, b] - M
and all k > c¢(L) we have

Ap+r(u) 2 ®x(u(a), u(b)) 2 —dx(u(b), u(a)). (2.6)
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We say that an absolutely continuous curve u : [a, b] — M is semistatic if

Apsen) (Ul (g,61) = Pery (u(h), u(ny)),

foralla < t) < 1 < b; and that is staticif

AL+c(L)(u|[|o,r,]) = —‘I’c(L)(U(t])p u(lo)),

foralla < tp < ) < b. Clearly, by (2.6) a static curve is semistatic. Semistatic curves are
solutions of the Euler-Lagrange equations because of their minimizing properties. Also it
is not hard to check that semistatic curves have energy precisely c(L). Mafié shows that
a measure is minimizing with homology y if and only if its support is contained in the
set of all static curves of the Lagrangian L - w, where [w] is the slope of a supporting
hyperplane through (y, B(y)). He also shows that the set of statics curves of a Lagran-
gian is a Lipschitz graph, thus recovering and generalizing the celebrated Lipschitz Graph
Theorem of Mather [37]. Maiié describes in [35] several recurrence properties between
static and semistatic curves as well as coboundary properties and other graph proper-
ties. Using a “weak KAM theorem”, A. Fathi [14], [15] gives new proofs of several of these
properties and he obtains new ones. Fathi's weak KAM theorem is obtained studying a
semigroup of nonlinear-operators (T;”),;>o defined as follows: for v € C%M, R), set

t
T, v(x) = inf{v(y(0)) +/ L(y(s),y(s)) ds | y: [0,2) = M C' and y(¢) = x}.
(V]

Let#*“ (L) denote the set of all minimizing measures p such that [w] is the slope.
of a supporting hyperplane through (p(u), B(p(u))). Concerning the structure of the set
At (L) we would like to mention the following important genericity result (cf. [35]}, [36],
[10)): there exists a generic set #(w) € C* (M, R) such that for all y € ¢(w) the Lagran-
gian L + ¢ has a unique minimizing measure in £ (L + ) and this measure is uniquely
ergodic. When this measure is supported on a periodic orbit, this orbit is hyperbolic. It is
conjectured in [35] that there exists a generic set #(w) € C”(M, R) such that such that
for all ¢ € 6(w) the unique minimizing measure in £“ (L + ) is always supported on
a periodic orbit.

Finally, Mané defined the strict critical value of L as

(L) E min{c(L - w) : [w] € H(M,R)} = —B(0).

We showed in [44] that the strict critical value of L equals the critical value of the lift of L
to the abelian covering of M, that is, c;(L) = ¢p(L).

In [35] Maiié describes an example of the form kinetic energy plus a magnetic
field and a potential for which e < ¢(L). The following theorem from [44] gives a large
class of Lagrangians verifying the sharper inequality: e < ¢, (L) (it is quite easy to check
that the inequality e < ¢, (L) always holds):

THEOREM 2.1. — Let 0 be the 1-form on M given by

0
0:(v) = —L(x.o)(v).
ov
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If 9 is closed then
e=cy(L).
Suppose in addition that L(x,0) = 0 forallx € M. Ife = c,(L), then @ is closed.
Let M be a closed manifold endowed with a Riemannian metric and let @ denote a

smooth 1-form on M. Consider a Lagrangian of the type kinetic energy plus a magne-
ticfield, i.e.,

L(x,v) = % (v, V) + 0,(V).

The energy function associated with L is

E(x, v) = ‘;‘ (V, v)x,

therefore in this case e = max,cp E(x,0) = 0. If @ is not closed, Theorem 2.1 immediately
implies that ¢, (L) > 0.

Finally, let us describe a new geometric way of obtaining the critical values. In
{11} we showed:

THEOREM 2.2. — For any coveringﬁ we have
c(L) = inf{k € R : H!(—e, k) contains an exact Lagrangian graph},

where H is the Hamiltonian associated with L.

An exact Lagrangian graph is a set of the form (x, d; f), where f is a smooth function on
M. Albert Fathi has also obtained independently a proof of the last theorem based on his
weak KAM solutions.

3. Anosov energy levels

One of our aims will be the study of Anosov energy levels, that is, regular energy le-
vels with a connected component on which the flow ¢, is an Anosov flow. Let E°@ ES@ E*
denote the Anosov splitting of such energy level, where E° denotes the one dimensional
subbundle generated by the flow direction and E** denote the strong stable and strong
unstable bundles respectively. It is well known that the bundles E® @ E* and E° @ E“ are
Lagrangian subbundles.

Letm : TM — M denote the canonical projection and, if (x, v) € TM, let V(x, v)
denote the vertical fibre at (x, v) defined as usual as the kernel of dm(; ) : Tix,) TM —
M.

We showed in [40] the following key result:

THEOREM 3.1. — For every point in an Anosov energy level, the bundles E° ® E*
and E° e E" are transverse to the vertical bundleV .
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It is not hard to check that this property implies that the energy level has to pro-
ject onto the manifold and therefore if k denotes the energy of the level, we must have
k > e. Moreover, it can be proved that the transversality property stated in the theorem
implies that there are no conjugate points in the energy level [40, Proposition 3]. Conju-
gate points, means, as usual, pair of points (x;,v;) = (x2, ) = ¢,(x, 1) such that
de,(V(x;, 1)) intersects V (x;, v2) non-trivially. In this way the theorem generalizes a
well known result of Klingenberg [31] for geodesic flows (cf. also [33}). The results that
we obtained in [40] are much more general than Theorem 3.1. We showed that if on the
given energy level there exists a continuous invariant Lagrangian subbundie, then it must
be transverse to the vertical bundle; from this result the theorem clearly follows. We shall
give now a sketch of a proof of Theorem 3.1 based on a result of J.E Plante [50]. But first
we need some remarks and a lemma.

Letussetv = £*© and = = E~! (k). Note that (dv)"! = dA, where A is a 2n-3-
form. Let us denote by X the Euler-Lagrange vector field. Take a vector field Y such that
dvix (Y (x,v),X(x,v)) =1forall (x,v) € X. Such a vector field always exists since Z is
a regular energy level. Then we have

ixiy(dvAa..Adv)is=dvA..Andv.

n n-1

Let us define avolume formonX by Q : = iy(dv A ... A dv). It follows that
e, po——

ixQ=dv A..Andv=dA,
(SRS At

n-1

and hence ¢, preserves the volume form Q. Let uq denote the smooth invariant pro-
bability measure induced by Q. Observe that in general there may exist many invariant
volume forms on Z and therefore many smooth invariant probability measures. Howe-
ver, if the energy level is Anosov, there is only one smooth probability measure and we
shall call it the Liouville measure and it will be denoted by y;.

We can associate to the measure uq an asymptotic cycle p (cf. [51]) which is the
element of H, (Z, R) defined by

plp) = /‘p(X) dugq,
b3
where @ is a closed 1-formin Z.

LEMMA 3.2. — Theasymptotic cycle of uq vanishes.
Proof: We need to show that

/¢(X)Q= 0;
z

where @ is any closed 1-form. But
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/cp(X)Q=/ixQA<p=/(dv)""A¢=/dAA¢=/d(AA¢)=0.
z b s s = o

Let us explain now how derive Theorem 3.1. By Lemma 3.2, the Liouville measure
of the Anosov energy level has vanishing asymptotic cycle and by a result of Plante [50)
the closure of the set of primitive closed orbits of ¢, in Hy(E~!(k), R) is the closure of a
convex open set containing the origin in its interior. Thus if « : Hj(E~}(k),R) — Risany
non-trivial cohomology class, there exists a closed orbit y of ¢, such that a(y) < 0.

Suppose now that for some (x,v) € E~!(k), E(x,v) n V(x,v) = {0}, where E
stands for the weak stable or the weak unstable subbundle of ¢,. Then (cf. {40, Propo-
sition 4]) the Maslov class m € H!(E~!(k), R) associated with E is non-trivial. On the
other the convexity of the Lagrangian implies that if y is any closed orbit of ¢,, then
m(y) 2 0 [5], {13]. This contradiction completes the proof of the theorem. o

We note that from Lemma 3.2 (which rules out the case of a suspension) and
results in [49] it follows that the Euler-Lagrange flow restricted to an Anosov energy level
must be topologically mixing and that the strong stable and strong unstable manifolds
must be dense in the energy level.

Motivated by our results, Mafié posed us the following question,

Question. — If the energy level k is Anosov, is it true that k > ¢o(L)?

In [44] we gave a negative answer to this question, however in [11] we showed,

THEOREM 3.3. — Ifthe energy level k is Anosov, then

k> cy(L).

Note that it follows from the result of M.]. Dias Carneiro quoted in Section 2 that if
p is a minimizing measure, then its support is contained in a fixed energy level k with k >
¢o(L). Our examples in [44] show that Anosov energy levels on manifolds with non-zero
first Betti number do not necessarily contain minimizing measures and makes Theorem
1.1 in the introduction meaningful!

Let M be a closed manifold endowed with a Riemannian metric and let 8 denote a
smooth 1-form on M that is not closed. Consider a Lagrangian of the type kinetic energy
plus a magnetic field, i.e,,

L(x,v) = % (v, V)5 + 0x(V).

Suppose that the geodesic flow associated with the Riemannian metric is Anosov. Then
by structural stability the Euler-Lagrange flow of L is Anosov for any sufficiently large
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value of the energy. However, Theorem 3.3 shows that it cannot be Anosov for all values
of the energy otherwise ¢, (L) = 0 and we know by Theorem 2.1 that ¢, (L) is positive
if 6 is not closed. Let & denote the smallest possible value of the energy such that for
all k' > & the energy level k’ is Anosov. Theorem 3.3 immediately implies the following
lower bound for &.

COROLLARY 3.4. —

& 2 cy(L).

In [42) we obtained lower bounds for & in terms of 40 and the curvature tensor of M and
we proved through different methods that & cannot vanish if 8 is not closed. Another
interesting class of Lagrangians is the following. A Lagrangian L is said to be simple if
there exist a real number R > 0 and a smooth convex function @ : R* — R such that

Lix,v) = @(lIv112) for l|vllx > R.

Clearly for high values of the energy, the Euler-Lagrange flow of L is a reparametrization
of the geodesic flow of the Riemannian metric || ||. If the geodesic flow is Anosov then
we can consider as before a number & that is given by the smallest possible value of
the energy such that for all k > & the energy level k is Anosov and we also have that
& 2 cy(L).

We shall prove next several important properties of Anosov energy levels similar
to those of geodesic flows. We shall need these properties for the proof of Theorem 1.1.

Suppose that the energy level k is Anosov and set = 4t -3¢ k). Observe first that we
could rephrase Theorem 3.1 by saying that the weak stable foliation 2¢* is transverse to
the fibres of the fibration by (n — 1)-spheres given by

iy : T - M.

Let M denote the universal covering of M with projection p : M — M. Let £ denote the
liftingof Zto TM viathemapdp : TM — TM. Observe that X coincides with the energy
level k of the lifted Lagrangian L. We also have a fibration by (n ~ 1)-spheres

~ ~

Ttlg: 2 — M.

Let 9/* be the hfted foliation which is in turn a weak stable foliation for the Euler-
Lagrange ﬂow of I restricted to 2. The foliation 9/ is also transverse to the fibration
s : : ¥ — M since the map d pis alocal dlffeomorphxsm Since the fibres are compact a
result of Ehresman (cf. [8]) implies that for every v € £ the map

M5y : W (V) = M

is a covering map. Since M is simply connected, 7|3 %i+(y) is in fact a diffeomorphism and

@I"(v) is 51mply connected. Consequently, %7 (v) intersects each fibre of the fibration
frly : : ¥ —~ M at just one point and therefore the space of leaves &* of the weak stable
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foliation can be identified topologically with the (n - 1)-sphere. Similarly the space of
leaves Z“ of the weak unstable foliation is also an (7 — 1)-sphere. Note that 11, (M) acts
on F*4,

Let us assume now that M admits a Riemannian metric of negative curvature.
Then we have the following two lemmas.

LeMMA 3.5. — Suppose that the energy level k is Anosov. There is no periodic orbit
of ¢, with energy k whose projection to M is null-homotopic. If o denotes a non-trivial
Jfree homotopy class of M, then there exists a unique closed orbit of ¢, with energy k such
that its projection to M belongs to the homotopy class o.

LeEMMA 3.6. — Let y denote and element of m\ (M) acting on F". Then there exists
two fixed points a* and a~ fory such that if p is any point in F", then
lim y"(p) = a*,
n—+o

lim y"(p)=a".
n—-o

Clearly a similar lemma holds for y acting on #°.

Let us prove the lemmas. The transversality property and Lemma 3.1 in [21] im-
plies that a solution of the Euler-Lagrange equation with energy k in M is a quasi-geodesic
with respect to the background Riemannian metric and as a consequence using exactly
the same methods in the proof of Theorem 4.5 in [21] we deduce that the Euler-Lagrange
flow of the energy level k is topologically conjugate to the geodesic flow of the Rieman-
nian metric. It is well known that the geodesic flow of a negatively curved manifold has
the properties stated in the two lemmas. Using the orbit equivalence between the flows
we immediately obtain the same properties for the Euler-Lagrange flow in the level k,
thus proving the lemmas.

In [6], P. Boyland and C. Golé proved that under certain hypotheses on the La-
grangian there are minimizers (in the universal covering) which are quasi-geodesics and
using them they show the existence of a collection of compact invariant sets of the Euler-
Lagrange flow that are semiconjugate to the geodesic flow of an underlying hyperbolic
metric.

4. Regularity of the Anosov splitting

We describe in this section the results obtained in {46} for twisted geodesic flows.
In the next section we shall prove Theorem 1.1 stated in the Introduction.

Let M”" be a closed n-dimensional manifold endowed with a C* Riemannian me-
tric{, ),andletw : TM - M denote the canonical projection. Let wy denote the sym-
plectic form on TM obtained by pulling back the canonical symplectic form of T* M via
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the Riemannian metric. Let H : TM — R be defined by

H(x,v) =-;—(v,v).

The Hamiltonian flow of H with respect to wq gives rise to the geodesic flow of M. Let
Q be a closed 2-form of M which does not vanish identically and consider the new sym-
plectic form w, defined as:

wj def wo+A*Q, A€R.
Such a form is called a twisted symplectic structure [1) and the Hamiltonian flow of H
with respect to w, gives rise to a flow ¢} : TM — TM that we shall call twisted geodesic
flow. This flow models the motion of a particle of unit mass and charge A under the effect
of a magnetic field, whose Lorentz force Y : TM — TM is the bundle map uniquely
determined by:

Ql(u’ v) = (Yx(u); U) ’

for all u and v in TyM and all x € M. Observe that ¢ preserves all the energy levels

H = const, in particular SM def -1 (1/2). From now on let us consider the restriction of

¢? to SM.

Various properties of these flows were studied in {42], [43]. For example, we sho-
wed that if we start with an Anosov geodesic flow ¢9 and we increase the value of A we
must exit the set of Anosov flows for some critical value A, < o« and that the topological
entropy presents a strict global maximum at A = 0 when restricted to (—=A.,A;).

In [46] we studied a new feature of the twisted geodesic flows, namely the regu-
larity of the Anosov splitting. If A € (=A., A.), let us denote by E{  Ef @ EY the Anosov
splitting of ¢}, where E{ denotes the one dimensional subbundle associated with the
flow direction and E;'“ denote the strong stable and strong unstable bundles respecti-
vely.

If dim M = 2 then E{ @ Ej and E? ® E} are both of class C!**1%8* by results of
S.Hurder and A. Katok [28]. In particular, when A = 0, i.e. for geodesic flows, this implies
that E§ and EJ are both of class C!*1°8* since the geodesic flow is of contact type. Also,
if M has 1/4-pinched negative sectional curvature, E§ and E}* are both of class C! [27]. If
one assumes that E5 and Ej are both of class C* then combining results of Y. Benoist, P.
Foulon and F. Labourie [3] with results of G. Besson, G. Courtois and S. Gallot [4] it follows
that M must be locally symmetric, thus generalizing and improving previous results of
M. Kanai, A. Katok and R. Feres {30], {16}, [17], {18]. Most likely the same result is true
assuming only that E§ and E} are both of class C? but this is only known for surfaces [22]
and for small deformations of hyperbolic metrics by results of U. Hamenstadt [23] and L.
Flaminio [19]. We refer to [24] for more on the regularity of the Anosov splitting.

For twisted geodesic flows assuming C! regularity already implies rigidity provi-
ded that Q is an exact form:

THEOREM 4.1. — Let M be a closed Riemannian manifold whose geodesic flow is
Anosov. Suppose(Q is exact. Then Ef and E* are never both of class C' unlessA = 0.
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1f the cohomology class of Q is not trivial, the theorem is no longer true as it can
be easily seen by looking at the case of a surface of constant negative curvature and Q the
area form. More generally consider a compact locally symmetric space of non-constant
negative curvature (n > 4). Let },,..., Ja-; be the parallel orthogonal endormorphisms
defining the complex (d = 2), quaternionic (d = 4) or Cayley (d = 8) hyperbolic structure
of M. If we consider the 2-form Q naturally associated each J; (1 < i < d — 1) theniitis
straightforward to check that the splitting is C*.

Problem. — Are these are the only cases in which the splitting can be C! for
A=0?

Observe that for surfaces, E§ and E}* are both of class C! if and only if E§ @ Ey is
of class C!. If T, denotes the one-form that vanishes on E{ & E; and takes the value one
on the vector field associated with ¢?, then the theorem is saying, for the surface case,
that 7, is of class C! ifand only if A = 0. Note that T is C* and coincides with the contact
form « of the geodesic flow.

].E Plante [49] gave the first examples of volume preserving Anosov flows for
which the strong stable and unstable bundles are not both of class C!. His examples
are also volume preserving perturbations of Anosov geodesic flows, but he used the fact
that the asymptotic cycle (cf. [51]) of the measure induced by the volume form was not
zero for the perturbed flows. It is not hard to see that ¢} preserves the volume form
« A (dx)™1 and therefore the Liouville measure u; of SM. Using the same arguments
as in Lemma 3.2 it follows right away that the asymptotic cycle of ¢ with respect to y;
vanishes for all A (provided that M is not a 2-torus). It follows that no argument like in
[49] can be used to show the non-smoothness of the bundles E; and Ey’, even in the
surface case.

The proof of theorem is based on a combination of a result of U. Hamenstddt in
[23] and the theory of convex superlinear Lagrangians described in Section 2. By writing
Q = d#, the twisted geodesic flows can also be obtained as the Euler-Lagrange flows of
the one-parameter family of Lagrangians

Li(x,v) = % (0, V) — ABx(v).

The energy function of these Lagrangians is E(x, v) = -;- (v, v) and we are interested in
the level 1/2. The proof of the theorem splits into the three cases:

- 172> ¢o(Lp);
- 1/2=c(La);

- 1/2 < ¢g(Lyp).

As we explained in Section 3, the three cases may indeed occur as long as we do not make
any smoothness assumption on the bundles E; and E;’. Each case gives rise to different
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variational properties that allow us to prove the theorem. In fact one shows that if E{ and
E} are both of class C? then the last two cases cannot occur and that in the first case we
must have A = 0. In the next section we shall use similar ideas to prove Theorem 1.1.

5. Proof of theorem 1.1

Let us prove the theorem stated in the Introduction. We shall need first two lem-
mas.

LemMMA 5.1. — If © denotes the canonical 1-form in T*M and X the Euler-
Lagrange vector field associated with the Euler-Lagrange flow, then

(£*0) X)lg-14y = L+ k.

Proof: Let us denote by n : T*M — M the canonical projection. Using the defi-
nition of the Legendre transform we have

oL
(Z*O)(X)(x,v) = Opxn(dixnZ(X)) = a"(x. V) (Aex,nyn(dixnZ(X))).
But since
d.’ﬂ(x.v)n(d(x.u)g(x)) =din(ne £)X) = d(x,u)'n'(x) =P,

we have
oL
(Z£*0)X)(x,v) = E(x' v)(v).

On the energy level k we have

L(x,v) + k= EE(Jr, v)(v),
ov

thus concluding the proof of the lemma. o

Set as before v = 2*0©. Let us recall from Section 3 that each regular energy level
E~1(k) possesses an invariant volume form Q that induces a smooth invariant proba-
bility measure un with vanishing asymptotic cycle. The volume form is given by Q =
iy (dv)", where Y is a vector field such that dE(Y) = dv(Y,X) = 1 on E~}(k). Since
dE(Y) = 1, the vector field Y “points outwards” the manifold with boundary V; def
E~1(-o0, k). Let us orient TM such that (dv)" is a positive volume form. The manifold
with boundary Vi ¢ TM inherits this orientation and induces a boundary orientation on

E~Y(k).Inother words, {1, ..., uzn-1} is a positively oriented basis of a tangent space to
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E~Y(k)iff Q(uy, ..., usn-1) = (@V)™(Y,uy,..., uzn-1) > 0. Therefore Q is positive in the
induced orientation of E~! (k).

LEMMA 5.2. — For any regular energy level E~* (k) we have:

/ (L+k) d[.ln > 0.
E~Yk)

Proof: We shall consider Vi and E~! (k) oriented as in the previous paragraph. By
Lemma 5.1 it suffices to show that

/ v(iX)Q > 0.
E-Y(k)

Using Stokes theorem we have:

/ viX)Q = / v AixQ =/ vA@v)©l= | (dv)".
E-Y(k) E-Yk) E-Y(k) Vi

But the last integral is positive because of our choice of orientation. o

Let T denote the one-form that vanishes on E*® E* and takes the value one on the
vector field X. If the splitting is of class C! then T is also of class C? and d is a continuous
two-form invariant under the Euler-Lagrange flow. U. Hamenstéddt showed in {23], for
the geodesic flow case, that any continuous invariant exact two-form must be a constant
multiple of the symplectic form provided that the splitting is of class C'. Hamenstadt's
proof carries over to the case of Euler-Lagrange flows without major changes using the
results from Section 3, particularly Lemma 3.6 if we assume that M admits a Riemannian
metric of negative curvature. However, for completeness sake we include a proof of this
fact at the end of this section (cf. Theorem 5.5 below). '

It follows that there exists a constant x such that:

dt = x2*do,
and thus
d(t —x2*0) =0.
Let us write
® &~ x2*e.

Then @, is a smooth closed one-form on E~! (k). Using Lemma 5.1 we obtain

@(X)(x,v) =1 - x(L(x,v) + k). 5.7)
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Integrating the last equality with respect to the Liouville measure y; of E~} (k) and using
that the asymptotic cycle of y; vanishes (cf. Lemma 3.2) we have

0=1—x/ (L+k)dy;.
E-Yk)

Lemma 5.2 implies that x > 0.

It follows from the Gysin exact sequence for sphere bundles that if k > ethen the
map
n* : H'(M,R) = HY(E™}(k), R),

is an isomorphism, provided that M is not diffeomorphic to a 2-torus. Therefore there
exist a closed smooth one-form & in M and a smooth function f : E~!(k) — R such that

p=n*6+df,
and hence equation (5.7) together with the fact that d(,,,ym(X (x, v)) = v gives
6,(v) +d f(X)(x,v) =1- x(L(x,v) + k). (5.8)

Let u be any invariant measure whose support is contained in E~? (k) and whose homo-
logy p(u) vanishes. If we integrate the last equality with respect to u we obtain:

/ (L+k)du=1/x>0 (5.9)
E-1¢k)

We want to show that if the splitting is C! in the energy level E~(k), then k >
¢o(L). We shall see that if we suppose k < ¢p(L) we shall obtain a contradiction to in-
equality (5.9).

- k=co(L).
Take a minimizing measure u such that p(u) = 0. It satisfies

B(0) = / Ldp.

The result of M.J. Dias Carneiro explained in Section 2 assures that the support of
u is contained in the energy level —B(0) = ¢ (L) = k and therefore

/ (L+k)du=0.
E-1(k)

But this contradicts inequality (5.9) and hence the case k = ¢ (L) cannot occur if
the splitting is of class C'.

- k < ¢(L).

In this case the contradiction to inequality (5.9) is an immediate consequence of
the following proposition which has independent interest. Recall that by Theorem
3.3weknowthat k > c,(L).
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PropPOSITION 5.3. — Ifc, (L) < k < cy(L), there exists an invariant measure y
whose support is contained in the energy level k, p(p) = 0 and

/ (L+k)du<0O.
E-YNk)

Proof: We shall use the following result of Mafié [35], [9] that exhibits the rele-
vance of the critical values for variational problems on fixed energy levels.

THEOREM 5.4. — Suppose k > cy(L). Then, givenx; * x3 in M, there exists a
solution x : R — M of the Euler-Lagrange equation with energy k such that for some
T > 0,x(0) =x,x(T) = x;, and

Aj i (xlor)) = 3 (x1, x2).

Since k < (L) = c,(L) there exists T > 0 and an absolutely continuous closed
curve u : [0, ly] — M homologous to zero such that

Ap.x(u) <0. (5.10)

For n > 1, let us denote by u" : [0,nTy] — M the curve u wraped up n times. Since
k > c,(L), u" cannot be homotopic to zero otherwise we would contradict (5.10). If
p: M — M denotes the covering projection, let us pick a point y € M such that p(y) =
u(0) = u(Ty). Let un : [0,nTp] — M denote the unique lift of 4" such that u™(0) = y.
Set y, = u"(nT). Let us provide M with a Riemannian metric and lift it to M. Since
p(yn) = u(0) for all n it follows that d(y,y,) — o otherwise some power u" would be
homotopic to zero.

By Theorem 5.4 there exists for each n a solution x,(¢) of the Euler-Lagrange
equation with energy k such that for some 7, > 0, x,(0) = y, x,(Tp,) = y, and

Aj i (xnlio,1)) = (¥, yn)- (5.11)

Since the solutions have energy k, there exists a constant a such that ||xX,(t)]| < afor all
n and all t. Therefore

d(}'.yn) < aTn.

It follows that T, — . Let u, denote the probability measure in TM uniformly distri-
buted along p ¢ x,|(0,7,) and let 4 denote a point of accumulation of u,. Since all the x,,
have energy k, the support of i is contained in the energy level k. Equality (5.11) implies
that

Az, (Xnlio,1)) < Ap,  (UP),
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hence
Apk(po xnlio,1,) < nALk(u) <0,

which implies by taking limits that
/ (L+k)du<0.
E-Y(k)
To finish the proof observe that u is clearly invariant and that if w is a closed 1-form then

(p(p), w) = Tlim 2 w=0,

n=% In J pexnlio,1n)

since the curves p o x,|[o,1,) are all homologous to zero because they are homotopic to
the u"’s. o

To finish this section we prove:

THEOREM 5.5. — Suppose that M admits a Riemannian metric of negative curva-
“ture and suppose that the energy level E-} (k) is Anosov with a splitting of class C!. Let n
be a continuous exact 2-form defined on E~* (k) and invariant under the Euler-Lagrange
flow ¢,. Then n is a constant multiple of the symplectic form £* d©.

Proof: This theorem was proved by U. Hamenstédt in [23] for geodesic flows. We
shall explain now why her proof extends to the case of Euler-Lagrange flows. Observe
that the theorem is a straightforward consequence of ergodicity if n = 2.

Letuswriten =dtandv def *@. First note that since nis ¢,-invariant, ixn = 0.
Also there exists abundle map G : E* @ E¥ - E° @ E¥ such that G is ¢, -invariant and

n(x,y) = dv(Gx,y),

forxand yin E° @ EY.

Let us define

A= / v A (dv)™ L.
E-Yk)

Note that A # 0 since by Stokes theorem, A also equals the integral of the volume form
(dv)" on the region of TM bounded by the energy level E~} (k).

Consider the function F : R — R given by

F(r)=/ (T-rv) Adv)* L.
E-1(k)
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Since F'(r) = -A, it follows that there exists x € R such that F(x) = 0. Letusset 8 =
T — xv. Clearly dB is ¢,-invariant and ixdB = 0. By ergodicity, there exist constants c;
such that

(dB) A (av)"1! = ci(dv)™,
and thus
vAdB) A@V)" Vi =cva(dv)tl.
Integrating by parts one finds that
ci-1F(X) = ciA,

and therefore all the ¢; must vanish. It follows that G can be written as xId + B, where
B: E°e® EY — E® ® E" is a nilpotent map. Next we note that E° and E" are invariant

subspaces for B. Let B® and B* denote the map induced by B on E* and E* respectively.

We shall show that B* and B* vanish. Let Q(v) def per B*(v). Choose an open dense ¢,-

invariant set U ¢ E~!(k) on which Q is a continuous subbundle of E*. Now the key step
is Lemma 4.3 in [23] which shows that Q|y is an integrable subbundle (here one uses
that the splitting is C'). Using the holonomy transport along the weak unstable foliation
(one also needs here the splitting to be C!) we can construct as in [23, Lemma 3.4] a C°-
foliation on the energy level k of the universal covering of M. This C°-foliation descends
to the space of leaves #* and induces a C°-foliation, which by construction, is invariant
under the induced action of m; (M) on #¥. By Lemma 3.6 an element y of (M) has
a dynamics of type “North-South” on the sphere F*. By a result of P. Foulon [20] a C°-
foliation which is invariant under a map like y must be trivial and therefore B* must
vanish identically. The argument to prove the vanishing of B is completely similar. ¢

6. Expansive energy levels

Recall that a flow ¢, : W — W on a compact metric space (W, d) is said to
be expansive if given £ > 0 there exists § > 0 such that if there is an homeomorphism
T:R — R, 7(0) = 0, such that

d(br)(y), d1(x)) < 6,

forall t € R, then y = ¢;(x) where | f |< & Anosov flows and suspensions of Pseudo-
Anosov maps are examples of expansive flows.

In [47] the second author showed that if the geodesic flow on a closed surface M
is expansive, then there are no conjugate points and the flow is topologically conjugate
to the geodesic flow of a metric of constant negative curvature.

An expansive energy level is a regular energy level with a connected component
on which the Euler-Lagrange flow is expansive. We shall assume in what follows that M is
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a closed oriented surface. In this section we show the following theorem that generalizes
and completes the results in [41]. Our proof will be based on results of M. Brunella [7]
and T. Inaba and S. Matsumoto [29].

THEOREM 6.1. — If the regular energy level E~* (k) is expansive, then:
-k>e
— the energy level is free of conjugate points;

— on theenergy level, the Euler-Lagrange flow is topologically conjugate to the geodesic
flow of a metric of constant negative curvature.

Recall that a manifold is said to be aspherical if its universal covering is contrac-
tible. We need the following lemma.

LEMMA 6.2. — Ifk < e, the connected components of energy level E~} (k) are not
aspherical.

Proof: Let 2 be a connected component of E~! (k). If k < ethen, m(Z) isasmooth
compact surface with boundary and the boundary is a finite union of circles, let us say k.
Let M* denote the closed surface obtained from m(Z) by glueing disks to the boundary
circles. Note that we can still regard X as a smooth hypersurface in TM*. Let M* denote
the universal covering of M* with covering projection p. Let £ denote the lift of = to
T M* via d p. Since £ is a covering of X it suffices to show that I is not aspherical. If we
still denote by r the projection TM* ~ M*, then m(£) is a surface with boundary and
the boundary is a union of contractible circles in M. There will be at least two circles
unless M* is a sphere and k = 1. In this case it is very easy to check that £ is a 3-sphere
which is certainly not aspherical. Therefore let C; and G; denote two distinct circles in the

boundary of (£). The sets I; def -1 (C;) n Zfor i = 1,2 are smooth embedded circles
in £. Lety : [0,1] — m(£) denote a simple curve such that y(0) € G and y(1) € G, and

y(t) ¢ GuGfort € (0,1).Theset Q del -1 (y([0,1])) n £ is an embedded two-sphere
in £ and it is quite simple to check that the intersection number of Qwith T or I is +1.
Therefore Q is not homotopic to a point in £ and therefore m,(£) = {0} showing that £ is

not aspherical. o

Let us describe some important facts about expansive flows. Let W be a closed
oriented 3-manifold endowed with a Riemannian metric. Let ¢, : W — W be a smooth
expansive flow with associated vector field X . Let us suppose that X (x) + Oforallx € W.
Define

H.(x) = {exp,v: llvll <& and (X(x),v)=0}.

For £ > 0 small enough, H,(x) is a family of transverse local sections to the flow. It is easy
to see that ¢, is expansive if there exists 0 < a < & such that if there is a continuous
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increasing surjective function T,y : [0, ) — [0, ), T4,(0) = 0 for which

¢:(y) € Ha(d"r,_y(t) (x)),

forallt € R, thenx=y.

For § < a define the stable sets S5(x) as

Ss(x) = {y € Hs(x) : ¢, (y) € Hs (1, y(1) (X)) for ¢t > 0 and for some continuous

increasing surjective function 7, : [0, ) — [0, ), T;,(0) = 0}.

Analogously for ¢ < 0 we define the unstable set Us(x).

We say that x € W has a local product structure if there exists a homeomorphism
of R? onto an open neighborhood of x in H, (x) that maps horizontal (vertical) lines onto
open subsets of local stable (unstable) sets. The main consequence of expansivity is the
following proposition which is proved in [48] (see [32], [26] for the discrete version).

ProrosITION 6.3. — Except for a finite number of periodic orbits, whose points we
shall call singular, every point of W has a local product structure. If x is a singular point,
Ss(x) is a union of r arcs, r 2 3, that only meet at x.

We are now ready for the proof of Theorem 6.1. Inaba and Matsumoto showed
[29] that a closed 3-manifold that supports a non-singular expansive flow must be as-
pherical. Therefore by Lemma 6.2 we must have that k > e (note that e is not a regular
value of the energy). When k > e, the energy level 2 def £-1(k) is a circle bundle over
M and by a result of Brunella [7] ¢, |5 is topologically conjugate to the geodesic flow of
a metric on M of constant negative curvature. It follows then, that there are no singular
points and that the stable sets give rise to a continous foliation on Z. Hence we can attach
to each continuous closed curve o : ' — X a Maslov type index m(«) just as it was done
in [47] for the geodesic flow case. This index defines an integer cohomology class and it
is roughly the winding number of the stable foliation around «. As a consequence of the
convexity we have the following two basic properties which are proved very much in the
same way as in [47] for the geodesic flow:

1. if « is a closed orbit of ¢, then m(«x) > 0;

2. if x is a closed orbit of ¢, then m(«) > 0 if and only if the orbit & has conjugate
points.

Now note that since ¢, |5 is topologically conjugate to the geodesic flow of a me-
tric on M of constant negative curvature, the closure of the set of primitive closed orbits
of ¢, in H)(Z, R) is the closure of a convex open set containing the origin in its interior,
since the same property holds for the geodesic flow of a compact negatively curved ma-
nifold. Thus if 8 : H; (2, R) — R is any non-trivial cohomology class, there exists a closed
orbit y of ¢, so that 8(y) < 0.
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Suppose now that the level X has conjugate points. Since the closed orbits of ¢,

are dense we can find a closed orbit « that possesses conjugate points and hence positive
index. Therefore the cohomology class m is non-trivial and has the property that if y is
any closed orbit of ¢,, then m(y) > 0. This contradiction completes the proof of the
theorem. o
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