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HYPERBOLIC DYNAMICS OF EULER-LAGRANGE FLOWS
ON PRESCRIBED ENERGY LEVELS

Gabriel R PATERNAIN

Abstract

The aim of this paper is to describe some recent résulte concerning the dyna-
mics of Euler-Lagrange flows on prescribed energy levels. We show that if an Anosov
energy level has a splitting of class C1 then it must contain minimizing measures with
non-zero homology.

1. Introduction

The aim of this paper is to describe some recent results concerning the dynamics
of Euler-Lagrange flows on prescribed energy levels. These results have been obtained
using variational methods. Throughout this paper the Euler-Lagrange flows the we shall
consider are generated by convex and superlinear Lagrangians on closed connected ma-
nifolds M.

A very interesting aspect of the dynamics of the Euler-Lagrange flows is given by
those orbits or invariant measures that satisfy some global variational properties, instead
of the local ones that every orbit satisfy. Research on these special orbits goes back to M.
Morse [39] and Hedlund [25] and has reappeared in recent years in the work of V. Bangert
[2], MJ. Dias Carneiro [12], A. Fathi [14], [15], R. Mané [35], [36] and J. Mather [37], [38].
For autonomous Systems, like the ones we are considering, these distinguished orbits
and measures have the remarkable property of living on certain energy levels related to
minimal values of the action. This link was discovered by M.]. Dias Carneiro [12] and later
exploited and enhanced by Mané in his unfinished manuscript [35]. The proofs of the
theorems stated in [35] have been given by Gonzalo Contreras, Jorge Delgado and Renato
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Iturriaga in [9], [10]. A key element in Mané's work is what he called the critica! value of
a Lagrangian, whose meaning and properties shall be explained in Section 2 as well as
its relation with Mather's theory. By considering the lift of the Lagrangian to a covering of
the manifold it is possible to obtain many different critica! values. Among them, there are
two which are particularly relevant the critical value cu(L) associated with the universal
covering and the critical value ca(L) associated with the abelian covering. It is quite easy
to see that cu (I) ^ ca (1), but in gênerai they may be different.

Using the machinery developed in Section 2, we shall be able to give various par-
tial answers to the following gênerai question:

Question. — What type ofdynamics can anse on a prescribed regular energy le-
vel?

The "types" of dynamics considered hère are those of hyperbolic nature. In Sec-
tion 3 we shall study regular energy levels on which the Euler-Lagrange flow is Anosov
and we shall explain the results obtained in [11], [40], [44], [45]. We find that the energy
of these levels has to be strictly bigger than cu(L) and the levels are free of conjugate
points. In Sections 4 and 5 we continue the study of Anosov energy levels, but we look
for those which have regularity properties of the Anosov splitting. We shall say that the
Anosov splitting is of class Ck if the strong stable and strong unstable bundles are both of
class C*. We find that Anosov energy levels with splitting of class C1 do not exist for an im-
portant class of Lagrangians, namely that given by a Riemannain metric and a non-trivial
magnetic field [46]. We prove in Section 5 a new resuit that links the existence of Anosov
energy levels with C1-splitting and the critical value ca(L). More precisely we show:

THEOREM 1.1. — Suppose that M admits a Riemannian metric of négative curva-
ture and suppose that the energy level k of the Lagrangian L is Anosov. If the Anosov split-
ting of thé energy level k is of class C1, then k > ca(L).In particular, the energy level has
minimizing measures with non-zero homology.

We should mention that there are examples of Anosov energy levels with energy
A: < ca(L) on surfaces of genus ^ 2 (cf. Section 2 and [44]). These levels do not support
minimizing measures and by the theorem, their splitting is never of class C1.

Finally in Section 6 we consider regular energy levels on which the Euler-Lagrange
flow is expansive and dim M = 2. We classify these levels up to topological équivalence,
and we find that they are also free of conjugate points. The results in this section genera-
lize and complete the results in [41].

Acknowledgement. — The author thanks the hospitality of IMPA while this work
was being completed.
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2. Critical values of Lagrangians

Let Mn be a closed manifold and Iet L : TM — R be a C°° Lagrangian satisfying
the following hypotheses:

- Convexity. For all x € M, the restriction of L to TXM has everywhere positive défi-
nite Hessian.

- Superlinear growth. Let 11 11 dénote a Riemannian metric on M. Then

.. L(x, v)
hm - +00,

llvll-« \\v\\

uniformly on x e M. This condition is clearly independent of the choice of Rie-
mannian metric, since M is compact.

Since M is compact, the Euler-Lagrange équation,

dt \dv ) dx

générâtes a smooth complete flow <f>t : TM — TM which is defined as follows. Given
(x, v) e TMt consider the unique solution x:R-+Mof the Euler-Lagrange équation
with initial conditions

x(0) - x, x(0) = v.

Now define <f>t : TM - TM by

Recall that the energy E : TM - R is defined by

dL
E(x, v) m —(x, v).v - Ux, v).

dv

Since L is autonomous, £ is a first intégral of the flow 4>t. Observe that for àllx e M,E
restricted to TXM is a function that achives its minimum at (x, 0). Let us set

e- max£(xf0) = -minL(x f0).
eM xeM

Note that the energy level E~l(k) projects onto the manifold M if and only k ^ e and
for any k > e, the energy level E~l ( k) is a smooth closed connected hypersurface of TM
that intersects each tangent space TXM in a sphère containing the origin in its interior.

We shall dénote by SB : TM — T*M the Legendre transform which is defined by
(x, v) — j^(xtv). Our hypotheses on L assure that & is a diffeomorphism. If 0 dénotes
the canonical 1-form on T*M, then the Euler-Lagrange flow of I can also be obtained as
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the Hamiltonian flow of E with respect to the symplectic form on TM given by -&*d@.
In other words, if X dénotes the vector field associated with the Euler-Lagrange flow then

Recall that the action of the Lagrangian L on an absolutely continuous curve u :
[a, b] - M is defined by

rb
AL(u)= / L(u{t),û(t))dt.

Ja

Given two points, xi and x2 in Af, dénote by &(x\, x2) the set of absolutely continuous
curves u : [0, T] — M, with u(0) = JCJ and u(T) = x2. For each Jfc € R we define the
action potential$k : M x M — R by

: u € «T(xlvx2)}.

Mané showed [35], [9] that there exists c(l) € R such that

- if k < c(L), then 4>jt(jCi,X2> = —oot for all JC] andx2;

- ifk ^ c(I), then *jk(jci,x2) > -ooforallxi andx2 and *jk is a Lipschitz function;

- if k ^ c(l) , then

**(Xi,X3)

for all xi, x2 and x3 and

for all xi andx2;

- if fc > c(L), then for JCJ ^ x2 we have

0.

Observe that in gênerai the action potential 4>* is not symmetrie, however defi-
ning djt : M x M — R by

thepropertiesabovesaythat rffcisametricforJt > c(L) and a pseudometric for k = c(L).
The number c(I) is called the critical value of L

It is important for our purposes to indicate that the results above also hold for
coverings of M, Le. suppose M is a covering of M with covering projection p. Take the lift
of the Lagrangian I to M which is given by

) = L(p{x),dp(v)).
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Then we define for each k € R the action potential ** just as above and the results hold
for Z. Thus we have a critical value for Z.

Moreover, if Mi and Afe are coverings of Af such that M\ covers M2, then

(2.1)

where L\ and I2 dénote the lifts of the Lagrangian I to M\ and Af2 respectively. Also note
that if M\ is a finite covering of M2 then

(2.2)

Among all possible coverings of M there are two distinguished ones; the universal
covering which we shall dénote by M, and the abelian covering which we shall dénote by
Af. The latter is defined as the covering of Af whose fondamental group is the kemel of
the Hurewicz homomorphism ni (M) ~ H\ (Af, IR). When TTI (Af) is abelian, Af is a finite
covering of Af.

The universal covering of Af gives rise to the critical value

cu(L)d=c(L)t

and the abelian covering of Af gives rise to the critical value

c f l(I)d= fc(ï).

From inequality (2.1) it follows that

cu(L) ^ ca(L),

which naturally raises the following,

Question. — Isittruethat cu(L) = ca(L)ï

The answer to this question is négative. In [44] we gave an example of a Lagran-
gian on a closed surface of genus two for which the inequality becomes strict.

We shall explain now the relationship between the critical values and Mather's
theory. We begin by recalling the main concepts introduced by Mather in [37].

Let«^(L) be the set of probabilities on the Borel cr-algebra of TM that have com-
pact support and are invariant under the flow 4>t. Let H\ (Af, R) be the first real homology
group of Af. Given a closed one-form œ on Af and p € H\ (M, R), let (œ, p) dénote the
intégral of œ on any closed curve in the homology class pAïv € JC(L)t its homology is
defined as the unique piv) e H\ (Af, R) such that

<co,p(/i)> ƒ
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for ail closed one-forms on M. The intégral on the right-hand side is with respect to ji
with tu considered as a fonction u> : TM — R. The fonction p : Jt(L) - H\ (M, R) is sur-
jective [37]. The homology of an invariant measure is the projection of Schwartzmann's
asymptotic cycle [51].

The action of \x € Jt(L) is defîned by

/ Ld\x.

Finally we define the fonction P : Hx (M, R) — R by

fi(y)'mwf{AL(n): p(/i) = y}.

The fonction p is convex and superlinear and the infimum can be shown to be a mini-
mum [37] and the measures at which the minimum is attained are called minimizing
measures. In other words, y € JÙ{L) is a minimizing measure iff

Let us recall how the convex dual a : H1 (M, R) — R of JB is defined. Since p is convex
and superlinear we can set

a([o>]) = max{<u>,y> - p{y) : y € tfi(MfR)},

where o> is any closed one-form whose cohomology class is [o>]. The fonction a is also
convex and superlinear. It is not hard to see that [37]:

- min | ƒ (L -a([tü]) = - min -j ƒ (L - eu) dix: /J e JC(L) y . (2.3)

M.]. Dias Carneiro proved [12] that if y is a minimizing measure with homology
y, then its support is contained in a fixed energy level Jk and k = <x([co])t where [to] is
the slope of a supporting hyperplane through (yf p(y) ).

Mané [35], [9] established a connection between the critical values of a Lagran-
gian and ex, the convex dual of Mather's P fonction. He showed that

(2.4)c(L) m - min j ƒ Ld\x : /i € JHL) l,

and therefore combining (2.3) and (2.4) we obtain the remarkable equality

c(L-co)-a( [o) ] ) , (2.5)

for any closed one-form co whose cohomology class is [to].

Much more can be said about the support of the minimizing measures, but first
we give a few définitions. Note that for every absolutely continuous curve u : [a, b] — M
and ail k ^ c(L) we have

AL+k(u) Z *k(uia),u{b)) > -*jk(u(W,u(û)). (2.6)
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We say that an absolutely continuous curve u : [a, b] — M is semistatic if

for all a < fo < t\ < ir, and that is static if

for all a < to ^ tx < b. Clearly, by (2.6) a static curve is semistatic. Semistatic curves are
solutions of the Euler-Lagrange équations because of their minimizing properties. Also it
is not hard to check that semistatic curves have energy precisely c(L). Mané shows that
a measure is minimizing with homology y if and only if its support is contained in the
set of all static curves of the Lagrangian L - wf where [co] is the slope of a supporting
hyperplane through (y, 0(y)). He also shows that the set of staties curves of a Lagran-
gian is a Lipschitz graph, thus recovering and generalizing the celebrated Lipschitz Graph
Theorem of Mather [37]. Mané describes in [35] several récurrence properties between
static and semistatic curves as wel! as coboundary properties and other graph proper-
ties. Using a "weak KAM theorem" A. Fathi [14], [15] gives new proofs of several of these
properties and he obtains new ones. Fathi's weak KAM theorem is obtained studying a
semigroup of nonlinear-operators (Tt~)r^0 defined as follows: for v € C?(M, R), set

rt

rr"i;U)=inf{i;(y(O))+ ƒ Uy(s)ty(s)) ds | y : [0,r] - MC1 andy(t) = x}.
Jo

LetJtw (1) dénote the set of all minimizing measures AI such that [a>] is the slope
of a supporting hyperplane through (p(^), P(p(tt))). Concerning the structure of the set
JCW(L) we would like to mention the following important genericity resuit (cf. [35], [36],
[10]):thereexistsagenericset û(œ) c C°°(M, D&) such that for alle// € 0(œ) the Lagran-
gian L+ ip has a unique minimizing measure in JCW {L + (p) and this measure is uniquely
ergodic. When this measure is supported on a periodic orbit, this orbit is hyperbolic. It is
conjectured in [35] that there exists a generic set û(œ) c C00 (M, R) such that such that
for all e// € ê(œ) the unique minimizing measure mJùœ(L + ip) is always supported on
a periodic orbit.

Finally, Mané defined the strict critica! value of L as

Co(L) d=f min{c(I- œ) : [iv] € Hl(M,R)} = -^(0).

We showed in [44] that the strict critical value of L equals the critical value of the lift of L
to the abelian covering of M, that is, ca(L) = CQ(L).

In [35] Mané describes an example of the form kinetic energy plus a magnetic
field and a potential for which e < CQ(L). The following theorem from [44] gives a large
class of Lagrangians verifying the sharper inequality: e < cu(L) (it is quite easy to check
that the inequality e < cu(L) always holds):

THEOREM 2.1. — LetObe the 1-form on M given by
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If 6 is closed then

e = CQ(L).

Suppose in addition thatL(x,O) = Oforallx € M.Ife = cu(L), then 9 is closed.

Let M be a closed manifold endowed with a Riemannian metric and let 6 dénote a
smooth 1-form on M. Consider a Lagrangian of the type kinetic energy plus a magne-
tic field, i.e.,

Ux,v) = - (v,v)x + 9x(v).

The energy fonction associated with L is

E(x,v) « - (v,v)x,

therefore in this case e = maxxGM E(x, 0) = 0. If 0 is not closed, Theorem 2.1 immediately
implies that cu(I) > 0.

Finally, let us describe a new geometrie way of obtaining the critical values. In
[11] weshowed:

THEOREM 2.2. — For any covering M we have

c(L) = inf{k G R : H~l(-oo,k) contains an exact Lagrangian graph},

where H is the Hamiltonian associated with L.

An exact Lagrangian graph is a set of the form (x, dx f), where ƒ is a smooth function on
M. Albert Fathi has also obtained independently a proof of the last theorem based on his
weak KAM solutions.

3. Anosov energy levels

One of our aims will be the study of Anosov energy levels, that is, regular energy le-
vels with a connected component on which the flow 4>t is an Anosov flow. Let E°mEs®Eu

dénote the Anosov splitting of such energy level, where E° dénotes the one dimensional
subbundle generated by the flow direction and ESM dénote the strong stable and strong
unstable bundles respectively. It is well known that the bundies £° © Es and £° © JE" are
Lagrangian subbundles.

LetTr : TM — M dénote the canonical projection and, if {x,v) e TM,\etV(x,v)
dénote the vertical fibre at (x, v) defined as usual as the kernel of dniXtV) : T(XtV) TM —
TXM.

We showed in [40] the following key resuit:

THEOREM 3.1. — For every point in an Anosov energy level, the bundles E° © Es

and E° © E u are transverse to the vertical bundle V.
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It is not hard to check that this property implies that the energy level has to pro-
ject onto the manifold and therefore if k dénotes the energy of the level, we must have
k > e. Moreover, it can be proved that the transversality property stated in the theorem
implies that there are no conjugate points in the energy level [40, Proposition 3]. Conju-
gate points, means, as usual, pair of points (x\9v\) * U2, vi) • </>f Ui, V\) such that
d<pt (V(x\, vi)) intersects V(x2> vi) non-trivially. In this way the theorem generalizes a
well known result of Klingenberg [31] for geodesie flows (cf. also [33]). The results that
we obtained in [40] are much more gênerai than Theorem 3.1. We showed that if on the
given energy level there exists a continuous invariant Lagrangian subbundle, then it must
be transverse to the vertical bundie; from this result the theorem clearly follows. We shall
give now a sketch of a proof of Theorem 3.1 based on a result of J.F. Plante [50], But first
we need some remarks and a lemma.

Let us set v = <Û*Q and Z - E~l (k). Note that (dv)"*1 = d\, where A is a 2n-3-
form. Let us dénote by X the Euler-Lagrange vector field. Take a vector field Y such that
dviXiV){Y{xtv),X(x, v)) = 1 for all (x, v) e Z. Such a vector field always exists sinceZ is
a regular energy level. Then we have

A — A ^ v ) \z= dv A ... A dv.

Let us define a volume form on Z by Cl : = iy (dv A ... A dv). It follows that
n

ixCl - dv A ... A dv = d\,
n - l

and hence <pt preserves the volume form Q. Let /in dénote the smooth invariant pro-
bability measure induced by Cl. Observe that in gênerai there may exist many invariant
volume forms on Z and therefore many smooth invariant probability measures. Howe-
ver, if the energy level is Anosov, there is only one smooth probability measure and we
shall call it the Liouville measure and it will be denoted by p/.

We can associât e to the measure va an asymptotic cycle p (cf. [51]) which is the
element of H\ (Z, R) defined by

P(<P)

where q? is a closed 1-form in Z.

LEMMA 3.2. — The asymptotic cycle of \xçi vanishes.

Proof: We need to show that

where q> is any closed 1-form. But
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f <p(X)Q = f ixCl A <p = f(dv)n'1 A <p = ƒ dA A g> = ƒ d(A A <p) = 0.

Let us explain now how dérive Theorem 3.1. By Lemma 3.2, the Liouville measure
of the Anosov energy level has vanishing asymptotic cycle and by a resuit of Plante [50]
the closure of the set of primitive closed orbits of </>, in H\ (E~l ( k), R) is the closure of a
convex open set containing the origin in its interior. Thus if a : H\ {E~l(k)f R) ~ R is any
non-trivial cohomology class, there exists a closed orbit y of <f>t such that a(y) < 0.

Suppose now that for some U, v) e E'l(k), E(x, v) n VU, v) * {0}, where E
stands for the weak stable or the weak unstable subbundle of <£,. Then (cf. [40, Propo-
sition 4]) the Maslov class m € Hx(E~l(k), R) associated with E is non-trivial. On the
other the convexity of the Lagrangian implies that if y is any closed orbit of 4>t, then
m(y) ^ 0 [5], [13]. This contradiction complètes the proof of the theorem. o

We note that from Lemma 3.2 (which mies out the case of a suspension) and
results in [49] it follows that the Euler-Lagrange flow restricted to an Anosov energy level
must be topologically mixing and that the strong stable and strong unstable manifolds
must be dense in the energy level.

Motivated by our results, Mané posed us the following question,

Question. — If the energy level k is Anosov, is it true that k > CÖ(D?

In [44] we gave a négative answer to this question, however in [11] we showed,

THEOREM 3.3. — Ifthe energy level k is Anosov, then

k > cu(L).

Note that it follows from the result of M.J. Dias Carneiro quoted in Section 2 that if
/i is a minimizing measure, then its support is contained in a fixed energy level k with Jt >
Co (I). Our examples in [44] show that Anosov energy levels on manifolds with non-zero
first Betti number do not necessarily contain minimizing measures and makes Theorem
1.1 in the introduction meaningful!

Let M be a closed manifold endowed with a Riemannian metric and let 9 dénote a
smooth 1-form on M that is not closed. Consider a Lagrangian of the type kinetic energy
plus a magnetic field, i.e.,

L(x,v) m - (v,v)x + 0x(v).

Suppose that the geodesie flow associated with the Riemannian metric is Anosov. Then
by structural stability the Euler-Lagrange flow of L is Anosov for any sufficiently large
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value of the energy. However, Theorem 3.3 shows that it cannot be Anosov for all values
of the energy otherwise cu{L) = 0 and we know by Theorem 2.1 that cu(L) is positive
if 6 is not closed. Let ê dénote the smallest possible value of the energy such that for
all k' > ê the energy level k' is Anosov. Theorem 3.3 immediately implies the following
lowerboundfor <£\

COROLLARY3.4. —

ê ^ cu(L).

In [42] we obtained lower bounds for ê in terms of dQ and the curvature tensor of M and
we proved through different methods that ê cannot vanish if 0 is not closed. Another
interesting class of Lagrangians is the following. A Lagrangian I is said to be simple if
there exist a real number R > 0 and a smooth convex function q> : R+ -* R such that

L(x.v)-q>(\\v\\l) for||i/||x> Jï.

Clearly for high values of the energy, the Euler-Lagrange flow of L is a reparametrization
of the geodesie flow of the Riemannian metric 11 11. If the geodesie flow is Anosov then
we can consider as before a number é that is given by the smallest possible value of
the energy such that for all Jfc > ê the energy level it is Anosov and we also have that
ê ^ cu(L).

We shall prove next several important properties of Anosov energy levels similar
to those of geodesie flows. We shall need these properties for the proof of Theorem 1.1.
Suppose that the energy level k is Anosov and set 2 d=f E~l (k). Observe first that we
could rephrase Theorem 3.1 by saying that the weak stable foliation 0/'5 is transverse to
the fibres of the fibration by (n - 1)-sphères given by

n\z : 2 - M.

Let M dénote the universal covering of M with projection p : M — M. Let 2 dénote the
lifting of S to TM via the map d p : TM - TM. Observe that Z coincides with the energy
level k of the lifted Lagrangian 1. We also have a fibration by (n « l)-spheres

Let 94* be the lifted foliation which is in turn a weak stable foliation for the Euler-
Lagrange flow of L restricted to 2. The foliation iv s is also transverse to the fibration
frlj : ï. — M since the map dp is a local diffeomorphism. Since the fibres are compact a
resuit of Ehresman (cf. [8]) implies that for every v € 2 the map

is a covering map. Since M is simply connected, fr| %S(V) is in fact a diffeomorphism and
W's(v) is simply connected. Consequently, 9ts{v) intersects each fibre of the fibration
ir | j : Z — M at just one point and therefore the space of leaves &s of the weak stable
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foliation can be identified topologically with the (n - 1)-sphère. Similarly the space of
leaves 3FU of the weak unstable foliation is also an (n - l)-sphere. Note that TTI (M ) acts
on &*>u.

Let us assume now that M admits a Riemannian metric of négative curvature.
Then we have the following two lemmas.

LEMMA 3.5. — Suppose that the energy level k isAnosov. There is no periodic orbit
of<t>t with energy k whose projection toM is null-homotopic. Ifa dénotes a non-trivial
free homotopy class ofM, then there exists a unique closed orbit of<t>t with energy k such
that its projection to M belongs to the homotopy class o\

LEMMA 3.6. — Let y dénote and element of ni(M) actingon &u. Then there exists
twofixed points a* and a~ for y such that ifpis any point in 3PU, then

lim y"(p) = ö+,
n—+oo

lim yn(p) = fl".
n—»

Clearly a simüar lemma holds for y acting on &$.

Let us prove the lemmas. The transversality property and Lemma 3.1 in [21] im-
plies that a solution of the Euler-Lagrange équation with energy k in M is a quasi-geodesic
with respect to the background Riemannian metric and as a conséquence using exactly
the same methods in the proof of Theorem 4.5 in [21] we deduce that the Euler-Lagrange
flow of the energy level k is topologically conjugate to the geodesie flow of the Rieman-
nian metric. It is well known that the geodesie flow of a negatively curved manifold has
the properties stated in the two lemmas. Using the orbit équivalence between the flows
we immediately obtain the same properties for the Euler-Lagrange flow in the level k,
thus proving the lemmas.

In [6], P. Boyland and C. Golé proved that under certain hypotheses on the La-
grangian there are minimizers (in the universal covering} which are quasi-geodesics and
using them they show the existence of a collection of compact invariant sets of the Euler-
Lagrange flow that are semiconjugate to the geodesie flow of an underlying hyperbolic
metric.

4. Regularity of the Anosov splitting

We describe in this section the results obtained in [46] for twisted geodesie flows.
In the next section we shall prove Theorem 1.1 stated in the Introduction.

Let Mn be a closed n-dimensional manifold endowed with a C" Riemannian me-
tric ( , ), and let n : TM — M dénote the canonical projection. Let CÜ0 dénote the sym-
plectic form on TM obtained by puiling back the canonical symplectic form of T* M via
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the Riemannian metric. Let H : TM — R be defined by

) { v , v ) .

The Hamiltonian flow of H with respect to CÜ0 gives rise to the geodesie flow of M. Let
n be a closed 2-form of M which does not vanish identically and consider the new sym-
plectic form o>A defined as:

o)A
 d=f CÜO + A7T*fïf A € R.

Such a form is called a twisted symplectic structure [1] and the Hamiltonian flow of H
with respect to u>A gives rise to a flow <£* : TM - TM that we shall call twisted geodesie
flow. This flow models the motion of a particle of unit mass and charge A under the effect
of a magnetic field, whose Lorentz force Y : TM - TM is the bundie map uniquely
determined by:

for all u and v in TXM and all x € M. Observe that 4>* preserves all the energy levels
H = const, in particular SM d=f H~l(l/2). From now on let us consider the restriction of
<t>* t o SM.

Various properties of these flows were studied in [42], (43]. For example, we sho-
wed that if we start with an Anosov geodesie flow <$ and we increase the value of A we
must exit the set of Anosov flows for some critica! value Ac < oo and that the topological
entropy présents a strict global maximum at A = 0 when restricted to (-Àc, Ac).

In [46] we studied a new feature of the twisted geodesie flows, namely the regu-
larity of the Anosov splitting. If A € (-Ac, Ac), let us dénote by £jfe£ A

5 e £A" the Anosov
splitting of <£*, where £° dénotes the one dimensional subbundle associated with the
flow direction and £ / u dénote the strong stable and strong unstable bundles respecti-
vely.

If dim M = 2 then £j? © £A
5 and ££ © £A" are both of class C1'*10*x by results of

S.Hurder and A. Katok [28]. In particular, when A = 0, i.e. for geodesie flows, this implies
that EQ and EQ are both of class cl'xlogx since the geodesie flow is of contact type. Also,
if M has 1 /4-pinched négative sectional curvature, E£ and EQ are both of class C1 [27]. If
one assumes that £Q and EQ are both of class C00 then combining results of Y. Benoist, P.
Foulon and E Labourie [3] with results of G. Besson, G. Courtois and S. Gallot [4] it follows
that M must be locally symmetrie, thus generalizing and improving previous results of
M. Kanai, A. Katok and R. Feres [30], [16], [17], [18]. Most likely the same resuit is true
assuming only that EQ and EQ are both of class C2 but this is only known for surfaces [22]
and for small déformations of hyperboiic metrics by results of U. Hamenstâdt [23] and L.
Flaminio [ 19]. We refer to [24] for more on the regularity of the Anosov splitting.

For twisted geodesie flows assuming C1 regularity already implies rigidity provi-
ded that Q is an exact form:

THEOREM 4.1. — LetMbea closed Riemannian manifold whose geodesie flow is
Anosov. Suppose il is exact. Then £ƒ and E" are never both of class C1 unless A - 0.
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If the cohomology class of Q is not trivial, the theorem is no longer true as it can
be easily seen by looking at the case of a surface of constant négative curvature and Q the
area form. More generally consider a compact locally symmetrie space of non-constant
négative curvature (n ^ 4). Let J\,..., Jd-\ be the parallel orthogonal endormorphisms
defining the complex (d = 2), quaternionic (d « 4) or Cayley (d = 8) hyperbolic structure
of Af. If we consider the 2-form Q naturally associated each ƒ,• [1 ̂  i ^ d - 1) then it is
straightforward to check that the splitting is C00.

Problem. — Are these are the only cases in which the splitting can be C1 for
A*0?

Observe that for surfaces, E( and £A
U are both of class C1 if and only if £/ e £A

M is
of class C1. If TA dénotes the one-form that vanishes on £A e £A

U and takes the value one
on the vector field associated with <£*, then the theorem is saying, for the surface case,
that TA is of class C1 if and only if A = 0. Note that T0 is C°° and coincides with the contact
form a of the geodesie flow.

J.E Plante [49] gave the first examples of volume preserving Anosov flows for
which the strong stable and unstable bundies are not both of class C1. His examples
are also volume preserving perturbations of Anosov geodesie flows, but he used the fact
that the asymptotic cycle (cf. [51]) of the measure induced by the volume form was not
zero for the perturbed flows. It is not hard to see that <f>* preserves the volume form
a A (da)n~1 and therefore the Liouville measure /j/ of SM. Using the same arguments
as in Lemma 3.2 it follows right away that the asymptotic cycle of <£* with respect to m
vanishes for all A (provided that M is not a 2-torus). It follows that no argument like in
[49] can be used to show the non-smoothness of the bundies £A and £A", even in the
surface case.

The proof of theorem is based on a combination of a resuit of U. Hamenstâdt in
[23] and the theory of convex superlinear Lagrangians described in Section 2. By writing
n = de, the twisted geodesie flows can also be obtained as the Euler-Lagrange flows of
the one-parameter family of Lagrangians

The energy function of these Lagrangians is E(x, v) - \ (v, v) and we are interested in
the level 1/2. The proof of the theorem splits into the three cases:

- 1/2

- 1/2 <CQ(L\).

As we explained in Section 3, the three cases may indeed occur as long as we do not make
any smoothness assumption on the bundies ££ and £A

U. Each case gives rise to different
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variational properties that allow us to prove the theorem. In fact one shows that if E£ and
£A" are both of class C1 then the last two cases cannot occur and that in the first case we
must have A = 0. In the next section we shall use similar ideas to prove Theorem 1.1.

5. Proof of theorem 1.1

Let us prove the theorem stated in the Introduction. We shall need first two lem-
mas.

LEMMA 5.1. — If& dénotes the canonical 1-form in T*M and X the Euler-
Lagrange vector field associated with the Euler-Lagrange flow, then

(&*e)lX)\E-iik}-L+k.

Proof: Let us dénote by n : T*M — M the canonical projection. Using the défi-
nition of the Legendre transform we have

^ix,v
ov

But since

d#(X,v)n(d(XlV)&(X)) = diXiV)(n ° &)(X) = d{XtV)n(X) = v,

we have

(&*e)(X)(x,v) = ^(x,v){v).
dv

On the energy level k we have

thus concluding the proof of the lemma.

dL
— {x,v)(v),
dv

Set as before v = «2?*©. Let us recall from Section 3 that each regular energy level
f"1 (A:) possesses an invariant volume form £2 that induces a smooth invariant proba-
bility measure pn with vanishing asymptotic cycle. The volume form is given by O =
iy (dv)w,where Y is a vector field such that dE(Y) = dv{Y,X) = 1 on f"1 (ik). Since
dE(Y) = 1, the vector field y "points outwards" the manifold with boundary Vk

 d=f

E"1 (-oo, jfc]. Let us orient TM such that (dv)n is a positive volume form. The manifold
with boundary VJt c TM inheritsthis orientation and induces a boundary orientation on
JE"1 ( Jfc). In other words, {u ï t . . . , u2n-i} is a positively oriented basis of a tangent space to



142 G. P PATERNAIN

£~1(Jt)ifffi(ui,...,u2n-i) - (dv)n(Y,uit...,u2n-i) > 0. Therefore SI is positive in the
induced orientation of E~x(k).

LEMMA 5.2. — ForanyregularenergylevelE~l(k) we have:

(L + ik) dun > 0.LE'Hk)

Proof: We shall consider Vk and JE"1 (k) orientée! as in the previous paragraph. By
Lemma 5.1 it suffices to show that

f v(X)Cl > 0.
JE'Hk)

Using Stokes theorem we have:

f v(X)Cl = ƒ V A I X Q = / VA (dv)"-1 = f (dv)n.
JE-Hk) JE-Hk) JE-Hk) Jvk

But the last intégral is positive because of our choice of orientation. o

Let T dénote the one-form that vanishes on Es e E u and takes the value one on the
vector field X. If the splitting is of class C1 then T is also of class Cl and dr is a continuous
two-form invariant under the Euler-Lagrange flow. U. Hamenstadt showed in [23], for
the geodesie flow case, that any continuous invariant exact two-form must be a constant
multiple of the symplectic form provided that the splitting is of class C1. Hamenstâdt's
proof carries over to the case of Euler-Lagrange flows without major changes using the
results from Section 3, particularly Lemma 3.6 if we assume that M admits a Riemannian
metric of négative curvature. However, for completeness sake we include a proof of this
fact at the end of this section (cf. Theorem 5.5 below)>

It follows that there exists a constant x such that:

andthus

Let us write

Then qp\ is a smooth closed one-form on E~l ( Jfc). Using Lemma 5.1 we obtain

<p(X)(x, v) = 1 - x(Ux, v) + fc). (5.7)
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Integrating the last equality with respect to the Liouville measure m of E~l (k) and using
that the asymptotic cycle of m vanishes (cf. Lemma 3.2) we have

-xf0 = 1 - x ƒ (I+*)rff i / .

Lemma 5.2 implies that x > 0.

It follows from the Gysin exact séquence for sphère bundies that ifk>e then the
map

TT* :Hl(M,R) - HHE'Hk)^),

is an isomorphism, provided that M is not diffeomorphic to a 2-torus. Therefore there
exist a closed smooth one-form 5 in M and a smooth function ƒ : E'1 (k) — IR such that

and hence équation (5.7) together with the fact that diXtV)7T(X(x, v)) = v gives

öx(v) + df(X)(x, v) = 1 - x(L(xt v) + Jfc). (5.8)

Let v be any invariant measure whose support is contained in E~l (k) and whose homo-
logy p(fj) vanishes. If we intégrât e the last equality with respect to n we obtain:

I (L + Jfc) dit - 1/x > 0 (5.9)
JE'Hk)

We want to show that if the splitting is C1 in the energy level E~l(k), then k >
co(L). We shall see that if we suppose k ^ CQ(L) we shall obtain a contradiction to in-
equality (5.9).

Take a minimizing measure JJ such that p(/i) = 0. It satisfies

Ld».ƒ
The result of M.J. Dias Carneiro explained in Section 2 assures that the support of
\i is contained in the energy level -0(0) = CQ{L) = k and therefore

LE-Hk)

But this contradicts inequality (5.9) and hence the case ik - CQ(L) cannot occur if
the splitting is of class C1.

- k < Co(L).

In this case the contradiction to inequality (5.9) is an immédiate conséquence of
the following proposition which has independent interest. Recall that by Theorem
3.3weknowthat/: > cu(L).
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PROPOSITION 5.3.— Ifcu(L) < k < co(L), thereexists an invariant measure v
whose support is contained in the energy level k, p(ji) = 0 and

f (L + k)
JE-Hk)

Proof: We shall use the followîng resuit of Mané [35], [9] that exhibits the rele-
vance of the critical values for variational problems on fixed energy levels.

THEOREM5.4. — Suppose k > cu{L). Then, given x\ * x2 in M, there exists a
solution x : R — M of the Euler-Lagrange équation with energy k such that for some
T > O,jr(O) = x\tx(T) = x2and

Since k < co(L) « ca(L) there exists To > 0 and an absolutely continuous closed
curve u : [0, To] — M homologous to zero such that

AL+k(u) < 0. (5.10)

For n ^ 1, let us dénote by un : [0, n%\ — M the curve u wraped up n times. Since
k > cu(L), un cannot be homotopic to zero otherwise we would contradict (5.10). If
p:M — M dénotes the covering projection, let us piek a point y e M such that p{y) -
u(0) = u(T0). Let u" : [0,nT0] — M dénote the unique lift of un such that u"(0) = y.
Set yn = u"(nTo). Let us provide M with a Riemannian metric and lift it to M. Since
p(yn) = w(0) for ail n it follows that d{ytyn) — oo otherwise some power un would be
homotopic to zero.

By Theorem 5.4 there exists for each n a solution xn(t) of the Euler-Lagrange
équation with energy k such that for some Tn > 0, xn (0) « y, xn ( Tn) • yn and

^i+jt<x«l[o.rn]) = *fc(y»yn). (5.11)

Since the solutions have energy k, there exists a constant a such that 11 xn ( t ) 11 < a for ail
n and ail r. Therefore

It follows that Tn — oo. Let /J„ dénote the probability measure in TM uniformly distri-
buted along p ° xn\ [Of r„] and let p dénote a point of accumulation of /in. Since all the xn

have energy A:, the support of// is contained in the energy level it. Equality (5.11) implies
that
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hence

Auk(poxn\[0tT„]) ^ nAL+k(u) < 0,

which implies by taking limits that

JE-Hk)
i d\x < 0.

To finish the proof observe that \x is clearly invariant and that if w is a closed 1-form then

(p(v), w) = lim — / o) = 0,
*»-« In Jp*xn\{ùtTn)

since the curves p o xn\[o,T„) a r e all homologous to zero because they are homotopic to
the wnis. o

To finish this section we prove:

THEOREM 5.5. — Suppose that M admits a Riemannian metric of négative curva-
ture and suppose that the energy level E'l(k) is Anosov with a splitting ofclass C1. Let rj
be a continuous exact2-form defined on E~l(k) and invariant under theEuler-Lagrange
flow 4>t. Then r\ is a constant multiple of the symplecticform 3$* dB.

Proof: This theorem was proved by U. Hamenstadt in [23] for geodesie flows. We
shall explain now why her proof extends to the case of Euler-Lagrange flows. Observe
that the theorem is a straightforward conséquence of ergodicity if n = 2.

Let us write 17 ~ dr and v = <2?*0. First note that since nis <f>t -invariant, ixn = 0.
Also there exists a bundie map G : £ 5 e £ u — £ 5 e £ " such that G is <f>{ -invariant and

n(x,y) = dv(Gx,y),

forjcandyin£5e£".

Let us define
r

vA(dv)""1.
JE'Hk)

Note that A * 0 since by Stokes theorem, A also equals the intégral of the volume form
(dv)n on the région of TM bounded by the energy level E~l (*:).

Consider the function F : R — R given by

-LF(r)= I (T-rv)A(dv)"-1 .
-Hk)
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Since F'(r) = -A, it follows that there exists x € R such that F(x) = 0. Let us set $ «
T - xv. Clearly rf/ï is <f>t -invariant and ixdfi = 0. By ergodicity, there exist constants c,
such that

(dp)* A (dv)"-1-* = a(dv)n-1,

and thus

v A (dp)* A (dv)""1"1" = c,v A (dv)n'x.

Integrating by parts one finds that

and therefore all the c, must vanish. It follows that G can be written as xld + B, where
J B : £ 5 e £ u - £ s e £ " i s a nilpotent map. Next we note that Es and Eu are invariant
subspaces for B. Let Bs and Bu dénote the map induced by B on Es and £" respectively.
We shall show that Bs and Bu vanish. Let Q{v) d=f kerBs(v). Choose an open dense <f>r

invariant set U c E'1 (k) on which Q is a continuous subbundle of £5. Now the key step
is Lemma 4.3 in [23] which shows that Q\u is an integratie subbundle (hère one uses
that the splitting is C1 ). Using the holonomy transport along the weak unstable foliation
(one also needs here the splitting to be C1) we can construct as in [23, Lemma 3.4] a C°-
foliation on the energy level Jk of the universal covering of M. This C°-foliation descends
to the space of leaves &u and induces a C°-foliation, which by construction, is invariant
under the induced action of TTI (M) on «?". By Lemma 3.6 an element y of n\ (M) has
a dynamics of type "North-South" on the sphère «?". By a resuit of P. Foulon [20] a C°-
foliation which is invariant under a map like y must be trivial and therefore Bs must
vanish identically. The argument to prove the vanishing of Bu is completely similar. o

6. Expansive energy levels

Recall that a flow 4>t ' W — W on a compact metric space (IV, d) is said to
be expansive if given E > 0 there exists ö > 0 such that if there is an homeomorphism
T : R — R, T(0) = 0, such that

d(<t>Tit)(y),4>t(x))<ö,

for all f € R, then y = <f>t-(x) where I i \< E. Anosovflows and suspensions of Pseudo-
Anosov maps are examples of expansive flows.

In [47] the second author showed that if the geodesie flow on a closed surface M
is expansive, then there are no conjugate points and the flow is topologically conjugate
to the geodesie flow of a metric of constant négative curvature.

An expansive energy level is a regular energy level with a connected component
on which the Euler-Lagrange flow is expansive. We shall assume in what follows that M is



Hyperbolic dynamics of Euler-Lagrange flows on prescribed energy levels 147

a closed oriented surface. In this section we show the following theorem that generalizes
and complètes the results in [41]. Our proof will be based on results of M. Brunella [7]
and T. Inaba and S. Matsumoto [29].

THEOREM6.1. — IftheregularenergylevelE~l(k) isexpansive, then:

- k > e;

- the energy level isfree ofconjugate points;

- on the energy level, the Euler-Lagrange flow is topologically conjugale to the geodesie

flow of a metric of constant négative curvature.

Recall that a manifold is said to be aspherical if its universal covering is contrac-
tible. We need the following lemma.

LEMMA 6.2. — Ifk < e, the connected components of energy level E~l(k) are not
aspherical

Proof: Let 2 be a connected component of E'1 (k)Afk < ethen,Tr(2)isasmooth
compact surface with boundary and the boundary is a finite union of circles, let us say fc.
Let M* dénote the closed surface obtained from TT(2) by glueing disks to the boundary
circles. Note that we can still regard 2 as a smooth hypersurface in TM*. Let M* dénote
the universal covering of M* with covering projection p. Let £ dénote the lift of 2 to
TM* via dp. Since 2 is a covering of 2 it suffices to show that 2 is not aspherical. If we
still dénote by n the projection TM* — M*, then TT(2) is a surface with boundary and
the boundary is a union of contractible circles in M. There will be at least two circles
unless M* is a sphère and k = 1. In this case it is very easy to check that 2 is a 3-sphere
which is certainly not aspherical. Therefore let Q and Q dénote two distinct circles in the
boundary of n(2). The sets T, d=f n~l (Q) n 2 for j = 1,2 are smooth embedded circles
in 2. Let y : [0,1] — TT(2) dénote a simple curve such that y(0) € Q and y(l) e C2 and
y{t) é Q u Q f o r r € (0,1). The setQ ó= n~l(y ([0,1])) n î i s an embedded two-sphere
in 2 and it is quite simple to check that the intersection number of Q with T\ or T2 is ±1.
Therefore Q is not homotopic to a point in 2 and therefore TT2 (Î) * {0} showing that £ is
not aspherical. o

Let us describe some important facts about expansive flows. Let W be a closed
oriented 3-manifold endowed with a Riemannian metric. Let <pt : W — W be a smooth
expansive flow with associated vector field X. Let us suppose that X(x) * 0 for all A: € W.
Define

H£(x) = {expxv: \\v\\ < e and (X(x),v) = 0}.

For £ > 0 small enough, Hc (x) is a family of transverse local sections to the flow. It is easy
to see that </>r is expansive if there exists 0 < a < e such that if there is a continuous



148 G.P.PATERNAIN

increasingsurjectivefunction rXty : [0, oo) — [0, oo), rXty(0) = 0 for which

<t>t(y) e Ha(4>Txy{t)(x))t

for all t € R, then x = y.

For ö < <x define the stable sets Ss(x) as

Ss(x) « | y € //$(x) : </>f(y) € //ô(<ÊTXiy<n(*)) for f ^ 0 and for some continuous

increasing surjective function rxy : [0, oo) — [0, oo)#T,iy(0) = o}.

Analogously for t < 0 we define the unstable set Us (x).

We say that x e W has a local product structure if Ûiere exists a homeomorphism
of R2 onto an open neighborhood of JC in Ha(x) that maps horizontal (vertical) Unes onto
open subsets of local stable (unstable) sets. The main conséquence of expansivity is the
following proposition which is proved in [48] (see [32], [26] for the discrete version).

PROPOSITION 6.3. — Exceptforafinitenumberofperiodicorbits, whose points we
shall call singular, every point ofW has a local product structure. Ifx is a singular point,
Ss(x) isaunionof rares, r ^ 3, that only meet at x.

We are now ready for the proof of Theorem 6.1. Inaba and Matsumoto showed
[29] that a closed 3-manifold that supports a non-singular expansive flow must be as-
pherical. Therefore by Lemma 6.2 we must have that k > e (note that e is not a regular
value of the energy). When k > e, the energy level 2 = E~l (k) is a circle bundie over
M and by a resuit of Brunella [7] <f>t \% is topologically conjugate to the geodesie flow of
a metric on M of constant négative curvature. It follows then, that there are no singular
points and that the stable sets give rise to a continous foliation on £. Hence we can attach
to each continuous closed curve a: S1 - l a Maslov type index m(a) just as it was done
in [47] for the geodesie flow case. This index defines an integer cohomology class and it
is roughly the winding number of the stable foliation around a. As a conséquence of the
convexity we have the following two basic properties which are proved very much in the
same way as in [47] for the geodesie flow:

1. if a is a closed orbit of 4>t then m(<x) ̂  0;

2. if oc is a closed orbit of <pt then m(cc) > 0 if and only if the orbit a has conjugate
points.

Now note that since 4>t h is topologically conjugate to the geodesie flow of a me-
tric on M of constant négative curvature, the closure of the set of primitive closed orbits
of <pt in H\ (Z, R) is the closure of a convex open set containing the origin in its interior,
since the same property holds for the geodesie flow of a compact negatively curved ma-
nifold. Thus if /? : H\ (Z, R) — R is any non-trivial cohomology class, there exists a closed
orbit y of<f>t so that 0(y) < 0.
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Suppose now that the level 2 has conjugate points. Since the closed orbits of <t>t

are dense we can find a closed orbit <x that possesses conjugate points and hence positive
index. Therefore the cohomology class m is non-trivial and has the property that if y is
any closed orbit of <j>t, then m(y) ^ 0. This contradiction complètes the proof of the
theorem. o
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