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ISOSPECTRAL GRAPHS AND ISOSPECTRAL SURFACES

Robert BROOKS

In memory of Hubert Pesce

In this paper, we investigate the following question: to what extent is
there a converse to the Theorem of Sunada [Su] in the context of graphs?

Our expérience in dealing with the question, "Can one hear the shape of
a drum?" is that the many facets of this question turn out to be surprisingly
delicate. The present instance is no exception.

We will first present a partial converse to Sunada's Theorem, giving a
necessary and sufficient condition for two graphs to be isospectral in terms
of a Sunada-like condition. We will then present a construction of isospectral
graphs, known as Seidel switching [CDGT], which on its face seems to have
little to do with the Sunada condition. In fact, it remains an open problem
whether graphs constructed this way need arise from a Sunada construction.

Finally, we will sketch a construction from [BGG] of large sets of mu-
tually isospectral Riemann surfaces. While this material is somewhat inde-
pendent of the rest of the material, it connects with it in the following way:
these sets grow in size like ^(constjiogk)^ w h e r e g \s the genus of the surface.
On the other hand, a construction based on Seidel switching gives a growth
rate of isospectral sets of graphs exponential in g. This suggests that the
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graphs arising from Seidel switching in fact do not arise from the Sunada
construction, because there are too many of them.

My thinking on this subject was prompted by the work of Hubert Pesce
[Pe 1,2,3], giving a converse to Sunada's Theorem in the context of mani-
folds. As a member of the jury of Hubert's habilitation, I raised the question
of whether he had thought about a converse to Sunada's Theorem in the
context of graphs. I had very much hoped to interest him in the problems
raised in this paper.

Like so many others, I was shocked to hear of his untimely death six
months later. The spectral geometry community has lost a strong and vigor-
ous talent. We have also lost a good friend, who was always willing to share
his zest for life with us.

1 Sunada's Theorem for Graphs

In this section,.we present a version of Sunada's Theorem in the context of
/c-regular graphs. We will then show how a generalized version of Sunada's
Theorem actually gives a necessary and sufficient condition for two fc-regular
graphs to be isospectral.

Let F be a fc-regular graph, and let G be a group of automorphisms of F.
If H{ are subgroups of G acting freely on F, then the graphs Ft- = F/i/t- are
defined.

We will say that the quadruple (F, G, i / i , #2) satisfies the Sunada condi-
tion if, for all

where [g] dénotes the conjugacy class of g in G.
For every positive integer n, let H^ be the set of éléments h of H{

such that there is a path of length < n in F whose endpoints differ by
multiplication by h. We will say that (F,G,Hi^H^) satisfies the Sunada
condition up to length n if

We then have:

Theorem 1 (a) Suppose that (F,G, # i , # 2 ) satisfies the Sunada condition.
Then the graphs Fi and F2 are isospectraL
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(b) Suppose that (F, G, H\y i/2) satisfies the Sunada condition up to length
N, where

Then Fi and F2 are isospectrai

Proof: To prove (a), we make use of the fact that two fc-regular graphs H\
and H<i are isospectral if and only if, for any /, the number of closed paths of
length / is the same for H\ and i/2.

The Sunada condition then says that, for a given path 7 in F, not neces-
sarily closed, the number of times a G-translate of 7 covers a closed path in
Fi is the same as the number of times 7 covers a closed path in F2. It follows
that the two graphs are isospectral.

To establish (b), we note that the set of numbers of closed paths of length
l for / = l , . . . , # ( F i ) , détermines the number of lengths for ail /. This
establishes (b).

One typically uses this theorem in the case where F is the Cayley graph
of <7, with respect to some set of generators of G. We will say that the two
graphs Fi and F2 constructed in this way are simple Sunada equivalent We
will refer to Fi and F2 arising in the more generalized case where G need
not act freely transitively on F as being gênerai Sunada equivalent This
distinction will be important in the next section.

We now sketch a proof of the following converse to Theorem 1:

Theorem 2 Let Fi and F2 be two k-regular isospectral graphs. Then, for
any n} there is a graph F ^ which covers both Fi and F2 ; a group of graph
automorphisms Gn, and two subgroups H[n* and H2 which act freely on
F (n ) , with

( ) ; n ) , ; = 1,2,

so that ( rW,GW,/ / i ( n U2 B ) ) satisfies the Sunada condition up to length n.

We begin the proof with an application of Leighton's Theorem ([Le],
[AG]) in the A:-regular case, which asserts that any two finite fc-regular
graphs have a common finite covering. See [TS] for a discussion and proof
of Leighton's Theorem in the /c-regular case along the Unes we are following.

We may think of Leighton's Theorem as describing for us a (possibly orb-
ifold) graph FQ , such that both Fi and F2 cover Fp . Then the fundamental
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groups of Fi and F2 sit inside the fundamental group of IQ (considered as an
orbifold) as subgroups of finite index, and hence there is a normal subgroup
contained in both of them of finite index. We may set F(n) to be the covering
determined by this subgroup, and G^ the quotient group.

Isospectrality of Fi and F2 says that for each number /, the number of lifts
of closed paths of length / in FQ to closed paths in i/,, i = 1,2 respectively,
agree. The Sunada condition up to length n would say that, for each closed
path of length / , / < n, the number of lifts would be the same. This need
not be the case if IQ had several paths of length /, but would follow from
isospectrality if we knew there were only one path of length / in F ^ which
lifted to a closed path in Fi and F2.

We now make use of the fact that, given any two paths of the same length
in a fc-regular tree, there is an automorphism of the tree taking one to the
other. We use this to construct an orbifold graph F ^ , such that F ^ covers
IQ \ and so that, for each / < n, the closed paths of length / on F ^ all
project to the same path on FQ .

This complètes the sketch of the proof.

2 Seidel Switching
In this section, we give a method for constructing isospectral fc-regular graphs
which do not, at least on the face of it, arise from Sunada's Theorem. This
technique, known as Seidel switching, is well-known in the graph-theory liter-
ature [CDGT], and has been greatly generalized [GM]. Here, we present a
fairly down-to-earth version which has the advantage of giving rather explicit
examples.

See [Qu] for a lovely account of Seidel switching.
Let G\ and G2 be two Ar-regular graphs, with #(Gi) = #(^2) = N an

even number, and A a subset of G\ x G2 with the following properties:

(i) for geG\, the set of g2 such that (g,g2)eA has order N/2.

(ii) for geG2i the set of g\ such that (<7i,<j)£A has order Af/2.

Let Fi and F2 be the following (k + TV/2-regular graphs:

(a) The vertices of Fi and F2 are precisely the union of the vertices of G\
and G2.
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(b) If vi and v2 are both vertices in G\ (resp. G2? then for both Fi and F2,
the set of edges joining v\ and v2 is precisely the set of edges joining vi
and v2 in G\ (resp. G2).

(c) If vieGi and v2eG2, then vi is joined to v2 în Fi if and only if (u

(d) If VieGi and v2eG2> then ui is joined to V2 in F2 if and only if (ui,

We illustrate this rather confusing-sounding recipe in the diagrams below.

Figure 1: Seidel switching: the graphs G\ and G2

Theorem 3 (Seidel switching) The graphs Fi and F2 so constructed are
isospectral.

The proof of this theorem is a simple yet clever argument by counting
closed paths of a given length.

It is shown by a direct argument in [BL] that the Fi and F2 given above
are not simple Sunada equivalent.
Question: Are the two graphs gênerai Sunada equivalent?

We mention that simple Sunada équivalence has the following geometrie
interprétation: a coloring of type (r, s) of a (2r + 5)-regular graph is an
assignment to each edge of either a color in the set { 1 , . . . , r} and a direction,
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Figure 2: Seidel switching: The graph Fi

•
or a color in the set {r + 1,... , r + s}, such that each vertex has precisely
one outgoing and one incoming edge of color z, for each ie{l,. . . , r} , and
one edge of type z, ie{r + 1, . . . , r + 5}. Then two graphs are simple Sunada
equivalent if they admit colorings such that the number of closed paths of a
given séquence of colors and directions is the same for the two graphs.

General Sunada équivalence has a similar interprétation, except that we
group together patterns under a finite set of pattern équivalences.

3 Mutually Isospectral Graphs and Surfaces

We now raise the question: given a A;-regular graph F, how many graphs are
there isospectral to F? This question becomes meaningful if we let the size
of the graph grow in some meaningful way.

One motivation in raising this question is to compare the size of isospec-
tral sets we can achieve with the size of sets of Sunada equivalent graphs. If
the numbers we obtain this way are different, then we have presented some
évidence to the effect that many isospectral graphs are not Sunada equiva-
lent. While we are at present a long way from this goal, we find the évidence
presented rather convincing.
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Figure 3: Seidel switching: The graph ^

We have the following:

Theorem 4 For every integer n divisible by 4, there is afamily of cardinality
271/4-1 of mutually isospectral 6-regular graphs with n vertices.

The proof is based on stitching together a number of graphs via Seidel
switching. The power of 2 comes from the fact that we can perform switching
independently at each of the stitchings.

When one allows the regularity to grow, one needs some measure of the
complexity of a graph that is finer than the number of vertices. We find a
convenient measure to be the genus of the graph, which is given by Euler's
formula as

where V is the cardinality of the graph and k the regularity.
The following was worked out with Greg Quenell, based on [GM]:

Theorem 5 (a) For a set of n —• 00, there are sets of isospectral k-regular
graphs on n vertices, where k —> 00 with n, which grow in size like n(

cons^)n
m

(b) For a set of g —> oo; there are sets of isospectral k-regular graphs of genus
g, where k —» oo; which grow in size like ^
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Indeed, the graphs of (b) are the sets constructed by Seidel switching.
We have not been able to do better than this when one measures growth by
the genus.

When we restrict to sets of Sunada isospectral graphs, the situation
changes dramatically. Here, we find it easier to work with Riemann sur-
faces, and then later restrict to graphs.

We show:

Theorem 6 ([BGG]) For a set of g —> oo, there are sets of mutually
isospectral Riemann surfaces of genus g} of cardinality ~ g(cons^)ïo&(9)t

The construction involves an investigation of Heisenberg groups over fini te
fields. Roughly speaking, the Sunada triples that enter here are the discrete
analogues of the nilpotent isospectral déformations of Gordon and Wilson
[GW].

Because these surfaces arise by the Sunada method, they give rise to
isospectral grap'hs which are simple Sunada equivalent.
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