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A METHOD OF SYMMETRIZATION;
APPLICATIONS TO HEAT AND SPECTRAL ESTIMATES

Alessandro SAVO

Introduction

This is a survey of some of the results of preprints [15] and [16}, which will be sub-
mitted (with some modifications) to “Duke Mathematical Journal” for publication. For
complete proofs and additional facts we refer to [15] and [16).

All results will be obtained by applying a technical lemma, which we call the “Mean-
value lemma" (see [15], Theorem 2.8). The set-up is the following: let N be a compact,
piecewise-smooth submanifold of the complete, n—dimensional Riemannian manifold
M. The tube of radius r around N is the set M(r) = {x € M : p(x) < r}, where
p : M — [0,00) is the distance function from N. Given a function u on M, our aim is
to describe the second derivative of the content function :

F(r)= / udvy
M(r)

where r > 0, and where dv, is the volume form on M given by the metric. It turns out that
the answer involves the Laplacian of u, as well as the Laplacian of the distance function p.
Now, if the submanifold N is smooth, and if r is less than the injectivity radius R;,; of the
normal exponential map of N, then both p and F are smooth functions (of x € M and r
respectively), and in fact one easily proves that:

(1) F'(r)= —/ Audvy —/ ulpdv,_,
M(r) p=(r)

Classification math. : 58G25, 35P15, 58G11.
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If x ¢ N and does not belong to the cut-locus Cut(N) of the normal exponential map of
N, then p is smooth at x, and in fact:

Ap(x) = trace of the second fundamental form of the level hypersurface p~!(p(x)).

However, the nature of the problems we intend to investigate (which include the
piecewise-smooth case), and the kind of answers we want to give to these problems (for
example, control solutions of the heat equation for all values of time), forced us to take
into account all points of the manifold M, and then consider F(r) as a function on the
whole half-line, and not just restricted to the (often too small) injectivity radius of the sub-
manifold N. In other words, we want to extend (1) beyond the cut-locus.

In general, both F and p will only be Lipschitz regular, and their Laplacians must
therefore be taken in the sense of distributions. Hence, we first observe that the distribu-
tional Laplacian of p decomposes in a regular part A,gp (an L}, — function on M), and
a singular part, which is in turn the sum of a positive Radon measure A, p, supported
on the cut-locus of N, and the Dirac measure —26y, supported on the submanifold N and
vanishing when N has codimension greater than 1. In particular, Ap is a Radon measure it-
self (the singular Laplacian of the distance function was previously considered by Courtois
in [8]). Here is our main technical lemma.

THEOREM (“Mean-value lemma" [15], Theorem 2.8).
(2) —F'()= [ sudu+p.(ubp)(r)
M(r)

as measures on the half-line. Here p. is the operator of push-forward on measures, which
is dual to the pull-back operator p™ (if T is a measure on M, the measure p«(T) is then
defined by [;° wp.(T) = [(w o p)T).

The name “mean-value lemma" is justified by the fact that, if p is the distance func-
tion from a point, one can easily derive from (2) the classical mean-value lemma for har-
monic functions on symmetric spaces (see [15] Proposition 3.1).

Formula (2) will be our method of symmetrization , and we will apply it to the fol-
lowing two problems:

APPLICATIONS TO EIGENVALUE ESTIMATES. — Let u be an eigenfunction of the Laplace
operatof on M: Au = Au. Then (2) becomes:

(3) F'(r) + AF(r) = —p.(ubp)(r).

APPLICATIONS TO HEAT ESTIMATES. — Let u(¢, x) be a solution of the heat equation
on M. Then F = F(¢, r) and (2) becomes:

2
(4) ( i %) F(t,1) = pu (u(t, ))(r).

“or
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Using classical comparison theorems (Bishop [5], Heintze-Karcher [11] ), one can
actually bound the measure Ap by the corresponding Laplacians of distance functions on
spaces of constant curvature (which are explicit). In this way, (3) and (4) become one-
dimensional differential inequalities, which can be studied by standard Sturm-Liouville
arguments, in the case of (3), and by Duhamel principle (or the maximum principle) in the
case of (4).

Here is a summary of the main results: about eigenvalue estimates, we will prove
a comparison theorem (see Theorem 1) between the integral of an eigenfunction of the
Laplacian on geodesic spheres (or geodesic balls) and the corresponding integral on a
space of constant curvature; the comparison is given in terms of a lower bound of the Ricci
curvature of the manifold, and is a generalization of the well-known Bishop-Gromov in-
equality. As a corollary, we re-obtain Cheng's inequality (see [7]) on the first Dirichlet eigen-
value of geodesic balls. Then, by applying (3) to the distance function from the boundary
09 of a domain Q, we re-prove an inequality, due to Kasue (see [12]), on the first Dirich-
let eigenvalue of Q. Here the comparison is given in terms of a lower bound of the Ricci
curvature on , and a lower bound of the mean curvature of 0Q.

The second set of applications regard heat diffusion. Let us briefly describe the set-
up. Consider the solution u(¢, x) of the heat equation on the domain Q, which has unit
initial conditions (u(0, x) = 1for all x € Q), and satisfies Dirichlet boundary conditions.
The integral:

H(t)=/ﬂu(t,x)dx

is the heat content of Q at time ¢; equivalently, H(¢) is the L' -norm, over Q x Q and at time
t, of the Dirichlet heat kernel of Q. This function has recently been studied by probabilists
and differential geometers (see [1],[2],[3] and [4]).

We will give bounds of H(t), which are valid for all time ¢z, in case the domain satis-
fies the condition that Ap is a positive measure : this happens if and only if the mean cur-
vature of (the regular part of) each level hypersurface p~!(r) is non-negative. Sufficient
conditions for the positivity of Ap are that both the Ricci curvature of QQ and the mean cur-
vature of Q) are non-negative (if Q is merely piecewise-smooth, we add the condition
that the foot of every geodesic segment which minimizes the distance from 8Q is a regular
point of 6Q2).

Under the above assumptions, we get the following simple lower bound:

fn u(t, x) dx > vol(Q) — %T vol(8Q)V

forall ¢ > 0. The inequality becomes an equality for a flat cylinder, as its height tends to in-
finity (in fact in that case Ap — 0) and continues to be true, by polyhedral approximation,
for all compact, convex sets in R".
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For sharper bounds, see the text.
Then, we consider a convex polyhedral body Q in R”, and prove the following ex-
pansion of the heat content, as t — 0:

/n u(t, x) dx = vol(Q) — % vol(3Q)Vt + ot + O(t%)

where ¢; = 4 %:vol,,_z(E) . fo°° (l - '%T%ﬁ—?{—)) dx. Here E runs through the set of all

(n — 2)—dimensional faces of Q (the “edges"” if n = 3), and y(E) is the interior angle of the
two (n — 1)—planes whose intersection is E. This result extends, to convex polyhedrons
of arbitrary dimensions, the corresponding result obtained in [4] for polygons in R%. The
result is obtained thanks to an explicit description of the cut-locus, and the measure Ap,
near the boundary of the polyhedron. The remainder O( t3 ) is estimated in [15).

Finally we mention a further consequence of our approach (see [16]). Allow arbi-
trary initial conditions ¢ € C*(), and examine the behaviour of the heat content inte-
gral:

H(t)=/ﬂu(t,x)¢(x)dx

as t — 0. This problem was approached in various papers when the boundary is smooth
(see (1), [2] and [3]); in particular, in [2], it is shown that H(t), as t — 0, admits an asymp-
totic expansion of type:

[o ]
H(t) ~vol(Q) — > Be(¢) - 12

k=1
and the coefficients B;(¢) were computed up to k = 4 (and up to k = 7 for a ball in R"
when ¢ = 1). Using the mean value lemma and Duhamel principle on the half-line, our
method produces a recursive formula (see Theorem 5) which, by iteration, computes the
coefficient B (o) for all k. In particular it is shown that: B¢(¢) = [, D where Dy is a
differential operator belonging to the algebra generated by the Laplacian A of Q2 and by the
first order operator N defined by N¢p = 2V - Vp — $pAp.

Eigenvalue estimates

LOWER BOUNDS OF Ap. — Let N be a piecewise-smooth submanifold of M, and
let p denote the distance function from N: p(x) = dist(x, N). Then p is Lipschitz on M,
and C*®°- smooth on the set M \ Cut(N), where Cut(N) is the cut-locus of the normal
exponential map of N. Cut(N) has zero measure in M (this is well-known if N is smooth;
see [15] for the proof of this fact when N is only piecewise-smooth), hence p is C*° a.e. on
M, and ||Vp|| = 1 at all C*°-points of p.
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As anticipated in the introduction, the distribution Ap splits as a sum (see [15],
Lemma 1.4):

Ap = Dregp + Dcurp — 20N.

The regular part A,.gp is just the Laplacian of the restriction of p to M \ Cut(N);
for the expression of Ay, p, see [15). As A ,;p is always a positive distribution, in order to
bound Ap it is enough to control A,.gp. This can be done by considering normal coordi-
nates based at N : they are given by pairs (r, §) where r > 0and £ € U(N), the unit normal
bundle of N in M. The pair (1, §) corresponds to the point exp) 7E. Let us write 6(r, £)
for the density of the Riemannian measure in normal coordinates. Then, a classical result
(see formula 1.7 in [9]) states that, in normal coordinates:

If p = distance from a point and if we assume that the Ricci curvature of M is bounded
below by (n — 1)K, then, by Bishop comparison theorem: %' (ng) < % (r) at all regular
points (1, £) of p, where 8 is the density of the Riemannian measure in polar coordinates
based at any point in the simply connected manifold of constant curvature K. The function
6(r) is explicit, and is given by: 8(r) = sx(r)"~!, where:

7 sin(rvK) ifK>0

SK(}') = r fK=0

—,_lm sinh(ry/[K]) ifK <o0.

Since 6y = 0, we get the following lower bound of Ap:
él

(5) Ap 2 - G oP
If p = distance from the boundary of a domain Q) we give a lower bound of Ap in terms of
a lower bound of the Ricci curvature of Q, say (n — 1)K, and a lower bound of the mean
curvature on 3(Q, say /. In fact, in that case: %(r, §) < %(r) where 8(r) = (sk(r) —
fisx(r))"~! and if we regard Ap as a distribution on Q (hence acting on functions which
are compactly supported in Q), then 65 = 0. We get:

/

6 Ap > ——op.
(6) p2->0p

We now come to the announced comparison theorems. We start by assuming that
p is the distance from a point so that the level submanifold are geodesic spheres centered
at the point.

THEOREM 1. — Let M be a manifold satisfying: Ricci > (n — 1)K, letA € R, and
R < diam(M). Let u be a solution of Au > Au which is never zero on the open ball

B(xo, R) in M, and let u be a solution of Ali = Aii on the open ball B(%, R) = B(R) in Mg
such that i(%) # 0. Then we have, forallr < R:
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faB(xo,r) u < faE(r) u
fB(xo,r) u - fﬁ(r) u

Sketch of proof. — We can assume that u is positive on B(x, R). Let F(r) =
f B(xor) ¥ From (5) and our assumptions, one has p, (uAp) > — %— F’, hence, from (3):

Al
F"—%F’+AF§O

in the sense of distributions on (0, R). Equality is easily shown to hold for the cor-
responding map: F(r) = [, 5(r) U Taken together, the two facts imply that the map

F'(r)F(r)=F'
e(r)

(DF(1) has non-positive derivative on (0, R), and the inequality follows. §

We stress that the above inequality extends beyond the injectivity radius.

CoRroLLARY. — Assume that Ricci > (n — 1)K. If u is a positive super-harmonic
function (Au > 0) on B(xy, R), then, forallr < R:

1
u(x) 2 Sz ./aB(xo.r) -

Another consequence of Theorem 1 is a new proof of the following result:

THEOREM (S.Y. Cheng [7]). — If Ricci> (n — 1)K, then, for all R:
A1(B(xo, R)) < A1(B(R))

where B(R) is the ball of radius R in the simply connected manifold of constant curvature
K, and A, denotes the first non-zero eigenvalue of the Dirichlet problem on the indicated
domain.

Proof. — Let us assume that A;(B(xp, R)) > A;(B(R)). Then there exists R’ <
R such that A;(B(xo, R)) = A;(B(R’)). Choose corresponding positive eigenfunctions u
(resp. &) on B(xp, R) (resp. B(R’)). The positivity of u in the interior of B(xg, R) implies
that faB(xo,R') u > 0;as & = 0ondB(R'), this is a contradiction with the theorem.

APPLICATIONS WHEN p IS THE DISTANCE FROM THE BOUNDARY OF A DOMAIN. — In this
subsection we give a lower bound of the first eigenvalue of the Dirichlet Laplacian of a
relatively compact domain QQ having smooth boundary. The bound is given in terms of a
lower bound (n— 1)K of the Ricci curvature of , alower bound ij of the mean curvature of
09, and the inner radius R of Q) (the radius of the biggest ball that fits into ), and has been
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obtained by Kasue (see [12]), for domains with smooth boundary. We remark, however, that
our proof differs from the one in [12].

To state our comparison theorem, we need to define the model domains to which
we will compare our domain Q. Then let Q = Q(K, i, R) be the cylinder with constant
curvature K, and width R, such that the mean curvature is constant, equal to /j, on one of
the two connected components of the boundary. Depending on K and 7, Q will be an an-
nulus in either the simply connected manifold of constant curvature K, or the hyperbolic
cylinder of constant curvature K. For an explicit description of Q, see [15].

THEOREM 2 (Compare with [12]). — LetQ be a domain with smooth boundary. As-
sume that the Ricci curvature is bounded below by (n — 1)K on Q, that the mean curvature
is bounded below by i) on 012, and let R denote the inner radius of Q. Then:

A (Q) 2 A(Q)

where A} (Q) is the first non-zero eigenvalue of the Dirichlet problem on ), and where
A1(Q) denotes the first non-zero eigenvalue of the following mixed problem on Q(K, i, R):
Dirichlet condition on the component having mean curvature i), Neumann condition on
the other.

The proof uses the mean-value lemma and (6), and is similar to the proof of Theo-
rem 1 (see (15}, Theorem 3.10).

We observe that, if the Ricci curvature of (2 and the mean curvature of Q2 are both
non-negative, the theorem gives the well-known inequality:

-

4R?

due to Li and Yau ([14}, Theorem 11). But (7) holds under the more general hypothesis that
Ap > 0, and we observe the following very simple proof of (7) in that case. Let u be a

(7) A(Q) 2

positive eigenfunction corresponding to the first eigenvalue A, = A,(Q) and let, as before,
F(r) = fﬂ(r) u. Since F is Lipchitz, it is certainly in H!(0, R), and moreover F'(0) =
F(R) = 0. By the mean-value lemma: —F" = AF — p,(uAp), hence —FF" < AF?. Then
j;)R(F' 2 <A fon F? and, by the min-max principle, we conclude that A > 41:; (the first
eigenvalue of the mixed problem on the interval (0, R)).
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Applications to heat diffusion

We let Q2 be a domain with piecewise-smooth boundary in a Riemannian manifold
M. We assume Q) compact, and refer to the introduction for the definition of the tempera-
ture function u(t, x) and the heat content function H(t) (the integral over Q of u(t, -)). We
will address two kinds of problems regarding H(t):

1. Give lower bounds of H(t) which are valid for all time ¢;
2. Examine the behavior of H(t) for small time.

We will apply the mean value lemma taking p = distance function from the bound-
ary of Q. About the first question, we will work in the hypothesis that Ap > 0: sufficient
conditions for the positivity of Ap are given in the introduction; observe that these condi-
tions are certainly met by convex sets in R”. About the second question, we examine the
case where (Q is a convex polyhedron in R” (Theorem 4), and the case where 8Q is smooth
(Theorem 5). However, the analysis in all these situations can be carried out using the
representation of the heat content function given by formula (8).

So, introduce an auxiliary variable r > 0, and let: F(z,7) = fn(r)(l — u(t, x)) dx.
We will call F(¢, r) the complementary heat content function ; the relation with H(t) is:
H(t) = vol(Q) — F(t, 0). Here Q(r) is the parallel domain at distance r from the boundary:
Q(r)={x€ Q:p(x)>r}. '

By the mean-value lemma, F(t, r) satisfies the following initial-boundary value
problem on (0, 00):

2
—ZE+ % = —p.((1 - u(s,))bp)
F(0,r)=0 forallr > 0
8L (2,0) = —vol(20) forallz> 0.

The above heat equation is non-homogeneous; its non-homogeneous part is re-
lated to the mean curvature of the level domains by means of the measure Ap; applying
Duhamel principle, one derives the following expression of H(¢):

/Q u(t, x) dx = vol(Q) — —\/2% vol(3Q) V1

+ /()" ./o°° e(t — 7,5,0)p. ((1 — u(t,-))Ap) (r) drar

where e(, , ) is the heat kernel of the half line subject to Neumann conditions at r = 0;

explicitly, for s = 0, we have: e(z,1,0) = 7‘"-'e"2 /41,

(8)

We are now ready to derive some consequences of (8).
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BOUNDS IN THE CASE: Ap > 0.

Let now Q be a domain which satisfies: Ap > 0. Since u(T, x) < 1forall T, x, we
immediately obtain, from (8):

(9) / u(t, x) dx > vol(Q) — % vol(dQ)V1
Q

for all z > 0. The inequality continues to be true for any compact convex subset of R", by
polyhedral approximation.

Inequality (9) can be refined as follows. Fix x € Q, and apply Duhamel principle to
the function (¢, r) — fn(,) k(t, x, y) dy, where k(t, x, y) is the Dirichlet heat kernel of Q.
One gets the useful inequality:

(x)
(10) u(e, x) _<__/p e(t,r,0)dr.
0

This in turn implies: p, ((1 — u(s, -))Aap) (r) > fr°° e(T, 5,0) ds-p.(Ap)(r), which,
inserted in (8), gives:

1 oo 2
/o /o e(T,2r,0)p.(Ap)(r) drdt <H(t) — vol(Q) + -\-/—_; vol(2Q) V't

(11) t oo

< / / (7, 1,0)p.(Ap)(r) drdr.
o Jo
Note that the bounds are given in terms of the measure p,(Ap) = — % vol(p~1(r)).
Note also that, if 3Q is smooth, and if r < R;,; = the injectivity radius of the normal
exponential map of 2Q, then p, (Ap)(r) = fp_, ) Ap dv,_, where Ap is the trace of the
second fundamental form of p~!(r); in particular, Ap|pq = n = (n — 1) times the mean
curvature of 2.

Taking into account (10) and (11), one gets:

THEOREM 3. — Let Q) be adomain with smooth boundary, satisfying Ap > 0. Then,
forallt > 0:

n—1

‘/Qu(t..f) dx > vol(Q)—%vol(aQ)\/?-k > (/mndv,,_l) t+min{C, 0}*?-g(1)

where C = # rei{(l),fa) /; _l(r)(scalM — Ricci(Vp, Vp) — scaly-1(y)) dvn—, and where g(t)
is the exponentially decreasing function: g(t) = ([, n) [y [° #e"z /Tdrdr; herea
is a fixed number0 < a < R;j and “scal” denotes scalar curvature. In particular, if Q C R3:

C=- @x(an), where x(0Q) is the Euler characteristic of Q).

We remark that the first three terms in the right-hand side of the above inequality
coincide with the first three terms of the asymptotic expansion of the heat content of Q, as
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t — 0; this means that the above inequality above is sharp up and including the term of
order ¢, as t — 0. In fact, for any domain with smooth boundary (not necessarily satisfying
the condition that Ap > 0), one has the following expansion, valid for all £ > 0:

(12) / u(t, x) dx = vol(Q) — %vol(aﬂ)\/;+ %/ ndvp_, - t+ £(t)
Q 20

where |[€(t)] < Cr3/2 + h(t) for a constant C and a function k() which is exponentially

decreasing as ¢t — 0. We refer to [15], Theorem 4C.3 for the proof and for an explicit expres-

sion of C and h(t). The expansion (12), when Q C R”, was first obtained in [3]; for domains
4

in Riemannian manifolds a five term asymptotic expansion: H(t) = 3 Bit*? + O(1*/?)

=0
as ¢ — 0 has been obtained in {2], but no estimate of the remainder terms was given.

In the next section we will give a recursive formula for the computation of the complete
asymptotic series, in powers of 172, of the heat content, as ¢t — 0.

Let us only mention here that the proof of (12) is based on equation (8), and on
the fact that, near the boundary of the domain (assumed smooth ), one has that the tem-
perature u(t, x) may be conveniently approximated by fop(x) e(t, r,0) dr (the error in the
approximation being of order ¢!/2, as t — 0).

Again assume Ap > 0, and let R be the inner radius of Q. Sharper inequalities can
be obtained by replacing the heat kernel e(z, r, s) with the heat kernel eg(1, 7, s) of (0, R)
satisfying the Neumann condition at r = 0, and the Dirichlet condition at r = R (then:
e(t,r,s) > er(t,r,s)). For the complementary heat content, we then have the inequality:
F(t,r) < vol(3Q) fot er(T,1,0) d7 for all ¢, and for all r > 0, which becomes an equality
for a flat cylinder (the domain S' x (0, 2R) with the product metric). This fact has the
following interesting consequence: '

Among all domains with fixed inner radius, and with boundary of fixed volume, flat
cylinders hold the maximum complementary heat content.

ASYMPTOTICS OF THE HEAT CONTENT ON A CONVEX POLYHEDRON.

THEOREM 4. — If Q is a convex polyhedron in n—dimensional euclidean space,
then: )
u(t, x) dx = vol(Q) — —= vol(3Q)Vt + ¢t + £(2)
Jo 0 v
with:

_ = tanh(y(E)x)
C = 4;V01n_2(5) ./o (l —_ -W) dx

where E runs through the set of all (n — 2)—dimensional faces of Q) (the “edges" if n = 3),
and y(E) is the interior angle of the two (n — 1)—planes whose intersection is E. The
remainder £(t) is bounded, in absolute value, for all t, by Ct3/? + h(t) for a constant C,
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and for a function h(t) which is exponentially decreasing ast — 0 (see [15], Theorem 4D.1
for an explicit expression of C and h(t)).

We sketch the proof of the theorem.

Let us first fix some notation. The word polytope refers to a set which is the intersec-
tion of a finite family of closed half-spaces. Let us then write: Q = (| ¥, I = {1,..., m}
where H; = {x € R" : py (x) > 0} and where p,, denotes th:ee:iistance, taken with
sign, from the oriented affine hyperplane (supporting hyperplane) m; of R". Note that py,
is an affine map. The (n — 1)-dimensional faces of Q are the subsets of 9Q defined by:
F,=mn &fori € I. Each Fiisa polytope in mr;; its supporting hyperplanes are:
m; N 1}, j # i (with the obvious orientation). In turn, each (n — 2)-dimensional face
Fi N Fj, with j # i, is a polytope in the (n — 2)—dimensional euclidean space m; N 7},
and so on. By vol,(P) we denote the Lebesgue measure of the polytope P in R?, and by y;;
we denote the interior angle at 7; N F; : it is the unique angle between 0 and 7 such that
cosy;; = —V; - vj, where v; and v; are the respective unit normal vectors of mr; and 7},
positively oriented. Note that, if 7; and F; are incident faces, then 0 < y;; < 1. Our aim is
then to prove that the expansion in Theorem 4 holds with:

— _tanh()’ux))
= Zgjvol,, z(fﬂ}')/ (l tanh(mrx) dx.

For the proof, we let p denote the distance from 0, and we will use representation
(8) of the heat content; so we need to determine the behavior of the integral:

fo' fo°° e(t — 17,10)p. ((1 — u(t,:))Ap) (r)drdr, ast — 0, and show that in fact this
behavior is given by ¢, + O(#3/2). This will be accomplished by first giving an explicit de-
scription of the distribution p. (uAp), and then by suitably approximating the temperature
1 — u(T, x) on the cut-locus, near the boundary of the polyhedron.

DESCRIPTION OF THE CUT-LOCUS. — The first thing to observe is that, since each
level set p~!(r) is piecewise-linear (because of the convexity of the polyhedron), we have
that A,.gp = 0; hence Ap = A.y,p is purely singular. Since there are no focal points of 9Q,
the cut-locus is the closure of the set of all points of Q which can be joined to 92 by at least
two minimizing line segments. Therefore:

Cut(3Q) UCut,, where Cut;; = {x € Q: p(x) = pn,(x) = pm;(x)}.
i#]

PROPOSITION.

(i) Foreachi # j, Cut;j is a polytope in the hyperplane m;; = {x € Q : pp,(x) =
pnj(x)} (the “bisecting hyperplane” of t; and m;);



20 A.SAVO

(ii) Letep € C°(Q),and ¢ € C°([0, 00)). Then:
/ PAp = Z cos(yU ¢(x) dx;

‘#] Cut,l
}'
/ yp.(ubp) = Z cos( 2L ) / w(p(x)) dx,
l%] CU(,I

dx denoting Lebesgue measure on the hyperplane m;; of R".

Proof. — See [15], Proposition 4D.3.
By the Proposition:

(13) /0‘ /ooo e(t—1,1,0)p. ((1 — u(t,0))Ap) (r)drdr
= Zcos(y”)/ / e(t — T,p(x),0)(1 — u(T, x)) dx dr.

l#] CU!,J
We will reduce the right-hand side to ¢t + O(£*/2) in four steps.

Step 1. Choose € > 0 so that, if the faces F; and F| do not meet, then Cut;; is at
distance at least € from 2. Set:

L={(ij)eIxI:i#jFinNF;+#0}

It is then clear that a pair (i, j) ¢ L will contribute to the sum in (13) with a term
(depending on €) which is exponentially decreasing as t — 0. We can then restrict the sum
in (13) to the pairs (i, j) € L, thatis, to mutually intersecting faces.

Step 2. Approximation of u(t, x). One can show that, modulo terms of order r3/2
and higher, we can replace 1 — u(T, x) on Cut;; in (13) by the function 1 — u;;(T, x), where
u;j is the temperature function relative to the infinite open wedge in R" bounded by the
oriented hyperplanes 1; and m;. This is in fact the most delicate step in the proof (only in
dimension n > 2: in dimension 2, in fact, it is an immediate consequence of the so-called
Levy’s maximal inequality, and the error in the approximation is not just of order £*/? but
actually exponentially decreasing as ¢ — 0).

Step 3. We observe that, when restricted to Cut;; C m;j, the temperature function
u;j(T, x) depends only on p;;(x) = distance of x from m; N 7}, so that it can be written
as i;j(T, pij(x)) for a function @;; = ;;(7, r). By the formula of co-area, applied to the
function p;; : Cut;; & R:

/ e(t — 7,p(x),0)(1 — u;j(t, x)) dx
Cut,;

= /oo e(t — 7, rsin(y;;/2),0)(1 — Gy;(T, 1)) vol,,_z(p;}‘(r) N Cut;;) dr.
0
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Now it is easy to see that vol,,_z(p,-‘jl(r) N Cut,j) = volp,_2(F; N Fj) + O(r) as
r — 0. This implies that, modulo terms of order /2 or higher, the right-hand side of (13)
is given by:
(14)

Zvol,,-z(f,nf,)cos(y,,/z // e(t—T, rsin(y;;/2),0),0)(1—i;;(7, 7)) dr dr.
(ij)ek

Step 4. Take the Laplace transform with respect to time of (14). Evaluated at s > 0,
this is equal to:

vol,_2(Fi N F;) cos(y; /2) e~ Vsrsin(vi/2) (2 _ g,(s,r) ) dr
\/' J J J

(ij)ek
where Ujj(s, r) is the Laplace transform, at s > 0, of i;;(-, r). This function is computable:
in fact, using Kontorovich-Lebedev’s explicit expression of the Green’s function of an infi-
nite open wedge in the plane (already used in [3]), one has:

. 2 e cosh(mmx/2)
P Uij(s,r) = TTS/o Kix(v/57) cosh(y;jx/2) @

Substituting, and using integral tables, one obtains the quantity -3; taking inverse
Laplace transform, one obtains the theorem.

We remark that, if dim(Q) = 2, the proof simplifies considerably (steps 2 and 3
are in fact immediate), and we can easily extend it to cover the (not necessarily convex)
polygonal case (see [15]), thus re-obtaining van den Berg-Srisatkunarajah’s calculation.

Another remark is in order. We observe that the coefficient c; is supported on the
(n — 2)—dimensional skeleton of Q, and therefore it should be related to some kind of
distributional mean curvature of the boundary of the polyhedron; on the other hand, c;
is not the limit of the integral mean curvatures of a sequence of smooth domains which
approximate the polyhedron Q: in other words, ¢, does not pass to the limit under smooth
approximations. This fact can be explained by observing that, in the polyhedral case, the
cut-locus goes to the boundary, and cannot be neglected in the computation of the asymp-
totic terms of order greater than ¢/2,

As for the arbitrary, piecewise-smooth case, we are led to conjecture the following
fact: let y(y) denote the interior angle of the tangent spaces of the two smooth pieces of
90 meeting at the singular point y, and assume that y(y) > 0 (that is, the intersections are
transversal). Then the coefficient of the term in ¢ in the asymptotics of the heat content
should be given by:

./Sk,, 2/ ( tf;hlff((y)))) dx d""-z()’)+% /a . n'1()') dvp_1(y)

&
where Sk, is the union of all pieces of dimension n — 2 in the cellular decomposition of

0Q, and n is the trace of the second fundamental form of the regular part of the boundary.
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RECURSIVE FORMULAS FOR THE HEAT CONTENT ASYMPTOTICS (smooth boundary).

Now let Q be a domain with smooth boundary, and fix ¢ € C*°(Q). The integral:

H(t)=/ﬂu(t,x)¢(x)dx

can be viewed as the heat content, at time ¢, of Q, assuming that the initial temperature is
given by ¢ and assuming Dirichlet conditions on the boundary. We are concerned with the
calculation of the coefficients ;. (¢) in the asymptotic expansion, as t — 0, of H(z):

H(r) ~ /nqb— > Bi(#)rt?
k=1

To explain the method of calculation, we once again reduce the problem to a one-
dimensional heat equation. Let us then introduce an auxiliary variable r € [0, 00), and
let:

19(1,7) = /Q (= (e )02 d

where Q(r) = {x € Q : d(x,8Q) > r} is the parallel domain at distance r from 3Q. Note
that I¢(1,0) = [, ¢ — H(t), hence B (o) is really the coefficient of t*/2 in the asymp-
totic expansion of I¢(¢,0), as t — 0. The so-called principle of not feeling the boundary
(extended in [16] to Riemannian manifolds) implies that, if the initial data ¢ is supported
away from 9Q), then I¢$(t,0) is o(t™), as t — 0, for all m > 0; as a consequence, all co-
efficients By (¢) will depend only on the behavior of ¢ in a neighborhood of 82, and in
particular, for unit initial conditions, the coefficients 8, (1), for all k > 1, give invariants of
the immersion of 9Q in Q. '

For the calculation of the 8;(¢)’s, we can therefore assume that ¢ is supported in
a small neighborhood of 89 in Q, which does not meet the cut-locus. Then I$(z,r) is
smooth in both variables, and satisfies the heat equation (—a%zz + %) I¢p = L'I¢ on
(0, 00), and by the mean-value lemma (1):

Uw@ﬁ=/
, p=1(r)
with N = 2V ¢ - Vp — ¢pAp. Note that L' I¢(z, r) is itself smooth in both variables. Ap-
plying Duhamel principle to /¢, then to L! I, and iterating infinitely many times, one ob-
tains an asymptotic series of I¢(z, 0) (see Lemma 9 of [16]) whose terms can be expressed
with the help of the computable integrals [ 7’;f=;e"2 /41X 1$(0, r) dr and in terms of

(1 = u(t, x))N(x) dx — / (1 = u(t, ))Ad(x) dx

Q(r)

Lk1¢(s, 0), withL = -a%zz + %. From this asymptotic series one can then extract, af-
ter some algebraic manipulations, a set of recursive relations for the coefficients 8;(¢),
which we give below.
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THEOREM 5. — For each k > 1, there exists a homogeneous polynomial Dy of
degree k — 1 in the operators N and A such that:

Bi(®) = /an Di.

Define the families of operators of type R and S by:
Rij = —(N? + A)Ri—y,j + NSy
Skj = NRg_),j~1 + ANRy_y,j — ASk-y,j
Roo=1d, Sopo=0, Ryj=5;=0 ifj<o,
RO] SOJ =0 if j #0.

k+1
) [(a+b+1/2 & . o :
Set: {a, b} = i pTiasiss) Zntl = ,-E—o{"+ 1,j = 1}Rnsjji Ok = ,-Z-o{k' j}Sk+j- Then

the following recursive formulas hold:

2
D= —Id
\/TT
1 T+ Dr(n-i+?d)
=7 m Dei1tn=i

imrn—i+ 2) . '
Dypyy = \/—Zn+1+ \/—Z T(n+ 3) Dyictp—;.

We give below the explicit expressnon of the operators Dy, ..., Dg:

—=(N?
f

N* + 16N?A + BNAN — 48A%);

240\/1‘7 (V" + + )

1
Ds =7—68(AN3 — N3A + NAN? — N?AN + 40NA? + 8A%N + 16ANA);

2 1
Dy=—=Id; D= N; — 4A);

N

Dy = - %(AN+3NA): Ds=-—

1
=———(N® + 120N?A? + 4N3AN + 4N?AN? + ANAN® + 72 2 2N
D, 6720\/}?( + + + + + 72(NA)* + 40NA
+ 8N*A + BAN?A + 8(AN)? — 8A2N? — 320A%);
Dy = — —(40A3N + 8AN3A + 280NA® + 8NAZN? — 8N?A%N + 72A%NA

24576
+.120ANA? + 4A%N3 + 4(AN)?N — 12N(NA)? + 4AN2AN + 4ANAN?A

— 12N3A% -~ N*AN + AN® + NAN*® — N5A).

(The above expression of Dy corrects the earlier calculation of Dg found in [16]). A
vanishing theorem for the coefficients B,x(¢), for all k > 1, in some particular cases, is
given by Theorem 23 in [16].
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