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A METHOD OF SYMMETRIZATION;
APPLICATIONS TO HEAT AND SPECTRAL ESTIMATES

Alessandro SAVO

Introduction

This is a survey of some of the results of preprints [15] and [16), which will be sub-
mitted (with some modifications) to "Duke Mathematical Journal" for publication. For
complete proofs and additional f act s we refer to [15] and [16].

Ail results will be obtained by applying a technical lemma, which we call the "Mean-
value lemma" (see [15], Theorem 2.8). The set-up is the following: let N be a compact,
piecewise-smooth submanifold of the complete, n-dimensional Riemannian manifold
M. The tube of radius r around N is the set M{r) = {x € M : p{x) < r}, where
p : M —> [0, oo) is the distance function front N. Given a function u on M, our aim is
to describe the second derivative of the content function :

F(r)= / udvn
JM(T)

where r > O, and where dvn is the volume form on M given by the metric. It turns out that
the answer involves the Laplacian of u, as well as the Laplacian of the distance function p.
Now, if the submanifold N is smooth, and if r is less than the injectivity radius /?,„; of the
normal exponential map of N, then both p and F are smooth functions (of x € M and r
respectively), and in fact one easily proves that:

"(r) = - àudvn-
JM(r) Jp-Hr)

Classification math. : 58G25,35P15,58GU.



10 A. SAVO

If x & N and does not belong to the cut-Iocus Cut(N) of the normal exponential map of
N, then p is smooth at x, and in fact:

= trace of the second fundamental form of the level hypersurface p~l(p(x)).

However, the nature of the problems we intend to investigate (which include the
piecewise-smooth case), and the kind of answers we want to give to these problems (for
example, control solutions of the heat équation for all values of time), forced us to take
into account all points of the manifold M, and then consider F(r) as a function on the
whole half-line, and not just restricted to the (often too small) injectivity radius of the sub-
manifold N. In other words, we want to extend (1) beyond the cut-locus.

In gênerai, both F and p will only be lipschitz regular, and their Laplacians must
therefore be taken in the sense of distributions. Hence, we first observe that the distribu-
tional Laplacian of p décomposes in a regular part &regP (an L)oc— function on Af), and
a singular part, which is in turn the sum of a positive Radon measure Acu,pt supported
on the cut-locus of N, and the Dirac measure -2öNt supported on the submanifold N and
vanishing when N has codimension greater than 1. In particular, Ap is a Radon measure it-
self (the singular Laplacian of the distance function was previously considered by Courtois
in [8]). Here is our main technical lemma.

THEOREM ("Mean-valuelemma" (15],Theorem 2.8).

(2) -F"(r) = / Ludvn + p,(uAp)(r)
JM{T)

as measures on the half-line. Here p* is the operator ofpush-forward on measures, which
is dual to the pull-back operator p* (if T is a measure on M, the measure p* ( T) is then

The name "mean-value lemma" is justified by the fact that, if p is the distance func-
tion from a point, one can easily dérive from (2) the classical mean-value lemma for har-
monie functions on symmetrie spaces (see [15] Proposition 3.1).

Formula (2) will be our method of symmetrization, and we will apply it to the fol-

lowing two problems:

APPLICATIONS TO EIGEN VALUE ESTIMÂTES. — Let wbeaneigenfunctionoftheLaplace

operator on M: Au = Au. Then (2) becomes:

(3) F"(r)

APPLICATIONS TO HEAT ESTIMÂTES. — Let u(t, x) be a solution of the heat équation
on M. Then F = F(t, r) and (2) becomes:

(4) , a J • dt
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Using classical comparison theorems (Bishop [5], Heintze-Karcher [11] ), one can
actually bound the measure Ap by the corresponding Laplacians of distance functions on
spaces of constant curvature (which are explicit). In this way, (3) and (4) become one-
dimensional differential inequalities, which can be studied by standard Sturm-Liouville
arguments, in the case of (3), and by Duhamel principle (or the maximum principle) in the
caseof (4).

Hère is a summary of the main results: about eigenvalue estimâtes, we will prove
a comparison theorem (see Theorem 1) between the intégral of an eigenfunction of the
Laplacian on geodesie sphères (or geodesie balls) and the corresponding intégral on a
space of constant curvature; the comparison is given in terms of a lower bound of the Ricci
curvature of the manifold, and is a generalization of the well-known Bishop-Gromov in-
equality. As a corollary, we re-obtain Cheng's inequality (see [7]) on the first Dirichlet eigen-
value of geodesie balls. Then, by applying (3) to the distance function from the boundary
9fi of a domain fi, we re-prove an inequality, due to Kasue (see [12]), on the first Dirich-
let eigenvalue of fi. Hère the comparison is given in terms of a lower bound of the Ricci
curvature on Q, and a lower bound of the mean curvature of 3 fi.

The second set of applications regard heat diffusion. Let us briefly describe the set-
up. Consider the solution u(t, x) of the heat équation on the domain Qt which has unit
initial conditions (u(0, JC) = 1 for all x G fi), and satisfies Dirichlet boundary conditions.
The intégral:

H(f)= / u{ttx)dx
Ja

is the heat content of fi at time f; equivalently, H( t) is the I1 -norm, over fi x fi and at time
f, of the Dirichlet heat kernel of fi. This function has recently been studied by probabilists
and differential geometers (see [1],[2],[3] and [4]).

We will give bounds of H( t), which are valid for all time t, in case the domain satis-
fies the condition that Ap is a positive measure : this happens if and only if the mean cur-
vature of (the regular part of) each level hypersurface p~l{r) is non-negative. Sufficient
conditions for the positivity of Ap are that both the Ricci curvature of fi and the mean cur-
vature of 3fi are non-negative (if 3fi is merely piecewise-smooth, we add the condition
that the foot of every geodesie segment which minimizes the distance from dfi is a regular
point of 3fi).

Under the above assumptions, we get the foUowing simple lower bound:

u(t, x) dx > vol(fi) - -^= vol(3fi)>/r
Ja

for all t > 0. The inequality becomes an equality for a flat cylinder, as its height tends to in-
finity (in fact in that case Ap —> 0) and continues to be true, by polyhedral approximation,
for all compact, convex sets in R".
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For sharper bounds, see the text.

Then, we consider a convex polyhedral body Cl in R", and prove the following ex-
pansion of the heat content, as t -> 0:

L 2
, JC) dx — vol(Q) 7= vol(dCl)\/l+ c2t

where c2 = 4 £ voln_2(E) • /0°° (l » " f f f f l ) d* Hère £ runs through the set of ail

(n - 2) -dimensional faces of O (the "edges" if n = 3), and y(£) is the interior angle of the
two (n — 1)—planes whose intersection is £. This resuit extends, to convex polyhedrons
of arbitrary dimensions, the corresponding resuit obtained in [4] for polygons in R2. The
resuit is obtained thanks to an explicit description of the cut-locus, and the measure Ap,
near the boundary of the polyhedron. The remainder O(t 5 ) is estimated in [15].

Finally we mention a further conséquence of our approach (see [16]). Allow arbi-
trary initial conditions <f> G C°° (Cl), and examine the behaviour of the heat content inté-
gral:

tf(r)= f u(t,x)<t>(x)dx

as t —» 0. This problem was approached in various papers when the boundary is smooth
(see [1], [2] and [3]); in particular, in [2], it is shown that H(t)t as î -> 0, admits an asymp-
totic expansion of type:

and the coefficients Pk(4>) were computed up to fc = 4 (and up to k = 7 for a bail in R"
when <£ = 1). Using the mean value lemma and Duhamel/principle on the half-line, our
method produces a recursive formula (see Theorem 5) which, by itération, computes the
coefficient f$k(4>) for ail k. In particular it is shown that: Pk{<t>) = / a n Dk<t> where D* is a
differential operator belonging to the algebra generated by the Laplacian A of O and by the
first order operator N defined by N<t> = 2V<f> • Vp —

Eigenvalue estimâtes

LOWER BOUNDS OF Lp. — Let N be a piecewise-smooth submanifold of M, and
let p dénote the distance function from TV: p(x) = dist(jt, N). Then p is Lipschitz on M,
and C°°- smooth on the set M \ Cut(JV), where Cut(JV) is the cut-locus of the normal
exponential map of N. Cut(N) has zero measure in M (this is weU-known ïïNis smooth;
see [15] for the proof of this fact when N is only piecewise-smooth), hence p is C°° a.e. on
M, and ||Vp|| = 1 at all C°°-points of p.
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As anticipated in the introduction, the distribution Ap splits as a sum (see [15],
Lemma 1.4):

Ap = Aregp + Acu{p - 25A/.

The regular part àregp is just the Laplacian of the restriction of p to M \ Cut(N);
for the expression of Acwfp, see [15J. As ACiifp is always a positive distribution, in order to
bound Ap it is enough to control &regP> This can be done by considering normal coordi-
nates basedatN : they are given by pairs (r, Ç) where r > 0 and Ç € U(N), the unit normal
bundle of N in M. The pair (r, Ç) corresponds to the point expn^ rÇ. Let us write 9(r, Ç)
for the density of the Riemannian measure in normal coordinates. Then, a classical resuit
(see formula 1.7 in [9]) states that, in normal coordinates:

139

If p = distance from a point and if we assume that the Ricci curvature of M is bounded
below by (n - 1)K, then, by Bishop comparison theorem: y (r, Ç) < ^ (r) at all regular
points (r, Ç) of p, where 0 is the density of the Riemannian measure in polar coordinates
based at any point in the simply connected manifold of constant curvature K. The function
6(r) is explicit, and is given by: 6(r) = sjc{r)n~l, where:

ifK>0

sic(r) = * if*T = O

ifK<0.

Since 5^ = 0, we get the following lower bound of Ap:

(5) Ap>_|op.

If p = distance from the boundary ofa domain Cl we give a lower bound of Ap in terms of
a lower bound of the Ricci curvature of Cl, say (n — 1)K, and a lower bound of the mean
curvature on dClt say /). In fact, in that case: ^(r, Ç) < ^(r) where 6(r) = (sf

K(r) -
fj5jc(r))n~1 and if we regard Ap as a distribution on Cl (hence acting on functions which
are compactly supported in Q), then 5N = 0. We get:

(6) Ap > --g- op.

We now corne to the announced comparison theorems. We start by assuming that
p is the distance from a point so that the level submanifold are geodesie sphères centered
at the point.

THEOREM 1. — LetMbe a manifold satisfying: Ricci > (n — 1)K, let A € R, and
R < diam(M). Let u be a solution of au > Au which is never zero on the open bail
B(xQt R) in M, and let übea solution of Aü = Au on the open bail B(XQ, R) = B(R) in MK

such that Ü(XQ) ̂  0. Then wehave, for ail r < R:
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fdB(xo,r) U
 < SdB(r) Ü

h(xOtr)U ~ h(r)Û

Sketch of proof. — We can assume that u is positive on B(xo, R). Let F(r) =

SBIXO r) u' F r o m (5) and our assumptions, one has p* (uAp) > — £• F', hence, from (3):

F" - ^-F' -f AF < 0

in the sensé of distributions on (0, R). Equality is easily shown to hold for the cor-
responding map: F(r) = J^, ü. Taken together, the two facts imply that the map

F ^^F ê7r̂  (r^F(r^ h a s non-positive derivative on (0, R), and the inequality follows. |

We stress that the above inequality extends beyondthe injectivity radius.

COROLLARY. — Assume that Ricci > (n — 1)K. Ifu is a positive super-harmonie
function (&u>0) on B(xo, R), thent for ail r < R:

Another conséquence of Theorem 1 is a new proof of the following resuit:

THEOREM (S.Y. Cheng [7]). — If Ricci> {n - l)Kf then, for all R:

where B(R) is the bail of radius R in the simply connectée! manlfold of constant curvature
K, and\\ dénotes the firstnon-zero eigenvalue oftheDirichletproblem on theindicated
domain.

Proof.— Let us assume that \x(B(xQtR)) > \i(B(R)). Then there exists R* <
flsuchthat \i(B(xQtR)) = \ï(B(Rf)). Choose corresponding positive eigenfunctions u
(resp. û) on B(XQ, R) (resp. B(R*)). The positivity of u in the interior of B(XQ, R) implies
that fdB<^ R,\ u > 0; as ü = 0 on dB(R!)f this is a contradiction with the theorem. |

APPUCAT1ONS WHEN p IS THE DISTANCE FROM THE BOUNDARY OF A DOMAIN. — In tiÛS

subsection we give a lower bound of the first eigenvalue of the Dirichlet Laplacian of a
relatively compact domain Q having smooth boundary. The bound is given in terms of a
lower bound (n - l)K of the Ricci curvature of n, a lower bound /j of the mean curvature of
d Cl, and the inner radius RofQ (the radius of the biggest bail that fits into Q), and has been
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obtained by Kasue (see [ 12]), for domains with smooth boundary. We remark, however, that
our proof differs from the one in [12].

To state our comparison theorem, we need to define the model domains to which
we will compare our domain fi. Then let fi = Cl(K, r\, R) be the cylinder with constant
curvature AT, and width R, such that the mean curvature is constant, equal to rj, on one of
the two connected components of the boundary. Depending on K and f)t Cl will be an an-
nulus in either the simply connected manifold of constant curvature K, or the hyperbolic
cylinder of constant curvature K. For an explicit description offi, see [15].

THEOREM 2 (Compare with [12]). — Let fi be a domain with smooth boundary. As-
sume that the Ricci curvature i$ bounded belowby(n— l)K on Cl, that the mean curvature
is bounded below byfj on dCl, and let R dénote the inner radius ofCl. Then:

where \\ (Cl) is the first non-zero eigenvalue of the Dirichlet problem on Cl, and where

\\(CÏ) dénotes the ûrst non-zero eigenvalue ofthe foüowing mixed problem onCl(Kt /j, R):

Dirichlet condition on the component having mean curvature f), Neumann condition on

the other.

The proof uses the mean-value lemma and (6), and is similar to the proof of Theo-

rem 1 {see [15], Theorem 3.10).

We observe that, if the Ricci curvature of fi and the mean curvature of 3 fi are both
non-negative, the theorem gives the well-known inequality:

(7) A,(O) > ^

due to Li and Yau ([14], Theorem 11). But (7) holds under the more gênerai hypothesis that
Ap > 0, and we observe the following very simple proof of (7) in that case. Let u be a
positive eigenfunction corresponding to the first eigenvalue Àj = Àj (fi) and let, as before,
F(r) = Jn( v u. Since F is lipchitz, it is certainly in Hl(Q, R), and moreover F'(0) =
F(R) = 0. By the mean-value lemma: - F " = AF - p*(uAp),hence -FF11 < AF2. Then
fo(F')2. < A ƒƒ F2 and, by the min-max principle, we conclude that A > ^ (the first
eigenvalue of the mixed problem on the interval (0, R)).
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Applications to heat diffusion

We let Cl be a domain with piecewise-smooth boundary in a Riemannian manifold
M. We assume Cl compact, and refer to the introduction for the définition of the tempéra-
ture fonction u{ t, x) and the heat content fonction H( t) (the intégral over Ü of u(t, •)). We
will address two kinds of problemsregarding H(t):

1. Give lower bounds ofH(t) which are valid for all time t;

2. Examine the behavior of H( t) for small time.

We will apply the mean value lemma taking p = distance function from the bound-
ary of Ci. About the first question, we will work in the hypothesis that Ap > 0: sufficient
conditions for the positivity of Ap are given in the introduction; observe that these condi-
tions are certainly met by convex sets in R". About the second question, we examine the
case where Cl is a convex polyhedron in R" (Theorem 4), and the case where dQ is smooth
(Theorem 5). However, the analysis in all these situations can be carried out using the
représentation of the heat content function given by formula (8).

So, introducé an auxiliary variable r > 0, and let: F(t, r) = /Q(r)(l - u(t, x)) dx.
We will call F(t, r) the complementary heat content fonction ; the relation with H(t) is:
H( t) — vol(fi) — F( t, 0). Hère Cl(r) is the parallel domain at distance r from the boundary:

Cl(r) = {x€ Cl:p(x)>r}.

By the mean-value lemma, F(tt r) satisfies the following initial-boundary value
problem on (0, oo):

F(0, r) = 0 foral lr>0

§7 (ï. 0) = - vol(3fi) for all t > O.

The above heat équation is non-homogeneous; its non-homogeneous part is re-
lated to the mean curvature of the level domains by means of the measure Ap; applying
Duhamel principle, one dérives the following expression of H(t):

u(t, x) dx = vol(Q) - 4 = vol(aO)>/?f
+ e(t-T.r.0)p.((l-u(T§-))àp)(r)drdr

Jo Jo
where e( t, r, s) is the heat kernel ofthe half line subject to Neumann conditions at r = 0;
explicitly, for s = 0, we have: e(t, r, 0) =

We are now ready to dérive some conséquences of (8).
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BOUNDS IN THE CASE: Ap > 0.

Let now O be a domain which satisfies: Ap > 0. Since U(T, X) < 1 for ail T, X, we
immediately obtain, from (8):

/ u(tt x) dx > voi(o) - -4= voi(an)>A(9)

for all f > 0. The inequality continues to be true for any compact convex subset of R", by
polyhedral approximation.

Inequality (9) can be refined as follows. Fix x € fi, and apply Duhamel principle to
the function (t,r) *-> fQ^ k(t, x, y) dy, where k(t, x, y) is the Dirichlet heat kernel of fi.
One gets the useful inequality:

(10) u(t,x) < f e(t,r,0)dr.
Jo

Thisinturnimplies:p* ((1 - u(t, -))Ap) (r) > Jr°° e(T,5,0) ds-p,(Ap)(r),which,
inserted in (8), gives:

(11)

/ / e(T,2r,0)pm(&p)(r)drdr <H(t) - vol(fi) + - |= vol(dn)y/t
Jo Jo vn

< f f e(T,r,0)p*(Ap)(r)drdT.
Jo Jo

Notethattheboundsaregivenintermsofthemeasurep*(Ap) = — ̂  vo^p"1^)).
Note also that, if 3 fi is smooth, and if r < Rjnj = the injectivity radius of the normal
exponential map of 3fi, thenp*(Ap)(r) = /p-i ( r) &pdvn-\ where Ap is the trace of the
second fundamental form of p~l(r)\ in particular, Ap|an = q = (n - 1) timesthemean
curvatureof3fi.

Taking into account (10) and (11), one gets:

THEOREM 3. — Let fi be a domain with smooth boundary, satisfyingAp > 0. Then,
for ail î >0;

ƒ u(t,x)dx > vol(fi)—%=: v o l ( 3 f i ) x / ? + ^ ( / ndvn-i) r+min{C,0}f3 /2-g(t)
Jci Vn 2 \Jdci J

where C = T-W inf ƒ (scalM - Ricci( Vpf Vp) - scaL-i ir)) dvn-\ and whereg(t)
6y/ r£{0,a)Jp-\(T) y K }

is the exponentially decreasing function: g(t) = (fdÇln) fç /fl°° -^e~^/T dr dr; hère a
isaûxednumberO <a< /î,n;- anduscaV' dénotes scalar curvature. Inparticular,ifCl C R3;
C = - ^ x ( 3 O ) , where x(dù) is theEulercharacteristicofdCl.

We remark that the first three terms in the right-hand side of the above inequality
coïncide with the first three terms of the asymptotic expansion of the heat content of fi, as
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f —> 0; this means that the above inequality above is sharp up and including the term of
order r, as f —» 0. In fact, for anydomain with smooth boundary (not necessarily satisfying
the condition that Ap > 0), one has the following expansion, valid for all t > 0:

(12) f u(t, x) dx = vol(Q) - -?= vol(30) V̂  +\ f n dvn.x • t + £{t)
Ja V ^ 2 JdCï

where |-€(f)| < Cf372 + h(t) for a constant C and a function h(t) which is exponentially
decreasingas f -> 0. Wereferto [ 15], Theorem4C3 for the proof and for an explicit expres-
sion of C and h( t). The expansion (12), when fiÇR", was first obtained in [3] ; for domains

in Riemannian manifolds a five term asymptotic expansion: H(t) = £ Pktk/Z + O{i?/2)

as f —> 0 has been obtained in [2], but no estimate of the remainder terms was given.
In the next section we will give a recursive formula for the computation of the complete
asymptotic series, in powers of tl/2

t of the heat content, as t —» 0.

Let us only mention here that the proof of (12) is based on équation (8), and on
the fact that, near the boundary of the domain (assumed smooth ), one has that the tem-
pérature u(r, x) may be conveniently approximated by Jo ' e{t, r, 0) dr (the error in the
approximation being of order r1/2, as t —> 0).

Again assume Ap > 0, and let R be the inner radius of fî. Sharper inequalities can
be obtained by replacing the heat kernel e(t, r, s) with the heat kernel eR(tt r, s) of (0, R)
satisfying the Neumann condition at r = 0, and the Dirichlet condition at r = R (then:
e(f, r, 5) > en{t, r, s)). For the complementary heat content, we then have the inequality:
F(t* r) < vol(3fï) JQ eji(r, r, 0) dr for all r, and for all r > 0, which becomes an equality
for a flat cylinder (the domain S1 x (0f 2R) with the product metric). This fact has the
following interesting conséquence:

Among all domains with fixed inner radius, and with boundary of fixed volume, flat
cylinders hold the maximum complementary heat content

ASYMPTOTICS OF THE HEAT CONTENT ON A CONVEX POLYHEDRON.

THEOREM 4. — IfCl is a convex polyhedron in n—dimensional euclidean space,

f u(t, x) dx = vol(n) - -?= vol(3Q)\/f + c2t + £(t)
Jn Vn

then:

with:

£

where E runs through the set of all (n - 2)-dimensionalfaces of Cl (the "edges"ifn = 3),
and y (E) is the interior angle of the two (n — 1)— planes whose intersection is £. The
remainder £(t) is bounded, in absolute value, for all t, by Cr372 + h(t) for a constant C,
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and for a fonction h(t) which is exponentially decreasing as î —¥ 0(see [15],Theorem4D.l
for an explicit expression of C and h(t)).

We sketch the proof of the theorem.

Let us first fix some notation. The word polytoperefers to a set which is the intersec-
tion of a finite family of closed half-spaces. Let us then write: Cl = f] H\, I = {1 m}

i€/

where Ht = {x € Rn : Pn.M > 0} and where pni dénotes the distance, taken with
sign, from the oriented affine hyperplane {supporting hyperplane ) TT, of R". Note that pni

is an affine map. The (n — l)-dimensional faces of fi are the subsets of 3 fi defined by:
T) = TT) n ë for î € 7. Each Ti is a polytope in rr,; its supporting hyperplanes are:
nt H TTJ, j ^ î (with the obvious orientation). In turn, each (n — 2)-dimensional face
Ti fi Fj9 with j ^ /, is a polytope in the (n — 2)—dimensional euclidean space TT, n nj,
and so on. By vol^(P) we dénote the Lebesgue measure of the polytope P in Rd

t and by y y
we dénote the interior angle at T\ n Fj : it is the unique angle between 0 and n such that
cos y ij = — v, • Vj, where v, and Vj are the respective unit normal vectors of 777 and rr7,
positively oriented. Note that, if Ti and Tj are incident faces, then 0 < y,-; < n. Our aim is
then to prove that the expansion in Theorem 4 holds with:

f
For the proof, we let p dénote the distance from 3 Q, and we will use représentation

(8) of the heat content; so we need to détermine the behavior of the intégral:

Jo Jo°° e ( r ~ T' r* °)^* ((1 ~ W(T' *))^P) (r) dr dr, as r -> 0, and show that in fact this
behavior is given by c21 -h O(r3/2). This will be accomplished by first giving an explicit de-
scription of the distribution p* ( u Ap), and then by suitably approximatif the température
1 — W(T, X) on the cut-locus, near the boundary of the polyhedron.

DESCRIPTION OF THE CUT-LOCUS. — The first thing to observe is that, since each
level set p~ l ( r) is piecewise-linear (because of the convexity of the polyhedron), we have
that AregP = 0; hence Ap = Acurp is purely singular. Since there are no focal points of 3O,
the cut-locus is the closure of the set of ail points of fi which can be joined to 3Ü by at least
two minimizing line segments. Therefore:

Cut(3fi) = U Cut,; where Cut0 = { x G f i : p(x) = pn.(x) = Pir. (JC)} .

PROPOSITION.

(i) For each i ^ j , Cut,j is a polytope in the hyperplane 7r,;* = {x G O :
} (the "bisecting hyperplane" of n i
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(ii) Let<(> € C°(n),and(J/ € C°([0.oo)). Then:

/ , . v-^ /J'y\ / J./ \ Jƒ &&P = > cost — ï ƒ u>(jc) UJC;
ƒ f •* 2 ƒ

/*OO /•

/ *pp+(u&p) = j>Jcos(—) ƒ u(jt) </>(p(x)) djt,

dx denoting Lebesgue measure on the hyperplane TT,-; ofR".

Proof. — See [15], Proposition 4D.3.

By the Proposition:
rt rOOrt rOO

(13) i l e(t- T, r,0)p* ((1 - u(r,0))Ap) (r) drdr
Jo JO

O S ^ ) ƒ' / *(t-T.p{x).O)(l-u(T.x))dxdT.

We will reduce the right-hand side to c21+ O( r3'2) in four steps.

Step 1. Choose e > 0 so that, if the faces T\ and T\ do not meet, then Cuty is at

distance at least e from dCl. Set:

It is then clear that a pair (i, j) g I2 will contribute to the sum in (13) with a term
(depending on e) which is exponentially decreasing as t —> 0. We can then restrict the sum
in (13) to the pairs (i. j) G I2t that is, to mutually intersecting faces.

Step 2. Approximation of u(ff x). One can show that, modulo terms of order t3'2

and higher, we can replace 1 - u(rt x) on Cuty in (13) by the function 1 - uy(T, X), where
Uij is the température function relative to the infinité open wedge in R" bounded by the
oriented hyperplanes TT, and nj. This is in fact the most delicate step in the proof (only in
dimension n > 2: in dimension 2, in fact, it is an immédiate conséquence of the so-called
Levy's maximal inequality, and the error in the approximation is not just of order t3'2 but
actually exponentially decreasing as t —• 0).

Step 3. We observe that, when restricted to Cut,y Ç ny, the température function
Uij(r, x) dépends only on ptj(x) = distance of JC from TT, n nj, SO that it can be written
as ütj(r, Pij(x)) for a function üy = fiy(T» r). By the formula of co-area, applied to the
function Pij : Cuty -> R:

f e(t-T,p(x).O)(l-Uij{T.x))dx
JCutfj

= I e(t - Tf r sin(yy/2), 0)(l - Ü,7(T, r)) voln-2(p~jl(r) n Cut,7) dr.
«/o
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Now it is easy to see that voln_2(p^1(r) fl Cut,7) = voln_2(^r
i n Tj) + O(r) as

r -> 0. This implies that, modulo terms of order t*/2 or higher, the right-hand side of (13)

is given by:

(14)
ri pOO

l n_ 2(^ n Tj) cos(y,7/2) / / e(t-T, rsin(yo/2), 0), 0 ) (1-Û, ; (T , r)) drdr.

Step 4. Take the Laplace transform with respect to time of (14). Evaluated at s > 0,
this is equal to:

4 r
dr

where l/,;(s, r) is the Laplace transform, at 5 > 0, of ûy (•, r). This function is computable:

in fact, using Kontorovich-Lebedev's explicit expression of the Green's function of an infi-

nité open wedge in the plane (already used in [3]), one has:
1 r? / X 2 f°° zr / r \ COSh(7TJC/2)
- - Uij(s, r) = — ƒ KixWsr)—-j -~ dx.
s J ns Jo cosh(YijX/2)

Substituting, and using intégral tables, one obtains the quantity ^ ; taking inverse
Laplace transform, one obtains the theorem.

We remark that, if dim(Q) = 2, the proof simplifies considerably (steps 2 and 3
are in fact immédiate), and we can easily extend it to cover the (not necessarily convex)
polygonal case (see [15]), thus re-obtaining van den Berg-Srisatkunarajah's calculation.

Another remark is in order. We observe that the coefficient c2 is supported on the

(n - 2)-dimensional skeleton of fî, and therefore it should be related to some kind of

distributional mean curvature of the boundary of the polyhedron; on the other hand, c2

is not the limit of the intégral mean curvatures of a séquence of smooth domains which

approximate the polyhedron D: in other words, c2 does not pass to the limit under smooth

approximations. This fact can be explained by observing that, in the polyhedral case, the

cut-locus goes to the boundary, and cannot be neglected in the computation of the asymp-

totic terms of order greater than t1/2.

As for the arbitrary, piecewise-smooth case, we are led to conjecture the following

fact: let y(y) dénote the interior angle of the tangent spaces of the two smooth pièces of

d£l meeting at the singular point y, and assume that y(y) > 0 (that is, the intersections are

transversal). Then the coefficient of the term in f in the asymptotics of the heat content

should be given by:

where Sk„_2 is the union of all pièces of dimension n - 2 in the cellular décomposition of

d Q, and r\ is the trace of the second fundamental form of the regular part of the boundary.
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RECURSIVE FORMULAS FOR THE HEAT CONTENT ASYMPTOTics (smooth boundary).

Now let fi be a domain with smooth boundary, and fix <£ 6 C°° (fi). The intégral:

H(t)= [ u(t,x)4>(x)dx
Jn

can be viewed as the heat content, at time r, of fi, assuming that the initial température is
given by <p and assuming Dirichlet conditions on the boundary. We are concerned with the
calculation of the coefficients &k(4>) in the asymptotic expansion, as t —> 0, ofH(t):

oo
Jt/2

To explain the method of calculation, we once again reduce the problem to a one-
dimensional heat équation. Let us then introducé an auxiliary variable r € [0, oo), and
let:

(l-u(t,x))<p(x)dx

where fi(r) = {JC G fi : d(x, 3fi) > r} is the parallel domain at distance r from 3fi. Note
that 7</>(r, 0) = / f i <p - H(t), hence /?*(<£) is really the coefficient of tk/1 in the asymp-
totic expansion of 14>(t, 0), as r —> 0. The so-called principle ofnotfeeling the boundary
(extended in [16] to Riemannian manifolds) implies that, if the initial data <p is supported
away from 3fi, then I<t>(t, 0) is o(tm), as t —> 0, for ail m > 0; as a conséquence, ail co-
efficients &k(4>) will depend only on the behavior of 0 in a neighborhood of 3fi, and in
particular, for unit initial conditions, the coefficients /5jt(l), for ail k > 1, give invariants of
the immersion of 3 fi in fi.

For the calculation of the ĵt(<̂ >)'s, we can therefore assume that <p is supported in

a small neighborhood of 3fi in fi, which does not meet the cut-locus. Then I<f>(t, r) is

smooth in both variables, and satisfies the heat équation l — jjz + |?) I<t> = LlI<f> on

(0f oo), and by the mean-value lemma (1):

LlI4>(t,r) = f (1 - u(t,x))N<f>(x)dx- f (1 - u(t,x))à<t>(x)dx
Jp-Hr) Jnir)

with N4> — 2V<f> • Vp - <f>Ap. Note that I1 ƒ</>( t, r) is itself smooth in both variables. Ap-
plying Duhamel principle to I<p, then to L1 I<t>, and iterating infinitely many times, one ob-
tains an asymptotic series of I<t>(t, 0) (see Lemma 9 of [16]) whose terms can be expressed
with the help of the computable intégrais /0°° ^=e~r2/4rI*ƒ<£((), r) dr and in terms of

LkI<t>(t,0)t with I = - ^ + yt. From this asymptotic series one can then extract, af-

ter some algebraic manipulations, a set of recursive relations for the coefficients f$ic(4>)>

which we give below.
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THEOREM 5. — For each k > 1, there exists a homogeneous polynomial Dk of

degree k — lin the operators N and A such that:

Pk(<t>) = ƒ Dk4>-
JdCï

Deûne the families of operators of type R and S by:

Rkj = -(N2 4- &)Rk-\j + NSk-ij

Roo = / * Soo = 0, Rkj = Skj = 0 if j < 0,

Set: {•) (/)grffi/2);"+i S i }W !?
j=0 j=0

the foüowing recursive form ulas hold:

D Id

i <Ar(;+i)r(n
= 7̂  E —*-s

1 1
Z +

We give below the explicit expression of the operators D\9...,

D4 = - —(AN + 3NA); Ds = ^ ( N 4 + 16N2A + 87VAJV - 48A2);
16 240 v TT

D6 = — ( A N 3 - N3A + NÙN2 - N2AN + 40ATA2 + 8A2JV + 16AJVA);
768

l 120N2A2 + 4N3AN + 47V2AN2 + 4NAN3

6 7 2 0 ^

-f 8N*A + 8AN2A + 8(AiV)2 - 8A2N2 - 320A3);

D8 = — (40A3iV + 8AN3A + 280JVA3 + 8NA2N2 - %N2Ù?N + 72A2NA
24576

+.120ANA2 + 4A2N3 + 4{AN)2N - 12N(NA)2 + 4&N2AN

- 12N3A2 -

(The above expression of D8 corrects the earlier calculation of D8 found in [16]). A

vanishing theorem for the coefficients &2k(4>), for all k > 1, in some particular cases, is

given by Theorem 23 in [16].
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