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ON THE LOCAL DIFFERENTIAL GEOMETRY
OF COMPLETE INTERSECTIONS

Joseph M. LANDSBERG

A common scenario in differential geometry is that one looks for manifolds satis-
fying a local geometrie condition (e.g. curvature pinching) subject to a global constraint
(e.g. compaetness). There may be many solutions to the local problem, but when one
encodes the global condition into the local geometry (usually via intégration by parts),
the further restrictions on the local geometry severely eut down the space of solutions.
Examples of this phenomena occur in a wide range of problems (e.g. isoparametric sub-
manifolds [C], curvature pinching [RI], and spectral geometry [R2]).

This pattern also occurs in algebraic geometry. For example, in my work on vari-
eties with degenerate sécant varieties, [L3], there is a local PDE that has a large space of
solutions, but when one imposes the global condition that the variety is smooth, there
are no solutions in small codimension and in the critical codimension there is rigidity, in
fact homogeneity of solutions.

In what follows I will discuss the local differential geometry of varieties that are
complete intersections (or perhaps I should say non-complete intersections, since the
non-complete intersections are the pathological objects) and some restrictions on solu-
tions to the partial differential équations for non-complete intersections that resuit from
requiring the variety to be smooth and of small codimension. In this sensé, the work
follows a familiar pattern. However, the bulk of what I will talk about will be the local
differential geometry, since previously there was not a good picture of what complete
intersections "looklike" geometrically in comparison to non-complete intersections.

Although what follows is certainly motivated by differential geometry, ail objects
can be defîned algebraically and much cames over to fields of arbitrary characteristics.

Classification math. : primary 14E335, secondary 533A20.

Supported by NSF grant DMS-9303704.
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I. What is a complete intersection?

Classical algebraic geometry may roughly be described as the study of varieties
Xn in complex projective space CP n + a . Herea variety is the zero locus of a collection
of homogeneous polynomials satisfying some additional properties. By geometry, one
means the properties of X that are invariant under linear changes in coordinates on
çjn+a+i F o r e x a m p i e the degreeof Xt i.e. the number of points of intersection of X with
a gênerai P a C P n + a , is a geometrie property. An example of an additional property I
will require of varieties is that they be irreducible, so for example the union of two curves
in the plane would not be allowed, one would have to study each curve seperately.

Example. — InCP3,letQi,Q2bequadrichypersurfaces. Considéré = Q\C\Qz
(the common zero locus of two degree 2 homogeneous polynomials). A" is an algebraic
set of dimension one and degree four. Usually, A" is a curve of degree four:

but not always. For example, let (x 1 , . . . , x4) be linear coordinates on C , and let

Qx = xlx4 - x2x3

Q2 = (x2)2 - xlx3

Then X is a curve of degree three plus a line
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w h e r e C = {[s3,s2t,st2,t3], [s,t] e F l } , £ = {[0,0,u,v]t[u,v] G P 1 } .
Since we want our varieties to be irreducible, we need to get rid of one of these

components and we may as well get rid of the line by intersecting X with Q$ = (z3)2 -
x2x4 to be left with the cubic curve.

Note that since degree C = 3, C cannot be the intersection of two hypersurfaces
because degree is multiplicative.

The idea is that the cubic curve is pathology, which motivâtes the following:

DÉFINITION. — Let Xn C C P n + a = FV be a variety. X is called a complete
intersection ifit is describable as the transverse intersection ofa hypersurfaces. Equiva-
lently, letting Ix C 5*V* dénote the idéal ofX, X is a complete intersection iflx can
begenerated bya éléments.

The above example shows that the degrees of complete intersections are easier to
compute than the degrees of non-complete intersections. In fact, the same is true for a
number of topological properties. For example, much of the cohomology of complete
intersections is inherited from that of projective space. More precisely, if A" is a complete
intersection, the restriction map # ' (P n + a , Z) -> H{(Xn, Z) is an isomorphism for i <
n, and injective for i = n (see e.g. [H]).

In the early 1970's, Barth and Larsen proved theorems to the effect that smooth
varieties of small codimension have many of the nice cohomological properties of
complete intersections. For example, if X is any smooth variety, the restriction map
/T(P n + a ,Z) -> Hi(Xn,'L)\s an isomorphism for i <n- a (see e.g. [H]).Theirresults
motivated:

H A R T S H O R N E ' S CONJECTURE ON COMPLETE INTERSECTIONS ([H], 1974). — Let

Xn C CP n + a be a smooth variety. If a < n/2f then X is a complete intersection.

Hartshorne's conjecture has been a big motivating problem in algebraic geometry
for the past twenty years. Although it does not appear to be close to being solved, alot of
interesting mathematics has corne out of it (e.g. the study of vector bundies on projective
space).

Two types of progress have been made on the conjecture to my knowledge. The
first type consiste of theorems that add some additional hypotheses, e.g. that the degree
of X is small with respect to the codimension of X. The best progress along these Unes
is due to Ran [R] in codimension two.

When Hartshorne made the conjecture on complete intersections, he also con-
jectured a sort of first approximation to it. The second type of progress towards the con-
jecture was that this first approximation was proved by Zak ([Z], 2.3). Zak's work is the
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starting place for mine.

At first glance, it appears that determining whether or not a variety is a complete
intersection is not the type of issue one would want to study with a differential-geometric
perspective. First of all, the problem is global. For example, bytheimplicitfunctiontheo-
rem, all smooth varieties are local complete intersections (i.e. locally eut out by the right
number of équations). Second, even algebraic geometers do not seem to have much of
a geometrie picture of what a complete intersection "looks like" (although as mentioned
above, there is a good cohomological picture).

Before describing the differential geometry of complete intersections, just to
frame the talk, here is a resuit that follows from this perspective:

THEOREM ([LI], 6.24). — Let Xn c P n + a be a variety with ideal Ix generated
byquadrics. Leib = dimXsing. (Setb = - 1 ifX issmooth.) Ifa < n-<b+1)+3, thenX
is a complete intersection.

IL Two principles

In differential geometry one wants to work locally, to take derivatives at a point
and extract geometrie information. For this project we will need:

'- A way to recognize whether or not AT is a complete intersection from local dif-
ferential geometry.

- A way to recognize if X is not too singular from local differential geometry.

- To utilize the fact that the ambient spaee is projecüve space and that it has a
special topology.

To get an idea of how to détermine whether or not X is a complete intersection
locally, go back to the pictures

complete intersection not a complete intersection

These pictures motivate the first principle:

IfX is not a complete intersection, then X "bends less" than expected.

Here the expectation will be based on some additional knowledge of the variety,
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e.g. the degrees of hypersurfaces containing it. In our example, a non-complete inter-
section eut out by quadrics "bends less" than a complete intersection of quadrics would.
(The above picture is only psychologically correct because the type of bending we will
be studying only occurs for varieties of dimension greater than one.) I will give a précise
version of (•) in part VI.

Next we need a principle to account for smoothness. To obtain this, it is usefül to
recall the origins of projective space (see e.g. [K]). During the Italian Rennaisannce, the
architect Alberti realized that in order to give proper perspective to a painting, parallel
Unes should meet at infinity. In fact we may almost define projective space as the space
where linear spaces always intersect in (at least) the expected dimensions.

This linear intersection property has conséquences for the local differential ge-
ometry. For example, consider the following two surfaces in affine space

hyperbola cylinder

Note that both the hyperbola and the cylinder are defined by a quadratic équa-
tion, and both are ruled by lines. They both can be completed to projective varieties.
When one complètes the hyperbola, one obtains a smooth surface, but completing the
cylinder, one gets a singular cone. The philosophy is that the reason the cylinder be-
comes singular is that as one travels along a ruling, the embedded tangent space is con-
stant, and this forces the rulings crash into each other at infinity, creating the singularity.
Contrast this with the hyperbola where the embedded tangent space rotates as one trav-
els along a ruling with the result that a singularity is avoided at infinity. This picture
motivâtes the second principle:

• • In order for X to be smooth, it must "bend enough".

(••) will be made précise shortly, first we need some définitions.

III. Fundamental farms

Recall that in Euclidean geometry, to measure how a submanifold is bending, i.e.
infinitesimally moving away from its embedded tangent space to first order, one uses
the second fundamental farm. There is a similar object in projective differential geom-
etry. The most nâive définition of the second fundamental form in metric geometry
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is: fix a point x e Xt choose local coordinates (xJ,xM), 1 < z,j,fc < n, n + 1 <
/*» " < ft + a» centered at x such that g§r, . . . , f̂̂  is an orthonormal basis of TXX and

f • • » a i ^ a ï s a n orthonormal basis olNxX. Writing X locally as a graph, we get
q^jX^xi + O(|x|3) and the second fundamental form of X at x is

G 5

The same définition works in the projective setting, except that the notion of orthonor-
mal doesn't apply and the normal space is a quotient space. As a resuit, the group action
on IIx is larger and II contains less information. Essentially one no longer can measure
the magnitude of bending, only its existence. A more geometrie définition of II is as
follows:

Fixingx e X c PV = C P n + û détermines a flag of V: x C TXX C V
where x dénotes the line in V corresponding to x, and f = TXX is the deprojectiviza-
tion of TXX, the embedded tangent (projective) space to X at x. In this notation, the
(intrinsic) tangent space to X at x is TXX = x* ® (T/x) and the normal space is
NXX = TXFV/TXX = x* ® (V/f).

Let Ox ( -1) dénote the line bundie whose fiber at x is x, let £>* (1) dénote the
dual bundie and if E is a vector bundie, let E(k) = E®öx (l)8*.

There is a natural map associated to the smooth points Xsm of a variety X C P V,
the Gauss map

where G(n +1, V) dénotes the Grassmannian of (n +1)-planes through the origin in V.

Fixing x e X, the derivative of the Gauss map at x is

7. : TXX -+ T t xG(n + 1, V) = T* ® (V/f ) = f * ® iV(- l ) .

7* is such that the kernel of the endomorphism y*(v) : f -> </V(-l) contains x C f for
all v e T. Thus 7* factors to a map

7 : : r -> ( f /x)* ® A^(-l) = T" ® TV.

Furthermore, essentially because the Gauss map is already the derivative of a map and
mixed partials commute, 7I is symmetrie. 7^ € S2Tm ® N is the projective second
fundamental form IIX.

Another définition of IIX used in Riemannian geometry is via covariant deriva-
tives. In the projective setting we don't have a connection on TX or TPV, but we do
have an équivalence class of connections. So if we work on a larger space over X that
takes into account this ambiguity, e.g. the frame bundie, we can make such a définition
"upstairs". A définition of IIx using this method is given in [L2].
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I will write II to dénote the map S2T -» N and II* to dénote the adjoint map

;v* -> S2T\
Geometrically, a line in N*X détermines a tangent hyperplane H, and the asso-

ciated quadratic form Q u tells how X is moving away from H at x to first order. Con-
sidering FN*X as the space of hyperplanes tangent to X at x, P(kerJI*) is the space of
hyperplanes tangent at x that X is not moving away from to first order.

The base locus of ƒ ƒ is defined to be the tangent directions corresponding to vee-
tors v such that 11(u, v) — 0. Geometrically, the directions in the base locus are those
tangent directions for which X is not moving away from its embedded tangent space to
first order. The singular locus of ƒ ƒ is defined to be the tangent directions corresponding
to vectors v such that 11 (u, w) = 0 V w € TXX. Geometrically, directions in the singular
locus are those in the base locus for which the tangent space is not rotating to first order
either.

For example, directions of the rulings of the hyperbola are in the base locus, but
not the singular locus, while directions of the rulings of the cylinder are in the singular
locus.

The higher fundamental forms of X are defined similarly to IL For example,
the third fundamental form 111* : ker/1* —• SZT* measures how X is moving away
form the hyperplanes in P (ker/1* ) to second order. To define III using Taylor series, let
ç^a^Vz* dénote the third order terms in the expansion described above, then III =
q^dx* o dxj o dxk®{^ mod II{S2T)). Définitions of the higher fundamental forms
via Gauss maps are given in [LI] and définitions via "covariant derivatives" are given in
[L2].

Placing closed conditions on II is imposing Systems of partial differential équa-
tions on X. For example, in Euclidean geometry, trace II = 0 is the PDE for minimal
submanifolds. In the projective setting, the notion of trace does not make sense, and our
Systems of PDE will be more subtle. (In order to have geometrie meaning, any PDE must
be invariant under the group acting on IL)

At this point you may be asking: Why not just fix a metric? After all, there is a
natural Kàhler metric on the ambient space! The answer is that the properties we are
looking at are invariant under a larger group than the isometries of projective space with
the Fubini-Study metric. T\vo varieties that may look very different (locally) from a met-
ric perspective may be projectively equivalent. A more compelling reason is that I will
describe Systems of PDE that exactly characterize varieties with certain geometrie prop-
erties. These Systems are invariant under the group of projective motions. Were we work-
ing in the metric setting, we would have to deal with classes of PDE's instead of a single
System. I will describe the PDE's later.



184 J.M. LANDSBERG

TU close this section by stating a précise version of (••):

RANK RESTRICTION THEOREM, SPECIAL CASE ([Ll],4.14). — LetXn C P n + a be
a variety. Letb =dim(Xsing). (Setb = - 1 ifX issmooth.) Letx e X be a gênerai point.

l.Foranya € N*X,

dim(Singlocir(a)) < 2(a - l)

2. For genene a € N*X,

dim(SingIoc//* (a)) < a - 1 + (6 + 1).

The rank restriction theorem can be though of as an analogue of "Bochner" type
formulae in Riemannian geometry in that global geometrie information governs local
bending. It plays a rôle in the proofs as foUows: Thinking of geometrie conditions on va-
rieties as PDE's and varieties satisfying the conditions as solutions to initial value prob-
lems; the effect of the rank restriction theorem is to rule out solutions obtained by start-
ing with pathological initial data.

IV. A local characterization of complete intersections

Asabovelet V = C n + a + 1 and let Xn C PV = CP n + a be a variety of dimension

n. Let Xsm dénote the smooth points of X, Let lx C 5*V* dénote the ideal of X and

let Ix,d = U — SdV* n Ix dénote the d-th graded pièce of IX-

In a moment I'll describe a local characterization of complete intersections, but

first here is a special case:

WARM UP PROPOSITION [L2],l.l. — LetX c PV be a variety such thatlx =

(Id) fi.e. Ix isgenerated by Id) and Id-\ = (0). Then the fotiowingare equivalent:

1. X is a complete intersection.

2. Every hypersurface ofdegree d containing X is smooth atallx e X8m.

3. Letx e Xsm. Every hypersurface ofdegree d containing X is smooth atx.

Note that if X is not a hypersurface, there will always be some Z € h that are
singular, the proposition says that the singularities must occur away from the smooth
points of^f.

The reader may wish to check the proposition with our two examples of curves
in P3, finding the quadric that is singular at each point of the cubic curve and that the
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singular quadrics in the ideal of a smooth quartic curve are not singlar at any points of
the quartic.

I will now describe the gênerai case, first we need a définition:

DÉFINITION [L'V]. — Lef X C PV beavariety. LetP € Id and let Z = ZP C
PV be the corresponding hypersurface. We willsayZ triviallycontains X ifP = £lP\ +
"'tmPmynthPu...,Pm e ld-xandtx,...,lm € V *, and otherwise that Z essentially
containsX.

PROPOSITION [L2],1.6. — Let X C PV beavariety. The foUowing are equiva-

lent:

l.X is a complete intersection.

2. Every hypersxirface essentially containing X is smooth at all x € Xsm.

3. Let x e Xsm. Every hypersurface essentially containing X is smooth at x.

In addition to working locally, I work one degree at a time:

DÉFINITION [L2], 1.8. — Fixa point x € Xsm. We will say X hos no excess
équations in degree d at xt if every hypersurface of degree d essentially containing X
is smooth at x. (Note that X is a complete intersection if and only ifX has no excess
équations in degree datx for all d).

Knowing ld is not a local property, but we can approximate ld at a point x € X
using local information. Namely, for each natural number A:, we can consider the hyper-
surfaces of degree d osculating to order k atx. Informally, a hypersurface Z osculates
to order kdXx if when one chooses local coordinates around x and writes Z as a graph
and restricts the Taylor series of Z to X, that no terms of order less than k + 1 appear.
If there is some number kd such that all the hypersurfaces of degree d osculating to or-
der kd are smooth at z, then of course X has no excess équations in degree d at a\ To
find reasonable candidates for the k^s we need to explore some basics about osculating
hypersurfaces.

V. Osculating hypersurfaces

Recall that If x € X is a smooth point, then there is always an (a - 1 ) -dimensional
space of hyperplanes (degree one hypersurfaces) tangent (osculating to order one) at x.
So there is no geometry of osculating hyperplanes until one takes two derivatives, i.e.
ki > 2. This fact generalizes to:
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PROPOSITION [L2],3.16. — LetXn C PV = QP n + a be a variety and let x e
Xsm.Forallp<d,

.. ( (not necessarily irreducible) hypersurfaces 1
\ ofdegree d osculating to order p atx ƒ

So there is no geometry of osculaling hypersurfaces of degree d until one takes
d + 1 derivatives, i.e. kd>d+l. For k > d,\he dimension of the space of hypersurfaces
of degree d osculating to order k dépends on the geometry of X. Hère a new phenom-
eiia occurs due to the présence of hypersurfaces that are singular at x. There are always
singular hypersurfaces osculating to order 2d - 1 at x. In fact one has:

PROPOSITION [L2],3.17. — LetXn C PV = CP n + a beany variety, andx e X,
any smooth point.

,. f (not necessarily irreducible) hypersurfaces of'1 / a + rf- l \
\ degree d osculating to order 2d-lat x J ~ \ d /

I should explain where ([12], 3.16, 3.17) come from. The space of hyperplanes
osculating to order k at x is the kernel of the fc-th fundamental form at x. To study
higher degree hypersurfaces, re-embedd X via the Veronese. Given X c PV, consider
vd (X) C PSdV, the rf-th Veronese re-embedding of X. {vd{X) is the restriction of the
Veronese mapping Vd : PV —> PSdVt[x] ^ [xd]toX.) The space of hypersurfaces
osculating to order k at x is the kernel of the fc-th fundamental form of vd (X) at xt and
these fundamental forms have a-priori properties as explained in [L2].

It turns out that the fundamental forms of Vd{X) are computable in terms of sub-
tle differential invariants oî X> the first of which essentially measures the infinitesmal
variation of the second fundamental form. (If we were to reduce to a metric connection,
this invariant would reduce to the covariant derivative of the second fundamental form.)

Returning to osculating hyperplanes, the dimension of the space of hyperplanes
osculating to order two at x dépends on the geometry of X. If codimX < (n J1), then
one expects that there will be no hyperplanes osculating to order two at gênerai points.
An immédiate corollary of the rank restriction theorem is the following:

THEOREM. — LetXn C C P n + a be a variety with a < n'^1) + i (whereb =
dimXsing). Letx £ X bea gênerai point Ifa hyperplane H osculates to order two at x,
thenX C H.

In contrast, every surface in P6 has at least one hyperplane osculating to order two
at every point. There is also a class of smooth surfaces in P5, the Legendrian surfaces,
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which have the property that at every point there is at least one hyperplane osculating to
order two. (This class includes the ruled surfaces.)

VI. PDE

There are differential relations that guarantee a-YC PV has no excess équations
in degree d at some gênerai x e X. They are rather complicated genericity conditions
on the differential invariants of X of order up to d.

I will explain the précise differential relations in the d = 2 case. As a Gl(T) mod-
ule, S2T*0T* décomposesinto two irreduciblepièces, S 3 T*05 ( 2 1 ) r* where the second
component can be thought of as the kernel of the symmetrization map. It comes from
the Young diagram

(hence the notation).

PROPOSITION. — Letx 6 X be a gênerai point, X will have no excess équations
in degree two at x if

and{IIm{Nm)®Tm) nS{2l)T* = 0.

This proposition makes the principle (•) précise in the d = 2 case and is the key
local observation in proving (1L2], 6.24).

The first condition in the proposition is that the prolongation of II is empty. The
second condition is that the system of quadrics generated by II has no linear syzygies.

VIL More PDE

([L2], 6.24) is not entirely satisfying as it gives no way if telling if Ix is generated
by 72. Fortunately, this can also be determined from the local differential geometry.

Recall that in CP2, five points détermine a conic curve, so if you are handed a
curve in P2 and want to know if it is a conic, it is sufficient to piek six gênerai points on
the curve and if they all lie on a conic, then your curve is that conic.
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Monge realized that instead of picking six points, one could just as well piek one
point and take five dérivâtes, and he derived the Monge équation, a fifth order ODE char-
acterizing smooth conic curves in the plane.

When a < w~(*+1) + 1 , 1 have derived a fifth order PDE system characterizing
(necessarily complete) intersections of quadrics which I call the generalizedMonge équa-
tion ÜL2], 4.17).

If one assumes certain reasonable genericity conditions on the differential invari-
ants of order up to d, then there are PDE Systems of order 2d + 1 that characterize com-
plete intersections whose ideals are generated in degree < d. ([L2] 3.23).
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