SÉminaire de Théorie SPECTRALE ET GÉOMÉTRIE

Pierre-Alain Cherix

Generic result for the existence of a free semi-group

Séminaire de Théorie spectrale et géométrie, tome 13 (1994-1995), p. 123-133
http://www.numdam.org/item?id=TSG_1994-1995__13__123_0
© Séminaire de Théorie spectrale et géométrie (Grenoble), 1994-1995, tous droits réservés.
L'accès aux archives de la revue «Séminaire de Théorie spectrale et géométrie» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

GENERIC RESULT FOR THE EXISTENCE OF A FREE SEMI-GROUP
 Pierre-Alain CHERIX

Abstract

The main result of this note is the following: for a finitely presented group $\Gamma=$ ($X: R$, the semi-group generated by X is generically free (in the sense of Gromov). And so we get the generic value of the spectral radius of h_{X}, the transition operator associated with the simple random walk on the directed Cayley graph of $\Gamma: r\left(h_{X}\right)=$ $\frac{1}{\sqrt{\# X}}$.

1. Introduction

Let Γ be a finitely generated group. Fix a finite, not necessarily symmetric generating subset X, and let $S=X \cup X^{-1}$ be the symmetrization of X . With X and S are classically associated the usual Cayley graph $G(\Gamma, S)$, but also the Cayley digraph (or directed graph) $G(\Gamma, X)$; in the latter the set of vertices is Γ and, for any $\gamma \in \Gamma$ and $s \in X$, an oriented edge is drawn from γ to γs.

We consider the normalized adjacency operators, or transition operators, h_{X} and h_{S}; these are operators of norm at most 1 on $l^{2}(\Gamma)$, defined by:

$$
\begin{aligned}
\left(h_{X} \xi\right)(x) & =\frac{1}{\# X} \sum_{s \in X} \xi(x s) \\
\left(h_{S} \xi\right)(x) & =\frac{1}{\# S} \sum_{s \in S} \xi(x s) \quad\left(\xi \in l^{2}(\Gamma), x \in \Gamma\right)
\end{aligned}
$$

We denote by $\# E$ the number of elements in the set E. The motivation for this paper came from the following result due to de la Harpe, Robertson and Valette [8] which says that

[^0]Theorem 1.1. - Assume $\# X \geq 2$. Set $\sigma(X)=\underset{k \rightarrow \infty}{\limsup }\left\|h_{X}^{k}\right\|_{2}^{1 / k}$, where h_{X} is now viewed as the normalized characteristic function of X and h_{X}^{k} denotes the $k^{\text {th }}$ convolution power of h_{X}. Then

$$
\frac{1}{\sqrt{\# X}} \leq \sigma(X) \leq r\left(h_{X}\right)
$$

with $\frac{1}{\sqrt{\# X}}=\sigma(X)$ if and only if X generates a free semi-group, and $\sigma(X)=r\left(h_{X}\right)$ if either X is symmetric or Γ is hyperbolic in the sense of Gromov (but not in general).

In a joint paper with A. Valette [4], we looked at some consequences of such kind of results (relating group theory and harmonic analysis) for one-relator groups. In particular, we got the following statistical result. For presentations $\Gamma=\langle X: r\rangle$ with a fixed number of generators $\# X$ and one relation r, the ratio

$$
\frac{\#\left\{\text { presentation } r \text { with } r\left(h_{X}\right)=(\# X)^{-1 / 2} \text { and }|r|=N\right\}}{\#\{\text { presentation } r \text { with }|r|=N\}}
$$

tends (exponentially fast) to 1 when N tends to $+\infty$. This means that "most" presentations $\Gamma=\langle X: r\rangle$ give $r\left(h_{X}\right)=\frac{1}{\sqrt{\# X}}$ (which implies in particular that the semi-group generated by X in Γ is free). This is exactly the sense of genericity introduced by Gromov ([6], 0.2(A)), and studied further by Champetier [2].

The main tool in the proof of the preceding result is small cancellation theory, which is frequent with one-relator groups. Unfortunately, small cancellation is not frequent in the general case of finitely presented group.

The main result of this note is :
Theorem 1.2. - For finite presentations, $\langle X, R\rangle$, the property $\rho\left(h_{X}\right)=\frac{1}{\sqrt{\# X}}$ is generic in the sense of Gromov.

I thank C. Champetier and A. Valette for many useful discutions and for proof reading the article.

2. Some definitions and notations

For r a word in \mathbb{F}_{X} (the free group generated by X), we will denote by $|r|$ its word length. It is always possible to write r as an alternating product of words with positive exponants (i.e. $r=\omega_{1}^{ \pm 1} \omega_{2}^{\mp 1} \cdots \omega_{n}^{ \pm 1}$, where the ω_{i} 's are positive words in X). We denote by $n_{+}(r)$ (resp. $n_{-}(r)$) the number of generators appearing in r with a positive exponent +1 . (resp. with a negative exponent -1).

If r is beginning by a positive word $\left(r=\omega_{1}^{+1} \omega_{2}^{-1} \cdots \omega_{n}^{ \pm 1}\right)$, then we get

- $n_{+}(r)=\sum_{i}\left|\omega_{2 i-1}\right|$
- $n_{-}(r)=\sum_{i}\left|\omega_{2 i}\right|$
- $n_{+}(r)+n_{-}(r)=|r|$

When r begins by a negative word, we juste interchange the odd and even summations in the preceding formulas.

Definition 2.1. - For a fixed $\epsilon>0$, a word $r \in \mathbb{P}_{X}$ is ϵ-balanced if the decomposition of r in an alternating product of positive words $\left(r=\omega_{1}^{ \pm 1} \omega_{2}^{\mp 1} \cdots \omega_{n}^{ \pm n}\right)$ has the following property: for all i, ω_{i} is such that $\left|\omega_{i}\right|<\epsilon|r|$.

This implies in particular, that the number of changes of sign is greater or equal to $1 / \epsilon$.

We say that a presentation $\langle X, R\rangle$ is ϵ-balanced if every r in R^{*} is ϵ-balanced (where R^{*} is the set of all cyclic permutations of r or r^{-1} for all relations $r \in R$).

Definition 2.2. - A word $r \in \mathbb{F}_{X}$ has the property E_{δ} for $\delta>0$, if for all subwords u of r of length $|u| \geq|r| / 4$ we have,
either $1 \leq \frac{n_{+}(u)}{n_{-}(u)} \leq 1+\delta$

$$
\text { or } 1 \leq \frac{n_{-}(u)}{n_{+}(u)} \leq 1+\delta
$$

Definition 2.3. - If P is a property of words in \mathbb{F}_{X}, we say that P is generic if,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{r \in \mathbb{F}_{X} \mid r \text { cyclically reduced, }|r|=n, r \text { with } P\right\}}{\#\left\{r \in \mathbb{F}_{X} \mid r \text { cyclically reduced, }|r|=n\right\}}=1
$$

Set $\# X=k$ and $\# R=n$, and denote by $\operatorname{Pr}\left(k, m_{1}, \cdots, m_{n}\right)$ the set defined by

$$
\left\{\langle X, R\rangle\left|\# X=k, R=\left\{r_{1}, \cdots, r_{n}\right\},\left|r_{i}\right|=m_{i}, r_{i} \text { cyclically reduced }\right\}\right.
$$

A property P of finitely presented groups is generic if

$$
\lim _{\min \left(m_{1}\right) \rightarrow \infty} \frac{\#\left\{\langle X, R\rangle \in \operatorname{Pr}\left(k, m_{1}, \cdots, m_{n}\right) \mid\langle X, R\rangle \text { with } P\right\}}{\# \operatorname{Pr}\left(k, m_{1}, \cdots, m_{n}\right)}=1
$$

For a word $\omega \in \mathbb{F}_{X}$ representing the identity in $\Gamma=\langle X, R\rangle$, we recall that Δ is a Van Kampen diagram of ω, if Δ is a 2-complex for which the 1 -skeleton is a planar graph, each edge of that graph being labelled by a element of X or X^{-1} such that when we read the labelling of every 2 -cell of the complex, we get a word in R^{*} and such that
the labelling of the border of the complex Δ is the word ω. For more details about Van Kampen diagram, see the appendix on small cancellation of [5] or [3].

We denote by $I(\Delta)$ (resp. $E(\Delta)$ and $\#(\Delta)$) the number of internal edges of Δ (resp. the number of external edges of Δ and the total number of edges of Δ).

DEFINITION 2.4. - The combinatorial area of a diagram Δ is the number of 2-cells and we say that Δ is a reduced diagram of ω if it has the minimal combinatorial area among all diagrams representing ω.

For every $\omega \in \mathbb{F}_{X}$ representing the identity in $\Gamma=\langle X, R\rangle$, the existence of such a reduced diagram of ω is proved in [3].

Definition 2.5. - A finite presentation $\langle X, R\rangle$ satisfies a θ-condition, if for a fixed $0<\theta<1$ and for all reduced diagrams Δ, we get $I(\Delta)<\theta(\# \Delta)$.

In [10], Ol'shanskii proved that for every fixed $\theta>0$, the property of satisfying a θ-condition is generic.

3. The proof of theorem 1.2

We begin with some lemmas.
Lemma 3.1. - For a fixed m_{0} in $\mathrm{N}, m_{0} \geq 3$, set

$$
\alpha(n)=\frac{1}{2^{n m_{0}}} \sum_{i=0}^{n}\binom{n m_{0}}{i}, \text { and } \beta(n)=\frac{1}{2^{n}} \sum_{i=0}^{\left|n / m_{0}\right|}\binom{n}{i}
$$

(where $\lfloor x \backslash$ is the integral part of the real number x). There exist constants $A, C>0$, $C<1$ depending on m_{0} such that $\alpha(n) \leq A C^{m_{0} n}$ for all n in N and C becomes smaller when m_{0} decreases. Furthermore, if $n_{0} \equiv 0\left(\bmod m_{0}\right)$, then $\alpha\left(n_{0} / m_{0}\right)=\beta\left(n_{0}\right)$ and for all $i=0, \cdots, m_{0}-2$:

$$
\beta\left(n_{0}+i\right)>\beta\left(n_{0}+i+1\right) .
$$

Proof of 3.1 We want to estimate $\alpha(n+1)-\alpha(n)$:

$$
\begin{aligned}
& \alpha(n+1)-\alpha(n) \\
= & \sum_{i=0}^{n+1} \frac{1}{2^{(n+1) m_{0}}}\binom{(n+1) m_{0}}{i}-\sum_{i=0}^{n} \frac{1}{2^{m_{0} n}}\binom{m_{0} n}{i} \\
= & \frac{1}{2^{n\left(m_{0}+1\right)}}\left[\binom{m_{0} n}{n+1}-\sum_{l=0}^{m_{0}-2}\binom{m_{0} n}{n-l}\left[\sum_{j=l+2}^{m_{0}}\binom{m_{0}}{j}\right]\right] \\
= & \frac{\left(m_{0} n\right)!}{2^{n\left(m_{0}+1\right)} n!\left(\left(m_{0}-1\right) n\right)!}\left\{\prod_{\mu=0}^{m_{0}-2}\left(\left(m_{0}-1\right) n+\mu\right)-\right. \\
& \left.\sum_{l=0}^{m_{0}-2}\left(\left[\sum_{j=l+2}^{m_{0}}\binom{m_{0}}{j}\right] \prod_{\xi=0}^{l}\left(n-\xi_{l}+1\right) \prod_{\nu_{l}=l+1}^{m_{0}-2}\left(\left(m_{0}-1\right) n+\nu_{l}\right)\right)\right\} / \\
& \left\{(n+1) \prod_{\beta=1}^{m_{0}-2}\left[\left(m_{0}-1\right) n+\beta\right]\right\}
\end{aligned}
$$

The dominating terms of the fraction are of the same degre equal to $m_{0}-1$. So that fraction tends to a negative constant when $n \rightarrow \infty$.

By Stirling's formula, we see that there exists a positive constant \tilde{A} such that

$$
|\alpha(n+1)-\alpha(n)| \leq \tilde{A} C^{m_{0} n}, \text { where } C=\frac{m_{0}}{2\left(m_{0}-1\right)^{\left(m_{0}-1\right) / m_{0}}}<1 .
$$

By the central-limit theorem, there exists a constant $A>0$ such that $|\alpha(n)| \leq A C^{m_{0} n}$.
It is easy to see that C is decreasing when m_{0} is increasing.
To finish the proof, we just need to see by direct computation that for all $n_{0} \equiv$ $0\left(\bmod m_{0}\right)$ and all i between 0 and $m_{0}-2, \beta\left(n_{0}+i\right)>\beta\left(n_{0}+i+1\right)$.

Lemma 3.2. - Let $|X| \geq 2$ and $\delta \geq 8$ be fixed, the property E_{δ} is generic.
Proof of 3.2 We denote $B(n)=\#\left\{r \in \mathbb{F}_{X}| | r \mid=n, r\right.$ cyclically reduced $\}$, $A(n)=\#\left\{r \in B(n)| | r \mid=n, r\right.$ with $\left.E_{\delta}\right\}$ and $C(n)=B(n)-A(n) . C(n)$ can be described as

$$
\begin{aligned}
& C(n)=\#\{r \in B(n) \mid \exists u \text { subword of } r, \text { with }|u| \geq|r| / 4 \\
& \left.\quad \text { and either } \frac{n_{+}(u)}{n_{-}(u)}>1+\delta, \text { or } \frac{n_{-}(u)}{n_{+}(u)}>1+\delta\right\}
\end{aligned}
$$

(1) We want to estimate the number of u of length l such that $\frac{n_{+}(u)}{n_{-}(u)}>1+\delta$ Denote $h=n_{+}(u)$, we have $n_{-}(u)=l-h \cdot \frac{h}{l-h}>1+\delta$ is equivalent to $h>\frac{1+\delta}{2+\delta} l$. So
we can make exactly $\binom{l}{h} k^{h} k^{l-h}$ words of length less or equal to l out of the alphabet $X \cup X^{-1}$ having exactly h letters with an exponant +1 . Thus

$$
\#\left\{u \in \mathbb{F}_{X}| | u \mid<l, u \text { reduced, } \frac{n_{+}(u)}{n_{-}(u)}>1+\delta\right\} \leq \sum_{j=\gamma(l) .}^{l}\binom{l}{i} k^{l}
$$

where $\gamma(l)= \begin{cases}\frac{l(1+\delta)}{2+\delta}+1 & \text { if } \frac{l(1+\delta)}{2+\delta} \in N \\ \left.\frac{l(1+\delta)}{2+\delta}\right\rfloor & \text { if not }\end{cases}$
By the same way, we estimate the number of words u of length l such that $\frac{n_{-}(u)}{n_{+}(u)}>1+\delta$. We denote

$$
\beta(l)=\#\left\{u \in \mathbb{F}_{X} \mid u \text { reduced, }|u|=l, \frac{n_{+}(u)}{n_{-}(u)}>1+\delta \text { or } \frac{n_{-}(u)}{n_{+}(u)}>1+\delta\right\},
$$

so we have

$$
\begin{aligned}
\beta(l) & \leq 2 \sum_{j=\gamma(l)}^{l}\binom{l}{j} k^{l} \\
& =2 \sum_{j=0}^{l-\gamma(l)}\binom{l}{j} k^{l}
\end{aligned}
$$

(2) We want to estimate the number of words r of length n in $B(n)$ such that r contains a subword of length $l \geq n / 4$ which does not satisfy $\frac{n_{+}(u)}{n_{-}(u)} \leq 1+\delta$ or $\frac{n_{-}(u)}{n_{+}(u)} \leq$ $1+\delta$. There are $(n-l+1)$ places in r where the subword u can begin. Thus we can write r as $r=r_{1} u r_{2}$ and as r is reduced, r_{1} and r_{2} are reduced too. We have also $\left|r_{1}\right|+\left|r_{2}\right|=$ $n-l$. That implies \# $\left\{r_{i}\right\} \leq 2 k(2 k-1)^{\left|r_{i}\right|-1}$. So we can say

$$
\begin{aligned}
C(n) & \leq \sum_{l=\{n / 4\rfloor}^{n} \beta(l)(n-l+1)(2 k)^{2}(2 k-1)^{n-l-2} \\
& \leq \sum_{l=\lfloor n / 4\rfloor}^{n}(k-1 / 2)^{n-l-2} k^{2} 2^{n-l}(n-l+1) 2 \sum_{j=0}^{l-\gamma(l)}\binom{l}{j} k^{l} \\
& \leq \sum_{l=\lfloor n / 4\rfloor}^{n}(k-1 / 2)^{n-l-2} k^{2+l} 2^{n-l}(n-l+1) 2 \sum_{j=0}^{l-\gamma(l)}\binom{l}{j}
\end{aligned}
$$

We can estimate $C(n) / B(n)$,

$$
\begin{aligned}
\frac{C(n)}{B(n)} & \leq \frac{\sum_{l=\lfloor n / 4\rfloor}^{n}(k-1 / 2)^{n-l-2} k^{2+l} 2^{n-l}(n-l+1) 2 \sum_{j=0}^{l-\gamma(l)}\binom{l}{j}}{2^{n} k(k-1 / 2)^{n-2}(k-1)} \\
& =\frac{k}{k-1} \sum_{l=\lfloor n / 4\rfloor}^{n}\left(\frac{k}{k-1 / 2}\right)^{l}(n-l+1) 2 \sum_{j=0}^{l-\gamma(l)}\binom{l}{j} \frac{1}{2^{l}} .
\end{aligned}
$$

As $\gamma(l)$ is almost equal to $\left\lfloor\frac{l(1+\delta)}{2+\delta}\right\rfloor$, we have $l-\gamma(l) \cong\left\lfloor\frac{l}{2+\delta}\right\rfloor$. By lemma 3.1 with $m_{0}=2+\delta$, we have

$$
\sum_{j=0}^{l-\gamma(l)}\binom{l}{j} \frac{1}{2^{l}} \leq \tilde{A} C^{l l / m_{0} 1 m_{0}}
$$

where $C=\left(\frac{m_{0}}{2\left(m_{0}-1\right)^{\left(m_{0}-1\right) / m_{0}}}\right)$.
We deduce

$$
\begin{aligned}
\frac{C(n)}{B(n)} \leq & A \sum_{l=\lfloor n / 4\rfloor}^{n}\left(\frac{C k}{k-1 / 2}\right)^{\left\lfloor l / m_{0} \backslash m_{0}\right.} \sum_{i=0}^{m_{0}-1}\left(n-\left\lfloor l / m_{0}\right\rfloor m_{0}+1+i\right) \\
\leq & A\left(\frac{C k}{k-1 / 2}\right)^{\left\lfloor n / 4 m_{0} \backslash m_{0}\right.} \\
& \sum_{l=0}^{n-\left\lfloor n / 4 m_{0} \mid m_{0}\right.}\left(\frac{C k}{k-1 / 2}\right)^{\left\lfloor l / m_{0} \backslash m_{0} m_{0} \sum_{i=0}\left(n-\left\lfloor l / m_{0}\right\rfloor m_{0}+1+i\right)\right.}
\end{aligned}
$$

So as the sumation $\sum_{l=0}^{n-\left\lfloor l / 4 m_{0} \backslash m_{0}\right.}\left(\frac{C k}{k-1 / 2}\right)^{l l / m_{0} \downharpoonleft m_{0}} \sum_{i=0}^{m_{0}-1}\left(n-\left\lfloor l / m_{0}\right\rfloor m_{0}+1+\right.$ i) increases polynomially with n and $\left(\frac{C k}{k-1 / 2}\right)^{\ln / 4 m_{0} \mid m_{0}}$ decreases exponentially, $\frac{C(n)}{B(n)}$ goes to 0 when n goes to $+\infty$, if we have $\frac{C k}{k-1 / 2}<1$. For $k \geq 2$, to get $\frac{C k}{k-1 / 2}<1$, we have to take $C<3 / 4$ and we have to choose m_{0} such that

$$
\frac{m_{0}}{2\left(m_{0}-1\right)^{\left(m_{0}-1\right) / m_{0}}}<0,75 .
$$

By a direct computation, we see that, as $m_{0}=\delta+2$, for $\delta=8,\left\lfloor\frac{l}{2+\delta}\right\rfloor \cong \frac{l}{10}$ and that $\frac{10}{2(9)^{9 / 10}} \cong 0.69$.

Lemma 3.3. - For all fixed $\epsilon>0$, the property of being ϵ-balanced is generic.

Proof of 3.3 Let $\# X=k$. Denote $C(N)$ the number of cyclically reduced words in \mathbb{F}_{X}. First we see that $C(N)$ is greater or equal to the number of words of length N in $\mathbb{F}(X)$ with the last letter is not the inverse of the first, i.e.

$$
\begin{equation*}
C(N) \geq 2 k(2 k-1)^{N-2}(2 k-2) . \tag{1}
\end{equation*}
$$

We can now estimate $B(N)$ the number of "bad" presentations, i.e the number of presentations $\langle X: r\rangle$ such there exists $r^{\prime} \in R^{*}$, i.e. r^{\prime} a cyclic conjugate of r, begining with a positive word which has a length bigger than ϵN. As there is not more than $2 N$ elements in R^{*}, we have

$$
B(N) \leq 2 N \sum_{l=[\epsilon N]+1}^{N} C(N, l)
$$

where $C(N, l)$ is the number of cyclically reduced word of length N begining by a positive word of length l exactly. So we have:

$$
\begin{equation*}
B(N) \leq 2 N \sum_{l=\lfloor\epsilon N\rfloor+1}^{N} k^{l}(2 k-1)^{N-l} \tag{2}
\end{equation*}
$$

Dividing (2) by (1), We estimate the ration of non ϵ-balanced presentations over the number of presentations :

$$
\begin{aligned}
\frac{B(N)}{C(N)} & \leq \frac{N(2 k-1)^{2}}{2 k(k-1)} \sum_{l \leq|\epsilon N|+1}^{N} k^{l}(2 k-1)^{-1} \\
& =\frac{N(2 k-1)^{2}}{2 k(k-1)} \frac{k^{\lfloor\epsilon N\rfloor+1}(2 k-1)^{-\mid \epsilon N\rfloor-1}-k^{N+1}(2 k-1)^{-N-1}}{1-k(2 k-1)^{-1}}
\end{aligned}
$$

As $k \geq 2$, this expression goes exponentially to 0 when $N \rightarrow+\infty$.
This proof appears in $[4]$ for $\epsilon=1 / 4$.
Lemma 3.4. - Let $\langle X, R\rangle$ be a finite presentation satisfying a θ-condition (with $\theta \leq 1 / 199$) then for all reduced diagrams Δ, there exists at least one r_{i} in R^{*} which is a border of a cell of Δ and which has at least $\frac{99}{100}$ of its elements on the border of the diagram $\partial \Delta$.

It follows that for all non trivial word ω of \mathbb{T}_{X} which maps on the identity in $\Gamma=$ $\langle X, R\rangle$, there exists at least oner in R^{*} which has at least $\frac{99}{100}$ of its elements in ω.

Proof of 3.4 The θ-condition tells that for every reduced diagram $\Delta, I(\Delta) \leq$ $\theta \# \Delta$ and by definition $\# \Delta=E(\Delta)+I(\Delta)$. We deduce $I(\Delta) \leq \frac{\theta}{1-\theta} E(\Delta)$. It is enough to look at diagrams with a connected interior. In fact, if the reduced diagram Δ does not have a connected interior, each of its parts with a connected interior define a other reduced diagram (relatively to an other word), so the inequality holds for every part
of Δ with a connected interior and we conclude by saying that increasing the number of external edges does not change the inequality.

We define the following notation: for a cell f_{i} of the diagram, we denote $\operatorname{Int}\left(f_{i}\right)$ (resp. $\operatorname{Ext}\left(f_{i}\right)$) the number of edges of f_{i} which are internal to the diagram (resp. which are on the border of the diagram). We denote also \# $\left(f_{i}\right)$ the total number of edges of the cell f_{i}.

To obtain a contradiction, we suppose that all the cells of one diagram Δ have more than 1% of their edges inside the diagram (i.e. for all f_{i}, we have $100 \operatorname{Int}\left(f_{i}\right)>$ \# $\left(f_{i}\right)$). It is clear that $E(\Delta)=\sum_{i} \operatorname{Ext}\left(f_{i}\right)$ and that $I(\Delta)=\frac{1}{2} \sum_{i} \operatorname{Int}\left(f_{i}\right)$, because every internal edge belongs exactly to two cells of the diagram and every external edge belongs exactly to one cell of the diagram. So we get :

$$
\#(\Delta)=\frac{1}{2} \sum_{i} \operatorname{Int}\left(f_{i}\right)+\sum_{i} E x t\left(f_{i}\right)=\sum_{i} \#\left(f_{i}\right)-\frac{1}{2} \sum_{i} \operatorname{Int}\left(f_{i}\right) .
$$

If for all f_{t}, we have

$$
\begin{aligned}
100 \operatorname{Int}\left(f_{i}\right) & >\#\left(f_{i}\right) \\
\text { then } 100 \sum_{i} \operatorname{Int}\left(f_{i}\right) & >\sum_{i} \#\left(f_{i}\right)=\#(\Delta)+\frac{1}{2} \sum_{i} \operatorname{Int}\left(f_{i}\right) \\
\frac{199}{2} \sum_{i} \operatorname{Int}\left(f_{i}\right) & >\#(\Delta) \\
199 I(\Delta) & >\#(\Delta) .
\end{aligned}
$$

For this diagram, $I(\Delta)>\frac{1}{199} \#(\Delta)$. This contradicts the θ-condition for $\theta=1 / 199$.
Lemma 3.5. - For $\epsilon>0$ small enough, if r is ϵ-balanced and has property E_{δ} with $\delta=8$, if $r=s_{i_{1}} \cdots s_{i_{|\Gamma|}}$ with $s_{i}, \in S=X \cup X^{-1}$, then every ordered subsequence $\left(y_{1}, \cdots, y_{l}\right)$ of the ordered sequence $\left(s_{i_{1}}, \cdots, s_{i_{|r|}}\right)$ such that $l \geq \frac{99}{100}|r|$ has at least 3 changes of sign.

Proof of 3.5 Set $|r|=n, n_{+}(r)=l$, thus $n_{-}(r)=n-l$ and $l \geq n-l$, we have $l \geq n / 2$. As r has property E_{δ}, we have

$$
\frac{n}{2} \leq l \leq \frac{1+\delta}{2+\delta} n
$$

So there are at least $\frac{1}{2+\delta} n$ negative terms in r.
Let r be a product of 3 words $r=r_{1} r_{2} r_{3}$ with $\left|r_{i}\right|>|r| / 4$. As r has property E_{δ}, every subword u of length bigger than $|r| / 4$ is such that either $1 \leq \frac{n_{-}(u)}{n_{+}(u)} \leq 1+\delta$, either $1 \leq \frac{n_{+}(u)}{n_{-}(u)} \leq 1+\delta$.

So we can suppose that for $i=1,2,3$, we have either $1 \leq \frac{n_{+}\left(r_{j}\right)}{n_{-}\left(r_{i}\right)} \leq 1+\delta$,either $1 \leq \frac{n_{-}\left(r_{1}\right)}{n_{+}\left(r_{1}\right)} \leq 1+\delta$.

As $\delta=8$, we can assume that r_{1} is such that

$$
\begin{gathered}
\frac{n}{2} \leq n_{+}\left(r_{1}\right) \leq \frac{9 n}{10} \\
\frac{n}{10} \leq n_{-}\left(r_{1}\right) \leq \\
\frac{n}{2}
\end{gathered}
$$

So we can say that $n_{+}\left(r_{1}\right) \geq \frac{1}{10}$ and $n_{-}\left(r_{1}\right) \geq \frac{1}{10}$. By analogous arguments, we have $n_{+}\left(r_{i}\right) \geq \frac{1}{10}$ and $n_{-}\left(r_{i}\right) \geq \frac{1}{10}$ for $i=2,3$.

Denote by $\left(y_{1}, \cdots, y_{m_{1}}\right)$ the subsequence of (y_{1}, \cdots, y_{l}) corresponding to the elements of r_{1}, by ($y_{m_{1}+1}, \cdots, y_{m_{2}}$) the subsequence of (y_{1}, \cdots, y_{l}) corresponding to the elements of r_{2} and by ($y_{m_{2}+1}, \cdots, y_{l}$) the subsequence of (y_{1}, \cdots, y_{l}) corresponding to the elements of r_{3}. As at worse 1% of all elements of r disappear in (y_{1}, \cdots, y_{l}), the sequence ($y_{1}, \cdots, y_{m_{1}}$) contains at worse 4% less than r_{1} (similary for $\left(y_{m_{1}+1}, \cdots, y_{m_{2}}\right),\left(y_{m_{2}+1}, \cdots, y_{l}\right)$ with respect $\left.r_{2}, r_{3}\right)$. And as each r_{i} contain at least 10% of terms of both sign, we get $n_{-}\left(\left(y_{1}, \cdots, y_{m_{1}}\right)\right)>0$ and $n_{+}\left(\left(y_{1}, \cdots, y_{m_{1}}\right)\right)>0$. By the same arguments $\left(y_{m_{1}+1}, \cdots, y_{m_{2}}\right)$ and ($y_{m_{2}+1}, \cdots, y_{l}$) contain terms of both signs. We conclude that the three ordered subsequences $\left(y_{1}, \cdots, y_{m_{1}}\right)$, ($y_{m_{1}+1}, \cdots, y_{m_{2}}$) and ($y_{m_{2}+1}, \cdots, y_{l}$) of (y_{1}, \cdots, y_{l}) each contain at least one change of sign.

Thus $\left(y_{1}, \cdots, y_{l}\right)$ at least contains three.
With these lemmas we can prove the following proposition
Proposition 3.6. - Let $\Gamma \cong\langle X, R\rangle$ be a finite presentation such that Γ has a θ-condition, with $\theta<1 / 199$, and such that every $r \in R$ is ϵ-balanced and has the property E_{δ} (with ϵ relatively small compared to the minimal length of the relations and $\delta \geq 8$), then X generates a free semi-group in Γ.

Proof of 3.6 We denote by N the normal subgroup generated by R in \mathbb{F}_{X} and let ω be a non trivial element of N; Choose Δ a reduced diagram for ω (i.e. $\partial \Delta=\omega$). As the presentation $\langle X, R\rangle$ satisfies a θ-condition with θ less than 199, by lemma 3.4, the diagram Δ contains a cell for which the border is a $r \in R$ and such that r has 99% of its generators on the border $\partial \Delta$ of Δ. As r is ϵ-balanced and has the property E_{δ}, by lemma 3.5, the ordered sequence (y_{1}, \cdots, y_{l}) defined by $r \cap \omega$ contains at least 3 changes of sign. So ω contains at least 3 too. For two positive words ω_{1}, ω_{2} in $\mathbb{F}_{X}, \omega_{1} \omega_{2}^{-1}$ is a word with only one change of sign, so it does not belong to N, which implies that that the image of $\omega_{1} \omega_{2}^{-1}$ in Γ is not trivial, and so ω_{1} is different of ω_{2} in Γ. We conclude that the semi-group generated by X in Γ is free.

Proof of theorem 1.2 We just need to remark that the intersection of a finite number of generic properties is always generic and to appeal to lemmas 3.2, 3.3 and Ol'shanskii's result which asserts that for every fixed $\theta>0$, the θ-condition is generic (see [10]). We conclude with the proposition 3.6 and the theorem 1.1, hyperbolicity being generic because it follows from a θ-condition (it was independentely proved by Ol'shanskii [10] and Champetier [2]).

So we have proved that for finitely presented groups $\langle X, R\rangle$, the existence of free semi-group generated by X is very frequent, but it could be interesting to see if it easy
to decide whether a particular presentation $\langle X, R\rangle$ has such a property or not, just by looking at the set of relations R. In that direction, it could be interesting to be able to read the θ-condition on R. That would unable us to get more than asymptotic results.

References

[1] C. CHAMPETIER. Cocroissance des groupes à petite simplification. Bull. London Math. Soc., 25:438-444, 1993.
[2] C. CHAMPETIER. Propriétés statistiques des groupes de présentation finie. to appear in Adv. in Maths.
[3] C. CHAMPETIER. Introduction à la petite simplification.
[4] P.-A. CHERIX and A. VALETTE. On spectra of simple random walks on one-relator groups (with an appendix of p. jolissaint). to appear in Pacific J. of math.
[5] E. GHYS and P. de la HARPE eds. Sur les groupes hyperboliques d'apres M. Gromov. Number 83 in Progress in Maths. Birkhaüser, 1990.
[6] M. GROMOV. Hyperbolic groups. "Essays in Group Theory", ed. S.M. Gersten, M.S.R.I. Publ., 8:75-263, 1987.
[7] P. de la HARPE, A.G. ROBERTSON, and A. VALETTE. On the spectrum of the sum of generators for a finitely generated group. Israel J. of Maths., 81:65-96, 1993.
[8] P. de la HARPE, A.G. ROBERTSON, and A. VALETTE. On the spectrum of the sum of generators for a finitely generated group ii. Colloquium Math., 65:87-102, 1993.
19] R.C. LYNDON and P.E. SCHUPP. Combinatorial group theory. Number 89 in Ergebnisse der Math. Springer, 1977.
[10] A. OL'SHANSKII. Alomost every group is hyperbolic. International j. ofAlgebra and Computation, 2:1-17, 1992.

Pierre-Alain CHERIX
Institut de mathématiques
Rue Emile-Argand 11
CH-2007 Neuchátel (Switzerland)

[^0]: The author was supported by grant 20-40.405.94 of the Swiss National Fund for Scientific Research.

