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Séminaire de théorie spectrale et géométrie

GRENOBLE

1994-1995(81-95)

QUANTUM ERGODICITY OF O-DYNAMICAL SYSTEMS

Steven ZELDITCH

0. Introduction

These are rather sketchy notes of two talks on semi-classical quantum ergodicity
from the C*-dynamical system point of view. The notes are only slightly revised and the
interested reader should consult the articles [Z.1], [Z.2] for more detailed discussions.

In outline, hère are the main points:

1. To introducé a rather gênerai class of C*-dynamical Systems (̂ 4, G, a) for
which there exists a well-defined classical limit. The rôle of the classical limit will be
played by an invariant state w which is essentially the barycenter of the normal ergodic
invariant states. The classical limit system will be the GNS (Gelfand-Naimark-Segal) Sys-
tem induced by the limit state; hence, the original system will be called a quantized GNS
system. In particular, if the classical limit system is abelian (i.e. truly a classical limit
system), the original system will be called quantized abelian.

2. To define a notion of (semi-classical) quantum ergodicity for such a system. It is
not equivalent to the usual définition of non-commutative ergodicity of a C* -dynamical
system (equipped with an invariant state). See [B.R], [Col and [R] for background on the
latter.

3. To prove that a quantized abelian system is quantum ergodic if the classical
limit is "classically ergodic". More generally, that a quantized GNS system is quantum
ergodic if (.4, u) is a G-abelian pair and if LJ is an ergodic state; yet more generally, if fîo,
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82 S.ZELDITCH

is the unique Vacuüm state.'

4. To give several applications to C*-dynamical Systems involving algebras of
pseudodifferential, Fourier Intégral and Toeplitz operators. In particular, to quantized
contact transformations and quantized symplectic torus automorphisms. The latter turn
out to coincide with the classical transformation laws for thêta functions, due to Her-
mite and Jacobi. Another application, not discussed here, is to quantum billiards [Z.Zw].
This example does not quite fit into the set-up here, but is close enough so that ergodic-
ity of eigenfunctions can be proved. It is quite possible that very different types of C*-
dynamical Systems (see [B.R] or [R] for many examples) can be studied in a similar spirit.

DISCUSSION. — Ergodicity is a basic notion in classical dynamics, defined here
as smooth actions of a group G on a manifold X, equipped with a probability measure /i.
If we let Ug dénote the corresponding unitary représentation on L2 (M), then ergodicity
is the property that 1 is a simple eigenvalue. Equivalently, if G is amenable, that the time
mean approaches the space mean. In the case G = R, the time mean up to time T is
given by

1 fT

(a)T := Y j at{a)dt

where a^a) = Ut(a) for a G C(X). The space mean is given byö := Jx ad/z.Approach
means that \\{O)T - Û||L2(X) —• 0, for instance. We note that classical dynamics is dy-
namics in the class of abelian C*-dynamical Systems, here (C(X), R, a) where C(X)
acts by multiplication operators on L2 (X), and where a : R -» Aut(C(X)) is given by
composition with the flow.

It is not so clear how to define ergodicity for nonabelian C*- dynamical Systems,
which are the dynamical Systems of quantum mechanics. In quantum statistical me-
chanics there is a notion of ergodic invariant state p for a C* -dynamical System (.4, G, a)
which generalizes the notion of an ergodic measure for a classical System (see [B.R],[Co],
[R]). It is just that p be an extreme point of the compact convex set of invariant states.
However, only under special conditions do analogues of the usual commutative ergodic
theorems hold for (A, G, a, p). For instance, when G is amenable, the analogue of the
L2-ergodic theorem would read:

(1.1)

where

(1.2) (A)T :=
JG

with XT an M-net for G (see [R], chapter 6). But ergodicity of p is not sufficient in genera!
to insure that (1.1) holds. A further condition on (A, G, a, p) is required: namely, that
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there exists a unique G-invariant vector in the GNS représentation induced by p. This
is equivalent to ergodicity of p if the system is G-abelian. So, non-commutative ergodic
theory is often restricted to such Systems, or to Systems which are norm asymptotically
abelian (they are automatically G-abelian). Abelian systems are the simplest examples,
but of course the désire is to extend ergodic theory to a non-commutative setting. Non-
commutative examples of asymptotically abelian systems include the so-called quasi-
local systems, which describe the infinité systems of statistical mechanics, such as the
classical or quantum lattice systems, which are formed out of local systems (finite parts
of the lattice). Other examples include "quantized heat-baths", certain "quantized har-
monie crystals", and 'quasi-free évolutions' with purely absolutely continuous spectrum.
See [B.R], [R] or the more recent référence [B] for discussions of such systems and référ-
ences to the literature.

The systems we will be concerned with here are not of this kind, although it is
possible that semi-classical notions of quantum ergodicity could be extended to them.
Rather, we will concerned with examples involving algebras of pseudodifferential or
Fourier- Intégral operators and the automorphisms with be conjugations by FIO's with
pure point spectra. Such systems are far from possessing the asymptotically abelian
properties referred to above, and this seems to have caused some confusion as to the
purpose and significance of semi-classical quantum ergodicity (see e.g. [B] [B.N.S]).

In the semi-classical ergodic theory, it is the classical limit systems which have
the G-abelian properties. In these notes, we we will even assume the limit systems are
abelian. The problem is to détermine the effect of ergodicity of the classical limit system
on the spectral data of the quantum system. This problem has given rise to an enor-
mous physics literature on statistics of normalized spacings between eigenvalues, on
morphology of eigenfunctions, on dynamical localization for such systems as the kicked
rotor model, and other such phenomenology of the so-called quantum chaos. It is based
almost entirely on numerical analyses and on heuristic principles, e.g. on the formai ap-
plication of trace formulae in settings where the objects are barely defined, or on the use
of undefined averaging procedures. See for instance [B.H] or [Ke] for a taste of the dis-
cussions of the quantized cat map, one of the models of quantum chaos. See also [Be]
for discussion of dynamical localization from the C*-algebra point of view.

From the mathematical point of view, the problems generally seem to be way out
of sight. However, the phenomena seem real enough, and the body of rigorous results
is growing; see [S] for a recent survey (it will have appeared in print by this time). We
hope that the reformulation of some of the notions and results of quantum chaos in the
language of statistical mechanics will provide some ftirther structure to this area and
facilitate comparison to the non-commutative ergodic theory.
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1. Quantized Gelfand-Naimark-Segal Systems

We will assume:

1. A is unital and separable, and that (̂ 4, G, a) is covariantly represented on a
Hubert space 7i: that is, that there is a unitary représentation U :G -¥ U{?{), such that
ag(A) = U;AUg.

2. That G is amenable of the form Rn x Zk x Tm x K, where K is a compact
s.s. L.G. and Tm is a real m-torus. Also, that the spectrum Spec(f/) is discrete. These
assumptions aJlow us to define a notion of the distance S(a, 1) of an irred. rep. a of
G to the trivial rep. 1, namely ignore the rep. coming from the Zk factor and take the
Euclidean norm of the result. This distance will be the semi-classical parameter.

3. Finally,that the microcanonical ensemble at enërgy Ievel E has a unique weak
limit as E -> oo. By m.c. ensemble we mean the invariant state

_ 1
"E : " N(E) a

where Ua is orthoproj. to the isotyptic subspace Tia corresponding to er, and where
u)a (A) := (TrT[a)~

lTrYiaA is the invariant state corresponding to o. Also, N(E) is the
similar sum of multiplicity times dimension of a. The basic assumption then is that there
exists a unique invariant state u;, such that in the weak-* sense UE -> w.

DISCUSSION. — u? will be called the classical limit state. In all examles involving
algebras of pseudodifferential or FIO's, it is Standard that such an u exists.

DÉFINITION. — The classical limit system is the GNS system, which is the repré-
sentation of G and A on the space 7iw := closure of A/M, where M := {A : u>(A*A) =
0}, and where the Hilbert space inner product is given by (A, B) := v(A*B). One
also has a unitary représentation ULJ(g)(A + M) := &g(A) + M, and a vacuüm state
n w := I + M, which is invariant under G. For future référence we let E^ dénote the
orthogonal projections onto the G-invariant vectors in %u.

Example. — Let \P° (M) dénote the norm-closure of the *-algebra of psido's on
a compact manifold M. Let also A dénote a Laplacian, and Ut := expity/K its wave
group. Then (*°, R, a) , with at (A) := U*AUt is a dynamical system. We let LJJ (A) :=
(A<f>j,<j>j)t <j>j denoting an ONB of efhs; these are normal invariant ergodic states of the
system and the m.c. ens. is
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Here of course Xj are the evfs of \ /A. It is well known that

= /

where \i is normalized liouville measure.

We observe that the classical limit system is the geodesie flow on L2(S*M). In-
deed, it is easy to check that Af = /C, the compact operators; we also recall that \P ° is the
extension byC(S*M). The L2Miorminducedbyu; is the usualone, so%w = L2(5*M).
The rest follows by the Egorov theorem.

DÉFINITIONS. — AquantizedGNSsystemwillbecalledquantizedabelianifthe
associated GNS représentation is abelian; or quantized G-abelian if (.4, w) is a G-abelian
pair. Le. ifEu,7ru(A)E(JJ is abelian.

2. Définition of QE for quantized GNS Systems

In gênerai, if G is an amenable group we let

(A)T~ f XT(9)<x9(A)dg
JG

dénote the partial time average relative to an "M-net" on G. We let (A) := lim (A)T

dénote the limit in the weak operator topology. Also, given an invariant state w we let

u(A)I replace the space average. We say (-4, G, a) is quantum ergodicif

(A)=u>(A)I + K

where wE(K*K) -> 0.

We note that U>E is a normal state, so is well defined on K. In a similar marmer we
can define a notion of "weak mixing" for such Systems (see [Z.3]) It is not clear how to ex-
tend other classical notions, e.g. mixing, entropy...or whether they will lead to interesting
properties of the quantum Systems.

3. Statement of results, sketches of proofs

THEOREM 1. — Let (.4, G, a) be a quantized abelian or quantized G-abetian.
Then: ifthe classical limit state u> is ergodic, "almost all" the ergodic invariant states pj
of the system tend touasthe "energy" E(pj) —> oo.
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Here, we observe that normal ergodic states p correspond to projections II onto
irreducibles for U in %. Then E(p) = ô(p, 1). By "almost ail" we mean that for the
natural densities on the set of normal invariant states, the set satisfying the conclusion
has density one.

Example. — In the above example with G abelian, the normal ergodic states are
vector states corresponding to eigenfunctions. The obvious density is counting density
ordered by the eigenvalue. We get: if the geodesie flowis ergodic, there is a subsequence
S C Nof counting density one such that lim (Acpj^j) = fs*M&AdiJi, the limit taken
along«S.

THEOREM 2. — Under the same hypotheses, (A, G, a) is quantum ergodic.

Proofs. — We sketch the Main lemma in Theorem 1 :

LEMMA. — Let G be amenable, and let {pj } bea set of invariant states such that

1 / ^ X) Pj ~~> Pi for some invariant state p. Then, if the GNS System defined byp has a
j<N

unique vacuüm state, there is a subsequence S of density one such that lim pj = p,
j€$Jxx>

Proof. — Consider

S2(N,A) := 1/N Y, \PM) "

By invariance we have

S2(N, A) = 1/N ]T \Pj((A)T-p(A)\2 < 1/N £ Pj(((A)T-P(A)r((A)T-p(A)))

^p(({A)T-p(A)r((A)T-p(A))).

The right side tends to zero as T tends to infinity if there exists a unique vacuüm
state, see [Ruelle, StaLMech. ch. 61. Hence S2{N, A) -* 0. One then shows that the gên-
erai term tends to zero, and that the subsequence of terms may be chosen independently
of A. QED.

We then sketch the proof of Theorem 2 in the case where G is abelian and multi-
plicity free.

Proof. — We must show

) ( ) y ( ( ) ( ) ) ] = 0.



Quantum ergodicity of C* -dynamical Systems 87

We may assume A* = A. Then

<reSpec{U)

sothat

The rest follows by the reasoning of the Lemma QED

Remarks.

(1) For complete proofs see [Z.l].

(2) One advantage of the C* approach is that it suggests the use of convexity in-
equalities for states to estimate the terms in Sz (TV, A). Above we used squares and the
Schwartz inequality, but one could also use more gênerai convex functions of (pj (A) -
/>( A)) and Jensen's inequality. This is useful for getting rates of quantum ergodicity. Un-
like the case in earlier proofs, such inequalities donft require the construction of a pos-
itive quantization procedure. The proof also shows that one only needs to use a dense
set of éléments A in the unit bail of the C*-algebra. Such simplifications are useful in
situations such as billiard problems where one has only an approximate automorphism
of the relevant algebra

(3) From an intuitive point of view, the above theorem may be viewed in the fol-
lowing way: the limit state is an extreme point of the convex compact set of invariant
states. Yet is almost written as the convex combination of other invariant states (in LJE)-
This is a contradiction unless the other invariants states tend individually to the limit.

(4) An earlier article which uses a C*-algebra approach to semi-classial analysis
is that of Helton [H]. It shows that the 'essential différence spectrum' of the quantum
system is equal to the spectrum of the geodesie flow. The reader may enjoy checking
that the essential différence spectrum is built up step by step in the GNS représentations
corresponding to U>E .

(5) Is there a more quantitative version of Helton's clustering theorem? Can one
detect higher concentrations in the essential différence spectrum at embedded eigenval-
ues of the geodesie flow?

4. Quantized contact transformations

We now give applications of this set-up to quantized contact transformations and
in particular to quantized toral symplectic automorphisms, i.e to "quantum cat maps."



88 S.ZELDITCH

The latter example is probably the most frequently studied example in quantum chaos
(see e.g. [A.dP.W], [B.N.S], [dB.B], [dE.G.I], [H.B], [Ke], [W]). The approach taken here will
show that the quantized cat map is none other than the unitary matrices arising in the
transformation theory of theta functions due to Hermite and Jacobi. This connection
leads to rigorous proofs of the trace formulae used in [Ke] and to limit formulae for theta
functions. Complete details will appear in [Z.2].

Let (X, a) be a contact manifold and let

dénote a contact transformation. We let E dénote the characteristic vector field, and D
the corresponding differential operator "diff. along E. We assume:

1. The flow of E is periodic.

2. x commutes with this flow.

Thus, x descends to the quotient O := X/Sl.

We would like to quantize x and D and to show that ergodicity of the Z x S1

system defined by them is quantum ergodic if x is an ergodic transformation on O w.r.t.
the induced volume form; note that everything is symplectic on the quotient.

Following Boutet de Monvel the quantization proceeds as follows: the Hilbert
space will be

H := ran(nE)

whereE C T*X := {{x,rax) : r G R+ }, and where 11E is a Szego projector associated
to it. We may assume [D, üu] = 0. D is immediately quantized; the problem is now to
quantize x as a unitary operator on %.

PROPOSITION. — There existe A e iS°(X) such that

1. [A, D] = 0.

3. Ux := 11x̂ 411 is unitary.

Here, and henceforth, we drop the subscript on U and II; U will of course be the

quantization of x-

ProofofProposition.

We will need to go into the symbol calculus of Toeplitz operators. The first step is
to construct the symbol of A so that

(1) <T(TlA'x-

Here x opérâtes by translation on C(X).
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Before describing the symbols precisely, we note that the principal symbol équa-
tion of (1) is

(2) \aA\2

Here we only use the the symbol map is a homomorphism and that a A may be identified
with a scalar function on T* (X) and hence by restriction on E.

We now recall what is the symbol of a Toeplitz projection. Good références for
this material are the book of Boutet-de-Monvel and Guillemin (The Spectral Theory of
Toeplitz Operators) and the article "Residue Traces for Certain Algebras of Fourier Inté-
gral Operators", Adv.in Math., 1993. Warning: the notation E in this talk corresponds to
B on p.409 of Guillemin's article. His E is our E*.

First, a lot of notation and background:

1. (Ta;E)x will dénote the symplectic orthogonal complement of Tx E in TX(T*X)1

2. E* wiU dénote the "ffipped diagonal" { (x , -£ ,x ,£ ) : (z,£) G E}. Due to the
minus sign, E* is a conic isotropic in T* (X x X).

3. Since E* is isotropic,TpE* C TPE#X, the latter being its symplectic orthogonal.
The quotient space

iVpiVpE# :=

is the symplectic normal space to E* at at p. As p varies, we get the symplectic normal
bundie of E.

4.1n the spécifie case of a "flipped diagonal" in the square of a symplectic sub-
manifold, we have

5. Now let P s or simply P dénote the symplectic frame bundie of T(E)p e r p . Thus

P - + E

is a principal Sp(2/, R)-bundle, where 2/= dim T(E) -1. Similarly, we let

+ E#

dénote the principal Sp (4/, R) -bundie of symplectic frames of N (E#). In the special case
of a flipped diagonal we have the Sp(2/) x Sp(2/)-sub-bundle of adapted frames to the
product.

6. Now let Mp(2Z, R) or more simply Mp(2/) be the metaplectic group: it is a
nontrivial double cover of Sp(2/), analogous to the double cover Spin(n) of SO(n) in Rie-
mannian geometry. This group has a special unitary représentation

ji:Mp(2*)-+L2(R'),
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where L2 (R') is the intrinsic Hubert space of square integrable half-forms f(r))^/drj. An
invariant (Frechet, not Hilbert) subspace is the space <S(R') of Schwartz functions (or,
half forms.)

7. As in the Riemannian case, under a mild topological condition (hère just ori-
entability), the symplectic frame bundles P have double covers Z which are for each
fiber just the double cover Mp(2l) -+ Sp(2/) alluded to in (6).

8. If Z is any principal Mp(2/)-bundle over a manifold Mt we can form the asso-
ciated symplectic spin bundie

Spin(Z) \-Z x ^ ^ R )

whose fiber at m G M is an infinité dimensional space of Schwartz functions.

9. In particular, we can apply this construction to the bundles Z% of "metaplec-
tic frames" of the normal bundle TE 1 , resp. Z& of metaplectic frames of the adapted
symplectic normal bundle of E*. We get in this way the bundles

Spin(E) : = Z E

Spin(E#) :=

of symplectic spinors associated to the symplectic normal bundles of E and its flipped
diagonal. We may identify E with E# in the obvious way; then we have

Spin(E*) ~ Spin(E) <g> Spin(S)

as bundles over E.

10. We may view an element ax of Spin(S) x Spin(E) at a point a; G E as a ker-
nel Ka (z, 77, £) of a smoothing operator on the space L2 (Rl) attached to the symplectic
orthogonal space TX(X)L by the metaplectic représentation. Hence there is a natural
composition lawfor symbols: fiberwise composition of smoothing operators.

11. Before proceeding, let us consider the simple example where E is the cotan-
gent bundle of a submanifold Y of a Riemannian manifold M: Thus we let E = T*y,
where T*Y c± TY via the metric. Locally M is a product Y x N;use the exponential
map along the (Riemannian) normal bundle N(Y) ofY. Hence the symplectic orthog-
onal to T*Y may identified as the bundle T*N\Y along Y. We see that the fiber may be
view as the cotangent space T*(Ny (Y). A Lagrangean subspace is Ny (Y) itself. Under
the symplectic spinor construction, we get <S(£)(y)7î) ^ S(Ny(Y)). Hence a symplec-
tic spinor may be viewed (with some identifications) as a fonction f[yiV) (u) which for
(y, rç) € N(Y) lies in the Schwartz functions on Ny(Y).

12. Now back to the symbol of a Toeplitz projector: We first recall that a Toeplitz
projector II détermines a homogeneous positive definite Lagrangean sub-bundle A of



Quantum ergodicityof C*-dynamical Systems 91

the complexified normal bundie T S 1 in T*X. Indeed, II is annihilated by an involutive
system of d= l/2dim£ -1 équations

DjU ~ 0

whose characteristic variety is E. Let Ej be the Hamilton vector field of a(Dj) and set

Ax :=span{~j : j = l , . . . ,d}.

We have that Ax is a Lagrangean subspace in the complexified normal bundie of S.

13. Next we observe that at each x we have a Heisenberg algebra formed in the
canonical way from the symplectic vector space TXHX. We can complexify it, so that the
E j's form a maximal commutative subalgebra of it. It acts on the symplectic spinors of
the normal bundie in the following way: each normal frame identifies the normal space
with a Standard R21 and hence the complexified Heisenberg algebra with the standard
one; an element then acts on the Schwartz function associated to the spinor by the frame.

14. We then have the équations for <r(U):

= 0 (x e EfEj e AX).

The solution is the unique (up to scalars) vacuüm state eAx. More precisely, we have the
product of these équations; the unique solution is thus given by

15. Now we return to the symbol équation. Under x> A will go to a new complex
Lagrangean sub-bundie of the complexified normal bundie of the product, and so we
willget

where eAx is the vacuüm state for the new Lagrangean subbundle.

16. Following the compositions, we see that the équation for a A is

We can solve, with aA = ((eAx, eA ) ) ~l, since the inner product is non-zero. One
sees this because the FourierTransform of a Gaussian is non-zero (using a model case).

17. Everything may be assumed Sl -invariant, so a A may be assumed so. By oper-
ator averaging, we may define an operator A\ which commutes with everything and has
this principal symbol.We now make it unitary, following an idea of Weinstein.

18. If U\ is Toeplitz-Fourier operator with ^ in place of At we see that U\Uï is
elliptic, hence has finite dim. kernel. Let us assume it is trivial; it is not hard to fix things
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otherwise. We may Write UÏU\ =. IlCn, with C a psido commuting with everything.
Define G:-Uy/CU. Then one checks that

U := UXG

is unitary and satisfies all the assumtions.

19. Applications to the cat map: we let a e Sp(2n, Z). Write R2n = R©R and write
a accordingly in block form with blocks (A, B,C,D). Since a is symplectic, we have

(i) A*C = CM, B*D = D*B, A*D - C*B = ƒ;

(ü) AB* = BA*,CD* = DC*,AD* - BC* = I.

We note that the reduced Heisenberg group R2n x S \ quotiented by the integer
lattice T := Z2n x 1, is a circle bundle Q over the real 2n-torus T2n and that a acts on this
torus. Also, that Q is a contact manifold with the contact form a := dt +1/2 J2 ixjdÇj -
Çjdxj). We claim that the lift

Xa(ar,É,0 := (0(0:,OiO

of a to Q is a contact transformation. This follows by use of (i)-(ii) above.

20. We then quantize a as

Ua := SxaAS

where 5 is the standard Szego projector onto the standard CR functions H2(Q) on Q.
These are, we recall, the functions satisfying Zj f = 0 (j = 1,.. . , , n) where

~Zj = complex conjugate of Zj.

It turns out that A may be taken to be a scalar, namely the inverse of the inner product
of a Standard gaussian and its transform under a in the usual sense. (See [F]). This is
easily calculated to be the value of the symbol and it turns out that in this example such
a simple modification is already unitary.

21. It foUows that if a acts ergodically on T2n , then Ua and D act quatum er-
godically on the space of CR functions. In a Standard way we may break up H2(Q) by
the action of the circle into spaces Hn of weight n; and identify these with holomorphic
sections of the nth tensor power of the line bundle L associated to Q by the basic repré-
sentation of the circle. Thus we get unitary operators U£ operating on the holomorphic
sections Hol(Ln). We consider the eigenvalue problem:

The eigenvectors are the theta funtions of degree n. By the Theorem in § 3 we have

|<Ênj |
2-+l on T2n
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in the weak sense. Also, one can prove that the eigenvalues become uniformly dis-
tributed on the circle.

As shown in [Z.2], the translation of theta functions under a symplectic torus map
is part of the classical transformation theory of Hermite and Jacobi. Theta functions are
matrix éléments of the infinité dimensional unitary représentations of the Heisenberg
group, so it is natural that one can act on them by certain éléments of the symplectic
group. However, the translate changes the complex structure. The above has orthogo-
nally projected back onto the original space of holomorphic sections; perhaps surpris-
ingly this is a unitary operator up to a scalar, and this is why we could let A be a scalar
operator. We end up with the same t/"'s as in the classical theory. For a modern treat-
ment of the classical theory, see [K.P].

22. There are many other articles on the quantization of symplectic toral auto-
morphisms. The Toeplitz quantization is equivalent to the geometrie quantization in the
présence of a real polarization, see [A.dP.W], [We]. This is not quite obvious since the lat-
ter articles use a parallel translation instead of an orthogonal projection to return to the
original complex structure. However, they are both seen to be equivalent to the Hermite-
Jacobi transformation laws. So are the quantizations in the physics literature, e.g. [H.B],
[Ke].

The article of Keating contains a lot of numerical and partly heuristic results on
the eigenvalues of the quantized cat maps. See also [dE.G.I] and [dB.B]. The trace formu-
lae cited in [Ke] (as examples of the Gutzwiller trace formula) can be rigorously, and in
fact easily, proved using the explicit formula of the Cauchy-Szego kernel on the Heisen-
berg group ([St], [Z.2]). However, the finer asymptotic properties of the eigenvalues (e.g.
level spacings, pair corrélation function, etc.) are difficult to analyse: As discussed in
[B.H][Ke][dE.G.I][dB.B], the fine structure aspects of the spectrum and periodic orbits
involve subtle questions of number theory, and do not reflect the predicted behaviour of
quantum chaotic Systems.

One wonders (with some skepticism) whether the fine structure is visible from
the microlocal and non-commutative geometrie point of view. For instance, the pair
corrélation function at degree N can be given a very explicit form in this example. Un-
fortunately, the trace formula at degree N involves the trace of (UaN ) k N for k = 1,2,....
It is not clear whether such traces can be fit into the framework of FIO's. This kind of
situation challenges the limit of semi-classical analysis in the study of the semi-classical
limit.
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