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Séminaire de théorie spectrale et géométrie

GRENOBLE

1994-1995(37-53)

AN INTRODUCTION TO THE COMPLETENESS OF
COMPACT SEMI-RIEMANNIAN MANIFOLDS

Miguel SÂNCHEZ

ABSTRACT . — The aim of this paper is twofold. First, it introduces some heuris-
tic reasonings and examples to show that the problem of completeness of compact indef-
inite manifolds arises in a natu rai way, so, it is discussed the absence of analogous conclu-
sions to the well-known ones from Hopf-Rinow's theorem, the existence of incomplete closed
geodesics, and a heuristic way to yield incomplete Lorentzian tori, including Clifton-Pohl's
torus. Second, a brief summary of known results and open questions is carried out. In this
summary, the Riemannian, indefinite non compact and indefinite compact cases are com-
pared, and some of the underlying ideas are outiined.

1. Heuristic considérations

1.0. Notation.

Throughout this article, (M, g) will dénote a n-dimensional (n>2) semi-
Riemannian manifold, Le. a n-manifold M endowed with a non degenerated metric
g; when the index of the metric is 0 (resp. 1, strictly between 0 and n, 0 or n) it is called
Riemannian (resp. Lorentzian, indefinite, definite). The results for Riemannian metrics
can be extended to definite ones. If p G M then X dénotes a vector of the tangent space
at p, TpMt and the causal character of Xp is defined as usual in General Relativity, that
is, Xp is thnelike ifg(Xp, Xp) < 0, null ifg(Xp, Xp) = 0 and Xp ^ o, and spacelike if
g{Xp,Xp) > 0 o r X p = 0.

If 7 : 1 -^ MAI interval) is a geodesie then 5(7', 7') is a constant, and we will say
that 7 is timelike, null, or spacelike according to the causal character of ils velocity at any
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point. An inextendible geodesie is said to be complete if its domain is ail R, and incom-
plete otherwise; we will say that the metric g is timelïke, null or spacelike (geodesically)
complete, according to the causal character of its complete geodesics.

1.1. Hopf-Rinow's technique does not work.

Let (M, g) be a Riemannian manifold, it is well known, by Hopf-Rinow's theo-
rem, the équivalence among: (A) the metric completeness for the distance dg canoni-
cally associated to g, (B) the closed and d5-bounded subsets of M are compact and (C)
the geodesie completeness of g. Obviously, if M is compact then (A) (or (B)) holds, and
geodesie completeness is obtained. On the other hand, if g were indefinite, the distance
dg cannot be defined canonically, and neither (A) nor (B) can be stated. Nevertheless,
if M were compact we would have: (a) any distance compatible with the topology of
M is complete, and (b) any closed subset is compact. Thus, "the best possible" results
analogous to (A) and (B) hold, and one could wonderif geodesie completeness could be
derived.

It is well-known that the answer to this question is no; let us see now the exact
step where the corresponding proof fails. Consider the following two cases: (i) g is Rie-
mannian and satisfies (B), (ii) g is indefinite and M compact (thus, satisfying (b)). Take
any geodesie 7 : [0, &[-> M, 0 < b < 00, and try to extend it beyond b.

(1) For any séquence {tn} -> 6theclosureoftheset{7(£n),n G N}iscompact
in both cases (i) and (ii). Thus, there exists a converging subsequence {y{ta(n)} -> P €
M.

(2) In the case (i), 7 is continuously extendible beyond 6. (This is a conséquence
of the inequality for the associated distance,

which implies lim 7 (t) = p.) Observe that in the case (ii) this step may be not true.

(3) By a standard argument (see for instance, [On], Lemma 1.56) if the geodesie
7 is continuously extendible to b then it is extendible as a geodesie beyond b.

Next, we are going to see examples in which step (2) in (ii) may not hold, first
by showing incomplete geodesics with image contained in a compact subset, and after
constructing heuristically incomplete Lorentzian tori.

1.2. Incomplete closed geodesics.

DÉFINITION 1.1. — Iet 7 : I -> M be an inextendible non-constant geodesie,
7 is closed if there are si, s2 G I,s\ < s2, andX G R+ such thatjf(si) = A • jr(s2).
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Observe that if A ̂  1 then 7 must be null, because of the constancy of g (7', 7').
Moreover, 7 gives (at least) a round not only in [sx, s2] but also in [s2, s2 + X(s2 - sx)]t

in [si - \~l(s2 - 5i), si], and in the successive intervals of length A*(s2 - si), i € Z.
So, if A = 1 7 is periodic, but if A ^ 1 then 7 is incomplete, because one of the sums

00 00

J2 A2(s2 - si), J2 ^~'(52 - si) isfinite. Summing up, we have

LEMMA 1.2. — Ifj is a ciosed geodesie, its corresponding A is different to 1 if
and onlyifj is incomplete (and, thus, null).

Now, we are going to construct Misner's cylinder, which provides a first example
of incomplete ciosed geodesie (another two ways to see such cylinder can be seen in
[HaEl] and [RoSaS]). Note that the step (2) in § 1.1 cannot be carried out for tins kind of
geodesics.

Consider the two-dimensional Lorentz-Minkowski spacetime in usual null coor-
dinates (u, v),L2 = (R2,g = du®dv + dv®du = Idudv). Choose A > 1 anddefinethe
isometry ipx of L2 by ipx{u, v) = (\u, \~lv), V(u, v) G R2. The corresponding action of
the group of isometries generated by ipx on L2 satisfies:

(1) The origin is a fixed point, and so we have a non-discontinuous Z-action on
L2; the corresponding quotient is not a manifold.

(2) If we remove the origin, a discontinuous but not properly discontinuous ac-
tion of Z on L2 - {(0,0)} is naturally obtained. The quotient can be regarded as a non-
Hausdorff Lorentzian manifold (note that the projections of a point of each axis can-
not be separated by two disjoint open subsets). Recall that all discontinuous action by
isometries of a Riemannian manifold is properly discontinuous ([K0N0] Proposition 4.4,
Chapter I); thus, we have obtained a counterexample for the corresponding indefinite
case.

(3) If we consider just the right open semiplane, R+ x R, the corresponding in-
duced action on it is properly discontinuous, and it is easy to check that the quotient
is topologically a cylinder, Misner's cylinder. The reparametrization of the u-axis which
makes it a (null) geodesie p, projects onto an incomplete ciosed geodesie p of the cylin-
der. Moreover, every non constant geodesie 77 on R+ x R which is not a reparametrization
of a vertical straight line projects onto an incomplete geodesie in the cylinder; note that
the incomplete side of 77 has as accumulation points the image of p.

1.3. Incomplete Lorentzian tori.

We have constructed incomplete geodesics in non-compact manifolds with im-
age contained in a compact subset. Now, we are going to construct a family of incomplete
semi-Riemannian metrics on a torus. The properties of this family is widely studied in
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[Sa2] (see also [Sal]), and the procedure is also discussed in [RoSa2], even though here
some new heuristic arguments are introduced.

Consider again Misner's cylinder fixing À = e, S = tpe. Call (C, gf) to the corre-
spondingcylinder generated from (R+ xR,^ = 2dudv), and compare this cylinder with
the one (Co, 9$) generated from (R2, g0 = 2dxdy) (x, y usual coordinates) by the action
induced from thé translation T(x, y) = (x, y + 1), V(x, y) € R2. The complete metric g'o
can be induced naturally on a torus by (i) fixing two different circles, 5^ with fixed coordi-
nate x = 77, and 5,;, with x = 77', (ii) cutting Co by these circles and (iii) glueing (by using
a x -translation) each point of Sv with the corresponding one on S^. But the incomplete
metric g' cannot be induced on a torus by this (or by a different) method, because it is
flat and, by a resuit of Carrière [Ca], no compact flat Lorentzian manifold is incomplete.
Now, our purpose is to construct a new metric hf on a cylinder with a behaviour: (1) as
the incomplete metric gf near an incomplete closed geodesie p (so h1 will be incomplete)
and (2) as the complete metric gf

0 out a compact subset (so hf will be inducible in a torus
by cutting and glueing suitably chosen circles as before).

We must have the next caution to construct the metric h'. Two Riemannian met-
rics defined on subsets of a cylinder as gf and gf

0 above can be easily extended to a unique
metric on all the cylinder by using a partition of unity and Standard arguments. But these
arguments cannot be directly extended to the Lorentzian case because Lorentzian met-
rics on a vector space V are not a convex subset of the set of all the metrics on V. That
is, given two Lorentzian metrics g\, 52 on V, the metrics,

are not necessarily Lorentzian for all t e [0,1]. To skip this obstacle, we need the next
concept.

DÉFINITION 1.3. — Let g\ and gz be two Lorentzian metrics on a vector space
V. We will say that the timelike cone ofg\ is greater or equal to the timelike cone ofgz if
020>, v) < 0 impliesgi (v, v) < 0, v G F . In this case, wewriteg\con > gfon.

Then, it is straightforward to prove:

LEMMA 1.4. — Ifg\con > gf0Ti thenLgu92(t) is a Lorentzian metric for all t e
[0,1].

On the other hand, if V is two dimensional, and g\ ,#2 have a common null vector
then necessarily one of the next inequalities hold:

„tcon \ _tcon „tcon \ _tcon «tcon ^ r „ Ucon / „ \tcon v. „tcon

So, we have:
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LEMMA 1.5. — Iftwo Lorentzian metrics g\, g2 on a two-dimensional vector
space V have a common null vector then the metrics L9u92 (t) or the metrics L9u-9z (t)
are Lorentzian for all t e [0, l] .

Now, come back to our problem of finding h'. Consider a diffeomorphism $ :
R2 -» R+ x R,$£(xyy) = (u(x,y),e • v(z,y)), wheree € {±1} . If u(x, y) does not
depend on the first variable, u(x, y) = u(y), then the coordinate vector field d/dx is
null not only for g0 but also for &*eg. So, Lemma 1.5 can be applied to go and &*g on each
tangent vector space of R2 , and we will also have $+iS = -^!_i5. If we want that $ e

can be induced on the cylinders Co and C, then we impose $ e o T = 5 o $ Ê , that is,
u{y + 1) = e - u(y), v(x, y + 1) = e"1 - v(x, y), V(x, y) G R2.

Thus, choose the diffeomorphism $ : R2 -4 R+ x R, $ ( z ,y ) = (exp(y), x •
exp(-y)). Clearly $ induces a diffeomorphism $ ' : Co -> Cf and setting gr* = $*ff
we have 0(*Xiy) = 2dxdy - 2a;(dy)2, V(x, y) € R2. Let // be a smooth function on R,
0 < M < li with value 1 on] - £,£[,0 < e < 1, and value 0 on R-] - 1,1[. Consider the
following Lorentzian metric feonR2:

h{*,y) = V(x)aUy) + Î1 " M^))^)^,») = 2rfxdy - 2fi(x)x{dy)2.
This metric is incomplete and induces the required metric /i' on the cylinder Co. Even
more, as a first generalization, we can consider, for any smooth function r on R, the
Lorentzian metric on R2

hl^y)=2dxdy-2T(x)dy2. (1.1)

If there exists a e R such that r(a) = 0 and rf(a) / 0, the null geodesie 7 (t) =
(a, 6 log(£ + (1/6))), 6 = r'(a), is incomplete. Clearly, hT is always inducible on a cylin-
der and, if r is assumed to be periodic, then hr yields an incomplete Lorentzian metric
on a torus.

As a bigger generalization, we can consider the metric on R2 ,
g(Xyy) = a{x)dx2 + 0(x)2dxdy - S(x)dy2 (1.2)

where a, /3, S are smooth periodic functions on R with the same period {g inducible on
a torus) and satisfying aS + (32 > 0 (g Lorentzian). It is not difficult to check that if
S vanishes but it is not identically 0, then g is timelike, null and spacelike incomplete,
[Sa2]. It is worth pointing out that Clifton-Pohrs torus (as the incomplete examples in
[RoSal] and [Ga]), is included in this incomplete family of metrics. To see this, note that
this torus is constructed taking the quotient of R2 - {(0,0)}, g = 2dudv/(u2 + v2))
by the group of isometries generated by (u, v) -» (2u, 2v). Putting a(x) = S(x) =
—7T2sin27rx, f3(x) = 7r2cos27rx, x e R, we can construct an isometry from the corre-
sponding torus and Clifton Pohl's one by taking into account the locally isometric cover-
ingmapR2 -^ R 2 -{(0 ,0)} , (x ,y) -4 (u{x,y), v(x,y)),u(x,y) = (l/n) exp(Try) si
, v = (1/TT) exp(?ry) C0S7rx.
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2. Several known results and open questions

2.0. Someprevious technical results.

Now, several results on completeness in semi-Riemannian manifolds are summa-
rized, comparing what occurs in the cases: (a) (compact or not) Riemannian, (b) non-
compact indefinite and (c) compact indefinite; this summary extends and updates the
one in [RoSaS]. But previously, the next results are outlined for later référence.

PROPOSITION 2.1. — Let (M, g) be a semi-Riemannian manifold, and let y :
[0,6[-> M be a geodesie, 0 < b < oo. The following assertions are equivalent: (i)y is
extendible as a geodesie beyond b. (ii) for any complete Riemannian metric QR on M,
wehave thatg^y1\ 7') is bounded. (iii) there exists a séquence, {tn} —• b , such that
W{tn)} converges in the tangent bundleTM.

Proof.

(i) => (ii) is obvious, and for (ii) => (iii) note that 7' lies in a compact subset of
TM. The implication (iii) =̂  (ii) is a conséquence of the two following results: (A) The
velocities of geodesics of (M, g) can be seen as intégral curves of the geodesie vector
field G on TM (if Xp G TM, the value of G at Xp is the initial velocity of the curve in
TM : t —> (exp(tXp)y, whereexpistheexponentialmapforg). (B) If an intégral curve
p : [0, b[—¥ N, b < 00, of a vector field AT on a manifold N admits a séquence {tn } —> b
such that {p(tn)} converges in N, then p is extendible as an intégral curve of X beyond
b ([On], Lemma 1.56). •

flemartc. — As a conséquence if 7 is incomplete its velocity is not contained in
any compact subset of TM, even if M is compact. The converse is not true, that is,
there are complete geodesics on compact indefinite manifolds with velocity (defined in
ail R) not contained in any compact subset of TM. Counterexamples can be found in the
family of metrics defined in (1.2), (see [532]), and also in the (locally) warped products
(of dimension greater or equal to 2) constructed in [RoSa3], Remark 3.18. In the former
counterexamples there are also incomplete geodesics, but in the later all the geodesics
are complete.

For the next result, divide the punctured tangent bundie TM* — TM-{zero-
section} of (M, g) in two subsets, C and J, consisting of all vectors tangent to inex-
tendible geodesics with domain upper unbounded, and all vectors tangent to (incom-
plete) inextendible geodesics with domain upper bounded, respectively.

PROPOSITION 2.2. — Let (Af, g) be a semi-Riemannian manifold, ifM is com-
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pact and g incomplete then the closure of the set of incomplete vectors J in TM* has
null vectors.

Proof. — Let 7 : [0, b[-> M be a geodesie inextendible to b, and consider an
arbitrary Riemannian metric g on M. If we take a séquence {tn} -> 6, the séquence
{Zn} in the ̂ n-unitary bundie, given by

Zn :=Sü(7 ' (g ,7 ' (« n ) ) - I / 2 -7'(*n), n 6 N,

has aconvergingsubsequence {Z^n)} -+ Z e TM* . From Proposition2.1 weknow
^(7 / (^) ,y(*n))} -> oo.So,ifC = g(y'(t),7'(t)) weconclude

g(Z,Z)= lim j (Z , , n ) ,Z , ( B l )= Urn [C/^(7'(tff(n)).7'(*cr(n)))] = 0. •
n-»oo

flemaric. — Given a convergent séquence in TM* , {^n} —>• Z, we can con-
struct the séquence of inextendible geodesics {vn}> ̂ n(t) : = exp(£Zn), n G N. We can
think of the inextendible geodesie <r(t) = exp(iZ), as a limit in a rather strong sense
of the séquence {an} ([RoSal], Proposition 2.1). So, Proposition 2.2 says that, in a cer-
tain sense, incomplete geodesics on compact manifolds converge to null geodesics. This
convergence if closely related to the concept of tangential convergence systematically
studied with other topological properties of the space of the geodesics in [BePal] (see
also the previous topology for nuU geodesics in [Lo], and [Sa] Capïtulo V).

PROPOSITION 2.3. — Let (M, g) be a compact semi-Riemannian manifold and
letg* = e2wg (u smooth function onM) bea (pointwise) conformai metric to g. Theng
is nuU complete ifand onlyifg* is.

Proof — Consider a geodesie a(t) ofg* and let â(s) = a(t(s)) be a reparame-
trization of a such that dt/ds = exp(2u;(ö(s))). A direct computation shows,

{D/ds)éf = (C/2)(Ve2w) o ö (2.1)

where C — g* (<*', a') and V is the Levi-Civita connection of g. Thus, if a is null then
ö is a null geodesie respect to g, and as 0 < Inf \dt/ds\ < Sup \dt/ds\ < oo, the result
easily follows (see also [RoSa2], Lemma4.1). •

Remarks.

(1) From (2.1) we have that any null geodesie for g is a pregeodesic for g* . This
is more evident in the two dimensional case, because null cônes détermine two one di-
mensional foliations which are invariant under conformai changes, and null geodesics
are intégral curves of these foliations. This fact has been used in [CaRo], § 1-3, to reobtain
Proposition 2.3 in 2-dimensional case by other methods.
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(2) Observe that (2.1) can be seen as the trajectory of a curve â under the po-
tential V = - (C/2)e2w. So, the completeness of g* can be seen as the completeness of
curves accelerated by the potential V, and the completeness of g as the particular case
in which V = 0.

Given a semi-Riemannian manifold, (M, g), recall that a conformal-Killing vector
field is a vector field K on M such that the lie derivative LK of g with respect to K
satisfies, for a (smooth) fonction a on M, L^g = og.

PROPOSITION 2.4. — Let (M, g) be a compact Lorentzian manifold. Ifthere ex-
ists a timelike conformal-Killing vector üeld K on M then (i) for any geodesie 7 : [0, &[-+
Mf 0 < b < 00, the closure of the image ofyr in TM is compact (ii) g is complete.

Proof. — Note that (ii) is straightforward from (i) and Proposition 2.1. For (i) it
is enough to see that the projection of 7' on the subbundle Span{K} lies in a compact
subset, because 5(7', 7') is a constant C. As Inf \g(K, K) \ > 0, we have just to check
that g (K, 7') is bounded. But our assumption on K implies

so, (d/dt)g(K, 7') and, as a conséquence, g(K, 7') is bounded on [0, b[. •

Remarks.

(1) The result of completeness improves the one in [Ka] Theorem A because no
assumption on curvature is imposed (see also [RoSa4]).

(2) Note that, clearly, if K is a Killing vector field (<r = 0) for gt then LK (e2ug) =
K{e2uj)g, for any conformai factor €2w. Thus, K is conformal-Killing for any conformai
metric to g. The next converse also holds: if K is a timelike (or spacelike without zeroes)
conformal-Killing vector field on a semi-Riemannian manifold (M, g) then K is Killing
for the metric \g(K, K)\~l/2 • g (compare with [Har]).

(3) The assumptions of Proposition 2.4 can be weakened. A completely analo-
gous proof works if we are given: (a) a compact semi-Riemannian manifold (b) so many
timelike (resp. spacelike) pointwise independent conformal-Killing (or affine) vector
fields as the index (resp. the co-index) of the semi-Riemannian metric. Moreover, more
gênerai hypothesis have been given in [RoSa3], [Sa], where the compactness of M is
dropped just assuming some regularity conditions on the timelike vector fields. A partic-
ular case of these results has altematively proved recently in [GuLa],

(4) The timelike assumption on the conformai Killing vector field cannot be
weakened in non-spacelike (and, thus, without zeroes); the counterexamples can be ob-
tained from the family of metrics hT in (1.1) with, for instance, r(x) = 1 + sin(a:), x e R
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(note that the vector field d/dy is Killing; see [Sa2], [Sa] for details). On the other hand,
for an inextendible geodesie 7 as in Proposition 2.4, lm 7' may have non compact closure
(see the complete counterexamples quoted in the Remark to Proposition 2.1).

(5) In Physics, space-times admitting a timelike Killing vector field are called
stationary, and they are well-known [SaWu] ; those admitting a timelike conformai Killing
vector field are also useful and have been used to model imperfect fluids, see [Har],
[CoTul], [CoTu2], [EIMM] and références therein.

2.1. Independence of the three kinds of causal completeness.

As we can speak about timelike, null or spacelike completeness (of course, no
in the Riemannian case) we can wonder if these three kinds of causal completeness are
independent, or if there exists any logical dependence among them. In the non-compact
indefinite case, Kundt [Kun], Geroch [Ge] and Beem [Bel] gave enough examples to show
the complete logical independence among the three kinds of completeness. On the other
hand, in several particular cases may be relations among them; for instance, Lafuente
[La] proved the complete logical équivalence among the three kinds of completeness for
locally symmetrie semi-Riemannian manifolds (recall that symmetrie semi-Riemannian
manifolds are always complete, [On] Lemma 8.20).

But compact counterexamples showing any kind of independence among the
three kinds of causal completeness have not been found yet. So, this problem remains
completely open in the compact case. Specially, it is open the next assertion, whiieh we
will call Dependence Null Assertion (DNA), a compact incomplete indefinite manifold is
null incomplete. About this assertion it is known: (1) given a compact and incomplete
indefinite manifold (M, g), if the set of incomplete vectors is closed, then g is incom-
plete (see Proposition 2.2; note that if J were open it would be obvious that the null
incompleteness of the corresponding indefinite manifold, compact or not, would imply
also spacelike and timelike incompleteness), (2) J may be neither closed nor open, even
though it was thought to be closed (the counterexamples and discussion can be seen in
[RoSal]), (3) if we consider tori with one of the two null foliations by circles, then DNA
is "generically true", but there are arguments to think that probably a counterexample
could be found among these tori [CaRo].

2.2. Completeness of conformai metrics.

As it was shown in Proposition 2.3, a null geodesie for an indefinite metric is a null
pregeodesic for every conformai metric, and équation (2.1) can be seen as a équation
generalizing geodesie équation. Then, we can wonder if completeness can be gained (or
lost) by conformai changes of metric. (From another point of view, conformai geodesics
arestudiedin[FrSc].)
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In the compact Riemannian case all the metrics are clearly complete; so this ques-
tion is trivial. In the non compact Riemannian case, Nomizu and Ozeki [NoOz] proved
that any Riemannian metric is conformai (1) to a complete metric and (2) to a metric of
finite diameter and, thus, incomplete. Thus, this question is fully answered in the Rie-
mannian case.

In the indefinite non compact case the question is much more difficult; in the
important (but very particular) case of globally hyperbolic spacetimes, which are non
compact Lorentzian manifolds, we have that ail of them are conformally timelike and
null complete [Se], [Cl], but it is not known what occurs for spacelike completeness.

Note that the équation of reparametrization for null pregeodesics dt/ds =
- exp(2w(â(s))) in the proof of Proposition 2.3 détermine when it is null complete an
indefinite metric which is conformai to a null complete metric. In fact, this proposition
shows that null completeness is a conformai invariant in the compact case. Moreover,
Proposition 2.4 can also be seen as a resuit on completeness under conformai changes
of metric, but in the gênerai case, it is not known if the next assertion, which we will
call Conformai Completeness Assertion (COCA) is true: a compact indefinite manifold
which is conformai to a complete one is complete. Clearly, Proposition 2.3 yields DNA
=>COCA.

2.3. Completeness of warped products.

Recall that a warped product {B x F, g f ) with base the semi-Riemannian man-
ifold (B,gB)> fiber the semi-Riemannian manifold {F,QF) and warping fonction ƒ :
B -¥ R, is the product manifold B x F endowed with the metric gf:

9f = **B9B + (fo nB)27T*FgF (2.2)

(being7T£ : B x F —t Bt7rp : B x F —> F the natural projections). Many interesting
families of semi-Riemannian manifolds, as the relativistic Robertson-Walker spacetimes,
are included in the family of warped products (for spacetimes in Physics generalizing
Robertson-Walker ones, see [ARS]). Even more, we can generalize warped products as
follows. Let E(B, F) be a (differentiable) fiber bundie with base B and fiber F. Dénote
by KB : E -4 B the canonical projection and, for each fiber-chart * : n^l(U) ->
U x F (U is an open subset of B which will be called trivializing), dénote by xF the
projection onto F. Let gs , 9F be semi-Riemannian metrics on B, F respectively, and
let ƒ > 0 be a smooth function on B. A metric gf on E is defined to be the local warped
product oïgB and g F with warping function f if there is a covering of B consisting of
trivializing open subsets such that in the corresponding open subsets of E, with the usual
identifications, the metric gf is a warped product as in (2.2). It is easy to find non trivial
fiber bundies with local warped metrics which are not (global) warped ones; Moebius
strip yields naturally a straightforward example (see also Example 3.12 in [RoSa3]).
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It is not difficult to show that if we take complete and Riemannian manifolds as

base and fiber, then any local warped product constructed from them is complete (the

proof for warped products of [On] Lemma 7.40 essentially holds for locally warped prod-

ucts). But in the indefinite case, Beem and Buseman gave the next simple counterexam-

ple of incomplete warped product of two complete and definite metrics: base R with its

canonical metric g0 , fiber (R, -50) . warping function ƒ (x) = ex for all x ([On], Example

7.41).

The completeness of indefinite locally warped products has extensively studied

in [RoSa3], and the results can be summarized as follows:

(A) Let (J5, ÇB) be a semi-Riemannian manifold and let ƒ > 0 be a smooth func-

tion on B. The following assertions are equivalent: (i) there is a complete manifold with

an indefinite metric (Fo,gFo) and a fiber bundie E0(B, Fo) such that (EQ(B> FQ),gf)

is complete (resp. timelike, null or spacelike complete), and (ii) every (E(B, F)ygf) is

complete (resp. timelike, null or spacelike complete) for any complete manifold with

indefinite metric (F, g F). On the other hand, it is not difficult to see that if the fiber

is incomplete then any locally warped product is incomplete [Sa] in all possible causal

sensés. So it is natural to state the next définition: let (£?, gs) be a semi-Riemannian

manifold and ƒ > 0 be a smooth function on B, {B,gs,f) is said to be warped-

complete (resp. timelike, null or spacelike warped-complete) if every (E(B,F),gf)
is complete (resp. timelike, null or spacelike complete) for every complete semi-
Riemannian manifold (F, gp). It is remarkable that if gs is incomplete then (fl, gs, f)
is not warped-complete, but it can be warped-complete in one or two causal sensés.

(B) If (JB,5B) were definite and complete, several conditions on the decreas-
ing of ƒ yield the (timelike, null or spacelike) warped-completeness of (B,gB,f).
This conditions are not satisfied by the exponential, because it decreases too fast (sa,
Beem-Buseman counterexample), but if Inf(/) > 0 (in particular, if B is compact)
then {B,gB, f) is warped-complete. (On the other hand, if B is one-dimensional as
in Robertson-Walker spacetimes, then the équation of the projection of the geodesics
on B can be explicitly integrated; these techniques can be extended for locally warped
products with more than one fiber, as Reissner-Nordsöm intermediate type, see [Sa3].)

(C) If (B,gB) were indefinite and complete there are examples of f with Inf ( ƒ ) > 0
such that (B,gBi f) is not warped-complete, but in these examples B is not compact.
So, the next assertion, or Warped Assertion on Completeness, (WAC), remains open: any
(B,gB,f) with compact, complete and indefinite base is warped-complete. WAC is es-
pecially important, because the next logical implications among the previous open ques-
tions are shown:

DNA => WAC => COCA.
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2.4. Completeness of homogeneous manifolds.

It is easy to show that an homogeneous Riemannian manifold is complete and,
moreover, that a symmetrie semi-Riemannian manifold is too. But in the non compact
Lorentzian case it is also easy to construct homogeneous.manifolds which are incom-
plete (so, for instance, (R+ x R, 2dudv)\ more examples are systematically constructed
in [Dulh]).

Nevertheless, Marsden proved [Ma] that any compact homogeneous semi-
Riemannian manifold is complete. Marsden's proof is a conséquence of Proposition
2.1 and the next fact: the tangent bundie TM of a compact homogeneous manifold
M can be divided into subsets which are invariant under the geodesie flow. It is worth
pointing out that Marsden's theorem can be extended, by using a technique as in Propo-
sition 2.4, to (globally) conformally homogeneous compact semi-Riemannian manifolds
[RoSa3], [Sa]; nevertheless, in this case TM cannot be divided as before (see Remark
to Proposition 2.1, and the complete counterexamples quoted there). Note that this
resuit yield a new partial answer to the problem in § 2.2. On the other hand, locally
homogeneous compact semi-Riemannian manifolds may be non complete [GuLa].

Further results can be studied by considering affine homogeneous manifolds. In
this case, Goldman and Hirsch proved that a compact affine homogeneous manifold is
complete if and only if it has parallel volume [GoHi], solving in this case the well known
Markus'conjecture (a compact affine manifold is complete if and only if it has paral-
lel volume). As a conséquence, one can obtain, [Dulh] Theorem 2.1, that a compact
flat pseudo-Riemannian homogeneous manifold is complete, which can be regarded as
a pàrticular case of Marsden's theorem. (For more results on completeness in affine -
compact- manifolds, see [Ca], [GoHi], [Dulh], [Ka] and références therein.)

2.5. Relation with curvature.

We cannot find any clear relation between curvature and completeness in non
compact semi-Riemannian manifolds; to remove a point of a complete semi-riemannian
manifold can convince us of this assertion.

For the compact indefinite case, we can construct complete and incomplete
Lorentzian metrics on a torus with the same curvature [RoSa2]. In fact, consider the hT

metrics on R2 given by (1.1) with r periodic. The curvature of these metrics is equal to
- r " . Choose now rx such that hTl is incomplete and r2 = rx + Maxjr^ + 1. Then
clearly the curvatures of hn and hT2 are the same, but hT2 is complete because d/dy is a
timelike Killing vector field and, thus, Proposition 2.4 can be claimed.

Anyway, this result does not mean that no relations between curvature and com-
pleteness can be found in the compact case. So, we have:
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(a) Carrière [Ca] proved an important case of Markus' conjecture, and, as a con-
séquence, that a flat compact Lorentzian manifold is complete (a proof of this resuit for
the particular case of a torus was given previously in [FGH], [FuFe] ). Anyway, the result is
open for other indexes or constant curvature. (On the other hand, recall that the hypoth-
esis of completeness is essential for the classification of compact indefinite manifolds of
constant curvature; see [Ka] and références therein, [RoSa6]).

(b) Taking into account Carrière's result, we can also wonder the particular case
of COCA: are all the (globally) conformally flat Lorentzian metrics on a compact mani-
fold M complete? If M is a n-torus or a nilmanifold, the answer of this question is yes,
because then there exists a timelike conformai Killing vector field, and Proposition 2.4
can be claimed. But the question is open in gênerai.

(c) As a further generalization, we can consider locally symmetrie manifolds.
In this case, one has that all compact locally symmetrie 1 -connected semi-Riemannian
manifolds are symmetrie and, thus, complete [FuAr], Moreover, by using Lafuente's re-
sult quoted in § 2.1 and the conformai invariance of null completeness of Proposition 2.3,
the result on completeness can be extended to metrics which are just conformai to lo-
cally symmetrie (which gives another partial answer to COCA). Anyway, we can wonder if
the 1-connection assumption is necessary (recall that there are incomplete 1-connected
compact manifolds, [GuLa]).

2.6. Other problems.

Of course, the previous list of results and questions does not cover all interest-
ing problems on completeness of compact indefinite manifolds. Now, let us point out a
couple of questions more.

(A) Geodesie connectedness. From Hopf-Rinow's theorem, a complete Rieman-
nian manifold is always geodesically connected. Butin the non-compact indefinite case
this property does not hold, being the pseudosphere SJ1 an example of complete man-
ifold which is not geodesically connected. Taking in mind General Relativity, this leads
naturally to the problem of when two points of a Lorentzian manifold can be joined by
a geodesie. This question has been widely studied in [BFM], [BFG], [GiMa], [Gi], [Sa3]
and références therein. In the compact Lorentzian case, Clifton-Pohl torus was known to
be non geodesically connected ([On], p. 260). More examples of such non geodesically
connected tori are systematically constructed in [Sa2] (in particular, the non geodesically
connected torus in [Be2] is essentially shown to be as Clifton-Pohl's one). All this tori are
incomplete and, even more, incomplete tori which are geodesically connected are also
shown. But, (see [Sp]) can we construct a Lorentzian torus which is complete but not
geodesically connected?
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(B) Conformai moduli on surfaces. For a 1-connectée! Riemannian manifold
of dimension 2, (M, g), it is a well known conséquence of the Uniformization Theorem
that it must be conformai to a disk, a 2-sphere or the Euclidean space R2. Moreover, if
we identify all the conformally related Riemannian metrics on a torus, the quotient is
naturally C, [FaKr]. In the indefinite case, note that a topological 2-sphere cannot admit
a Lorentzian metric; on the other hand Kulkarni gave some results on conformally re-
lated Lorentzian metrics on manifolds diffeomorphic to R2 [Kul], but the results are hère
much more complicated. An interesting question for the compact case would be then:
how looks like the quotient of conformally related Lorentzian metrics on a torus? This
problem seems to be rather complicated, and in a first approach we could consider just
complete or conformally flat metrics. An introduction to this problem can be seen in
[RoSa2] (there some problems that could carry the Whitney unstability of null complete-
ness and null incompleteness are pointed out; more gênerai results on Whitney unsta-
bility can be seen in [BeEh], [BePa2]).

2.7. A question from General Relativity.

Compact space-times have been usually neglected in Physics because they do
have closed timelike curves. Nevertheless, this property does not seem to be enough to
overlook them. So, wormholes also have them (probably, see [FMNEKTY], [FrNo], [Haw] )
and we must bear in mind physicists usually compactify manifolds to develop field thé-
ories with good boundary conditions. Frequently Riemannian manifolds are compacti-
fied, and the results are reinterpreted in a Lorentzian way by using a standard "Wick ro-
tation". Anyway, this trick does not seem appropriate for an arbitrarily curved manifold;
thus, from a physical point of view, it seems natural to study field theory on (Lorentzian)
space-times. Quite a few of reasons justifying the importance of compact space-times,
from both, physical and mathematical points of view, can found in [Yu].

But now we are going to see a reason to study completeness of compact Lorentzian
manifolds, independently of the fact that compact space-times are taken or not as mod-
els of physical universe. First, recall that according to the classical classification scheme
of singularities by Ellis and Schmidt [EISc], to each space-time (M, g) can be attached
a boundary dM. The boundary points are associated to certain kinds of inextendible
curves, and, even though there are different ways to attach this boundary, in ail of them
a point of the boundary must be assigned if there exists an incomplete timelike or null
geodesie. If the space-time can be extended through a boundary point p, then p is called
a regular point, and the singularity is considered "removable" and not relevant. Oth-
erwise, p is called singular, and we can distinguish another two cases. Take a curve 7
associated to p, if the components of the curvature tensor Rabcd with respect to any
parallel frame along 7 are well behaved (continuously extendible to the frontier point,
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differentiable) then p is a quasi-regular singalarity, otherwise is a curvature singularity.
Black holes and other physical objects are curvature singularities, but there is no physical
interprétation for quasi-regular singularities.

So, an interesting question from a physical point of view would be: (a) to find a
good physical interprétation for quasi-regular singularities, or, if not possible, (b) to find
a good physical condition for space-times such that quasi-regular singularities cannot
occur. Observe that for quasi-regular singularities there are neither divergences of phys-
ical quantities nor removed points of a bigger manifold, so, the behavior of incomplete
geodesics in compact spacetimes seems to be représentative of the behavior of quasi-
regular singularities. Thus, a more manageable question with a similar importance for
Physics is: (A) to find a good physical interprétation for incomplete compact spacetimes,
or if not possible, (B) to find a good physical condition for space-times such that compact
spacetimes satisfying it are complete.
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