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SEMICLASSICAL EIGENSTATES IN A MULTIDIMENSIONAL WELL
T.F. PANKRATOVA

ABSTRACT. The two-dimensional Schrödinger operator with an analytic potential, having a
non-degenerated minimum (well) at the origin, is considered. Under the Diophantine con-
dition on the frequencies, the full asymptotic series (the Plank constant h tending to zero)
for eigenfunctions with given quantum numbers («1,112), concentrated at the bottom of the
well , is constructed, the Gaussian-like asymptotics being valid in a neighbourhood of the
origin which is independent of h. For small quantum numbers the second approximation to
the eigenvalues is written in terms of the derivatives of the potential.

§1. INTRODUCTION

We consider the Schrödinger équation

(1.1)

where A = ]^'=i -§^2 is the Laplace operator, V is a real valued fonction defined on R n .
We are interested in the semiclassical (h —» 0) asymptotics of the discrete spectrum of
this operator in the case when the potential V has one or several nondegenerated minima,
"wells".

If V has a finite number of identical wells which difFer only by space translations, the
spectrum of the corresponding Schrödinger operator is organized in the following way.
There is a set of finite groups of eigenvalues, the distance between the groups being of
the order h, and the distance between eigenvalues in each group, the splitting, being
exponentially small with respect to h. The problem is to find the widths of these splittings.
This problem was considered by different authors [1-8] and was completely solved in one-
dymensional case. In multidimensional case the problem seems to be more difficult, and
up to now there was no significant progress. In this paper, under some nondegeneracy
conditions on V, we write down asymptotic series for eigenstates and the corresponding
eigenvalues, the former being concentrated at the bottom of the well.

§2 ASYMPTOTIC EXPANSIONS FOR THE EIGENSTATES

For simplicity we consider the case of two dimensions but the case of n dimensions is in
principle the same.

T-ypeset by ^
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Let the potential V be analytic and represented by the the Taylor series

(2.1) V{xux2) = ^x\ + ^ + £ Vijx[xi
H-j>3

convergent in a bicylinder |xfc| < r, k = 1,2, with LJ\^ > 0.
We construct the asymptotic series for eigen values and eigenfunctions of (1.1) in the

following form:

(2.2) Eni,n3 J

(22) u - V 41">'"n('') (É
(2.3) ni'na~^

(2.4)

here D ^ dénotes the i—th order derivative of the funçtion of the parabolic cylinder i.e.
the bounded solution of the Weber équation:

(2.5) Dl(t) = [t2 - (2m + l)]Dni(t), Dn(t) = Hne-ï, Hn =

tyT = ipr(x), x = (xi ,x 2) , r = 1,2, (^"/'"2)fc
 == (^V '" 2 )* .^ )^ = 0,1,2,. . . arefunctions

independent of h.
Substituting (2.2), (2.3) into (1.1) we find the following phase équation

(2.6) (VS)2 = 2V,

for each of the phase functions

(2.7) 5* = i (V? ± 41),

and the following récurrent Systems for the amplitude coefficients (>1;1/'"2)fc and numbers

(2.8) A"""'A = 0,
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(2.9)

where

T denoting transposition,

k = 1,2,3,...
r = l

— (Ak Ak

-X

a i

a2

0

A

— X

0
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A

a2
0

->c
a i

0
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ai

(2.11)

(2.12)

the fat dot denoting a scalar product in Rn,

V

(2.13)

(2.14)

(2.15)

(2.16)

= V,2

o
0
0

s = (2na + 1) W s • V

s ) 2 , 5 = 1,2,

0
0

0

= 1,2.

, k = 2 ,3 , . . .

ƒ4 denoting the 4 x 4 identity matrix.
In the next two sections we will describe shortly how the équations (2.6), (2.8), (2.9)

can be solved.
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§3 THE PHASE FUNCTIONS.

In this section we consider the équation (2.6). We search solutions of the équation (2.6)
in the form of the following power series

(3.1) 5±(x1,x2) = ^-x\ ± fxl

and find the récurrent fonnulae for the coeffitients

(3-2)

where Vij depend on Vij and Sjjfj ,k + l<i+j — l.
It is easy to see that for some values of positive numbers u>i , u>2 the denominators in

expression (3.2) are equal to zero.
In order to solve (2.6) we consider diffeomorphisms

(3.3) * ± : ( y i i y 2 ) M ( y i + Y, •f.yvirf. V I + £

which transform the vector fields VS* • V to the following normal forms:

_L d d
/O A \ 7" IE _L

öyi Oy2

To formulate the existance theorem we need two définitions.
We say that positive numbers u>i and u2 are nonresonant if they satisfy the following

conditions

Positive numbers u?i and u>2 are said to be Diophantine if there exist positive numbers
a and C such that for nonnegative integers i , j , ftafÉgEhat i + j > 1,

Theorem. Let the potential V be represented by a series of the form (2.1) convergent in
a neigbourhood of the origin.

(1) If numbers LJI and io2 are nonresonant then there exist a unique positive analytic
function 5 + which can be represented by convergent series of the form (3.1) in
some neigbourhood of the origin and satisfies the équation (2.6), and an analytic
diffeomorphism $ which transforms vector field V 5 + • V to the normal form L^
given by (3A).

(2) If the numbers u>i and u>2 are Diophantine then there exist a unique analytic
function 5 " which can be represented by convergent series of the form (3.1) in
some neigbourhood of the origin and satis£es the équation (2.6), and an analytic
diffeomorphism $~ which transforms vector Geld VS" • V to the normal form LQ
given by (3.4).
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Note 1. The proof of this theorem can be found in [11], To suppress small denominators
wich appear in the series (3.1) and prove the theorem, we use the Newton method with
the simultaneous change (3.3) of variables at each step.

Note 2. The analytic at the origin functions */>i and V>2 can be found uniquely from the
équation (2.7), see [12].

§4. AMPLITUDE COEFFICIENTS AND EIGENVALUES

Here we construct solutions of the équations (2.8), (2.9). The first approximation to an
eigenvalue is

(4.1) ?n* = (n, + ! )« , + (n2 + 5

Let the fréquences u>i, u\ be Diopkantine.
Then the solution «40 of the system (2.S) can be found in the form

(4.2)

where

(4.3)

AQ =

/ l O O
0 - ^ - 0

o o J -

0 \

(4.4) T _

(4.5)

= cfe^i , / = 1,2, the functions Vf being analytic solutions of the équation

(4.6) LtV? = dik - ë±, l = 1,2, d, = 1, d2 = - 1 ,

"meaning a change of variables, F(xi ,12) = F(yi, 1/2)5

(4.7) fl* = V

The existance of those solutions in some neighbourhood of the origin is proven in [12].
One can prolong them analytically onto a larger domain by the formula
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S = ƒ pidxi +2)2^X2 where the intégral is taken along the trajectory of the corresponding
Hamiltonian system (the formulae written in [10]).

One can see that the fonctions A® , / = 2,3,4, have singularities at the origin (where
i/>/,/ = 1,2, vanish).

Let us express the fonctions Dn and their derivatives by Hermitian polinomials H„ and
the exponents, we shall find that

- 4>2A°4) + HniH'n2(A°3 - ^A°4)}
+ hH'niH'n2A\} .

We see that the senior term in respect to Ii has no singularities. The first multiplier in
square brackets is equal to 2B£ and that is an analytic fimction accordig to the said above.
The fonctions A\ — ̂ A^ A\ — ip\A\ and A\ have singularities (of the type ^ - , ^ and

j correspondently). These singularities disappear in (4.8) when the quantum numbers
and U2 &re even and they remain when the mentioned numbers are odd.
The présence of the singularities in the case of odd n\ and rt2 reflects the fact that the

équations t^i = 0 or T/>2 = 0 do not define the genuine zéros of the eigenfunction unun2 as
it follows formally from (2.3). The genuine zéros are shifted and in gênerai case their lines
have no intersections. In fact singularities cancel if one takes into account all subsiquent
approximations.

To give an idea how the singularities cancell let us concider for simplicity the case
7lj = TÏ2 = 1 .

§5 QUANTUM NUMBERS 1,1.

In this case Hi(t) = t, H[{t) = 1, so we have to look for the second approximation of
the eigenfunction ui,i and the corresponding eigen value in the following form:

(5.1) u{i\ = e'r (2T/>I</>2£ + TiG).

(Here B = B$ = c%evï ,T$ being a solution of (4.6) ,1=2.)

(5.2)

(5.3) ï̂"1 = | « i + |«a.

From the Schrodinger équation (1.1) we find the following équation for the function

VS • VG + (^ - E]'1 J G = (V>2Ai/>i + 0!Arp2)B + 202Vi/>i • VB
(5.4) \ 2 )

+ 2V>I'VÏ/>2 • VB + fafaAB + 2^2V
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Now the function K defîned by (2.11) is the following:

(5.5) >c = -(VV>i)2 H—(V^)2

(it dépends on ni,U2). So

(5.6) Ej1'1 = 6 + H - (VT/>I)2 - (V^2)2 ,

(9 is defîned by (4.7) with sign + ). One can see that

(5.7) (* + x- (VV,)2 - (VV>2)2)|(M) = - « , - a*.

Finding the function G.
We consider at first the corresponding homogeneous équation with the change pf varia-

bles (3.3) (with sign +):

(5.8) L0G° + (ë+x- (ViM2 - (V^2)2) G0 = 0,

Lo defined by (3.4). We look for the solution of (5.8) in the following form:

(5.9) <?°=ï/i!/2e*

and find the eqiiation for V

(5.10) UV = ( V # ) + (V^f) - fl - x - (w! + w2)

with the right-hand side vanishing at the origin. Due to Lemma 3.1 of [2] there exists a
unique analytic solution of (5.10) vanishing at the origin. Let V be that solution.

Now we look for the solution of (5.4) (in variables 2/1,2/2) in the following form

(5.11) G Üf *

Putting (5.11) in (5.4) we obtain the following équation for the function Ü

(5.12) LoÜ - W! Ü » u;2î7 = Fe~p,

by -F is denoted the right-hand side of the équation (5.4).

Lemma. If the right-hand side of (5.12) is analytic and its second mixed partial derivative
with respect to j/i, j/2 wanishes at the origin then there exists a unique analytic solution of
(5.12) also with the wanishing at the origin second mixed partial derivative with respect
toyi,j/2.

This lemma can be proven mainly in the saine way as Lemma 3.1 in [2]
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The second term of the eigenvalue.

The condition of solvability of the équation (5.12), given by the Lemma, reads:

(5.13)

where (u)ij means the z, j—th Taylor coefficient of the function u(
We can satisfy this condition with the corresponding choice of JE^1, that is

£.11 = _

(5.14)

where T/?I, t/>2, V and B are mentioned above functions (the corresponding Taylor coeffi-
cients in the right-hand side are writen out in [13] in terms of Taylor coefficients of V).

Zéros of the eigenfunction.
The équation of the line of the zéros of the eigenfunction uu is the following

(5.15) 201026^ + hUep = 0.

It is clear that (U)oo = 0 (because F(0,0) = 0, see (5.4)). The first Taylor coefficients
(U)io and (l/)oi of U can be found from (5.12). They are

(5.16) (U)10=
 l

(5.17)

the right-hand sides (writen out in [13]) depend on u>i,u;2 and v,j ,i + j = 3 , and do not
vanish at the origin in gênerai case. So in the zero approximation the lines of zéros of u^ i ,
namely

V>i = 0 ,

intersect at the origin. In the next approximation they split into the two branches of a
hyperbola in a neighbourhood of the origin:

(5.19) 2v/£^c1z2 + h[(ü)ioxi + (U)oix2] = 0.

One of these branches goes through the origin. In gênerai case these lines do not intersect.
They have only a "quasi-intersection".
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