SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE

GÉRARD BESSON

Ergodicité du flot géodésique des surfaces riemanniennes à courbure -1

Séminaire de Théorie spectrale et géométrie, tome S9 (1991), p. 25-31 http://www.numdam.org/item?id=TSG 1991 S9 25 0>

© Séminaire de Théorie spectrale et géométrie (Grenoble), 1991, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

RENCONTRES DE THEORIE SPECTRALE ET GEOMETRIE GRENOBLE 1991 (Aussois du 7 au 14 avril)

Ergodicité du flot géodésique des surfaces riemanniennes à courbure-1

Gérard BESSON

Institut Fourier *
Université de Grenoble 1
B.P. 74
38402 SAINT MARTIN D'HERES CEDEX
FRANCE

^{*} Laboratoire associé au CNRS.

Soit X une surface munie d'une métrique à courbure constante négative

$$X = H^2/\Gamma$$

οù

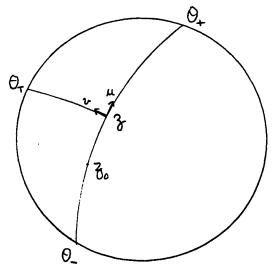
 \mathbb{H}^2 = espace hyperbolique simplement connexe (demi-plan ou disque de Poincaré)

et

 Γ = sous-groupe discret cocompact du groupe d'isométrie de H^2 .

1. Paramétrisation du fibré unitaire

Paramétrons le fibré unitaire. Nous décrirons trois possibilités. On choisit une orientation du plan, donnant une orientation du cercle à l'infini.



u étant un vecteur unitaire de $H^2 = D$ = disque unité de C

- a) $u \sim (z, \theta)$ $z \in D$, $\theta \in S^1 = \partial D$.
- b) $u \sim (\theta_-, \theta_T, \theta_+)$ c'est la paramétrisation de Cheeger-Gromov du fibré unitaire. Les trois points $\theta_-, \theta_T, \theta_+$ sont sur le cercle ∂D et déterminés en prenant v tel que le repère (u, v) soit direct.

Ces deux paramétrisations sont invariantes par l'action du groupe d'isométrie. c'est-à-dire, par exemple,

$$\gamma \sim (\gamma z, \gamma \theta)$$

ou γ agit dans $\mathbb C$ (dans D et dans S^1) par transformation homographie. Toutefois, $\mathbb E$. Hopf utilise la suivante

c) $u \sim (\theta_-, \theta_+, s)$ où $s = d(z, z_0)$ comptée positivement si z est après z_0 et négativement sinon; la géodésique (θ_-, θ_+) est orientée par u.

 z_0 est le milieu euclidien de la géodésique (θ_-, θ_+) .

Remarque. — Dans ce dernier cas, il n'y a pas invariance. En effet, le milieu euclidien d'une géodésique hyperbolique n'est pas préservé par le groupe d'isométrie hyperbolique.

2. La mesure de Liouville

La mesure de Liouville m est absolument continue par rapport à la mesure de Lebesgue $d\theta_+d\theta_-ds$, elle s'écrit donc

$$m = f(\theta_+, \theta_-, s)d\theta_+d\theta_-ds.$$

Proposition. —
$$f(\theta_+, \theta_-, s) = \frac{c}{|\theta_+ - \theta_-|^2}$$
.

Remarque. — Il y a un petit abus de langage volontaire qui permet de simplifier les notations; en effet, θ représente tour à tour un point sur le cercle, considéré comme un nombre complexe (dans la formule $|\theta_+ - \theta_-|$, il s'agit donc du module de la différence de deux nombres complexes) et un angle lorsque l'on utilise l'expression $d\theta$. En résumé $d\theta$ est la mesure canonique de S^1 .

Preuve. — C'est l'invariance par l'action du groupe Isom(\mathbb{H}^2) qui donne le résultat. Si $A \in \text{Isom}(\mathbb{H}^2)$, c'est une homographie de C et en écrivant la conservation du birapport on montre aisément la formule :

$$|A(z) - A(w)|^2 = |A'(z)| |A'(w)| |z - w|^2.$$

Rappelons que le lirapport de quatre points de C, z_1, z_2, z_3, z_4 est l'expression

$$[z_1, z_2, z_3, z_4] = \frac{z_1 - z_3}{z_1 - z_2} \cdot \frac{z_2 - z_4}{z_3 - z_4}$$

i) θ_+ et θ_- étant fixé on peut trouver une isométrie $A_t, t \in \mathbb{R}$ tel que son action soit

$$(\theta_+, \theta_-, s) \xrightarrow{A_t} (\theta_+, \theta_-, s+t)$$

et ceci pour tout t. De l'invariance de m par A_+ on déduit l'égalité

$$f(\theta_+, \theta_-, s+t)|A'_{+}(\theta_+)||A'_{+}(\theta_-)| = f(\theta_+, \theta_-, s)$$

la formule ci-dessus montre que

$$|A'_{t}(\theta_{+})| |A'_{t}(\theta_{-})| = 1$$

et par conséquent, f doit être invariante par les translations de la variable s; elle n'en dépend donc pas.

ii) De même si A est une isométrie envoyant (θ_+, θ_-) sur (1, -1) on a

$$f(A(\theta_+), A(\theta_-))|A'(\theta_+)| |A'(\theta_-)| = f(\theta_+, \theta_-)$$

en posant c = f(-1, 1) et en utilisant la formule ci-dessus, on obtient le résultat. Pour la suite nous prendrons c = 1.

Dans ce qui vient nous n'utiliserons pratiquement que l'inégalité suivante

$$\frac{d\theta_+d\theta_-}{|\theta_+-\theta_-|^2}\geqslant \frac{1}{4}d\theta_+d\theta_-.$$

3. Les théorèmes

On se propose maintenant de prouver le théorème de E. Hopf dans sa version originelle.

THÉORÈME (E. HOPF). — Soit X une surface riemannienne de volume fini à courbure constante négative, alors son flot géodésique est ergodique.

Sa preuve repose sur une utilisation astucieuse du théorème de Birkhoff, dont nous rappelons l'énoncé.

Rappel. — Soit (Ω, μ, φ_t) un espace probabilisé, muni d'une mesure de probabilité μ et d'un flot φ_t préservant la mesure. Soit

$$f\in L^1(\Omega,\mu)$$

THÉORÈME (BIRKHOFF). — Sous ces hypothèses, on a

$$\frac{1}{T} \int_0^T f(\varphi_s(x)) ds \xrightarrow[T \to +\infty]{} f_+(x) \quad \mu \quad p \cdot p$$

$$\frac{1}{T} \int_0^T f(\varphi_{-s}(x)) ds \xrightarrow[T \to +\infty]{} f_-(x) \quad \mu \quad p \cdot p$$

de plus
$$f_+ \equiv f_- \quad \mu \cdot pp$$

et elles sont invariantes par φ_t .

Rappelons la définition

DÉFINITION. — Le flot est ergodique
$$\iff$$
 $\begin{cases} \forall f \in L^1, f_+ \equiv f_- \equiv \text{ constante} \\ (\mu \text{ presque partout}). \end{cases}$

Remarque. — Dans le cas où l'espace Ω est muni d'une topologie, il suffit de se limiter à des fonctions f continue à support compact.

Preuve du théorème de E. Hopf. — Soit UX le fibré unitaire de X

$$UX = UH^2/\Gamma$$

et soit f continue à support compact sur UX. On considère f_+ et f_- définies partout où les limites apparaissant dans le théorème de Birkhoff existent. Soit

$$a \in \mathbb{R}$$
, $C_{a,+} = \{u \in UX \setminus f_+(u) \geqslant a\}$

et de même $C_{a,-}$.

Il suffit de montrer que pour tout $a \in \mathbb{R}$

$$m(\mathcal{C}_{a,+}) = 0$$
 ou 1.

On va en fait travailler avec les relevés de $C_{a,+}$ et $C_{a,-}$ dans UH^2 ; soit $\widetilde{C}_{a,+}$ et $\widetilde{C}_{a,-}$ ces ensembles.

But. — On se propose de montrer que

$$m(\widetilde{\mathcal{C}}_{a,+}) = 0$$
 ou $m(\widetilde{\mathcal{C}}_{a,+}^c) = 0$.

Avec le paramétrage choisi,

$$\widetilde{\mathcal{C}}_{a,\pm} \subset S^1 \times S^1 \times \mathbb{R}.$$

* Les fonctions f_+ et f_- étant invariantes par le flot géodésique, qui dans le système de coordonnées choisi s'écrit

$$\varphi_t(\theta_+,\theta_-,s)=(\theta_+,\theta_-,s+t),$$

on a

$$(\theta_+, \theta_-, s) \subset \widetilde{\mathcal{C}}_{a,\pm} \Longrightarrow (\theta_+, \theta_-, t) \subset \widetilde{\mathcal{C}}_{a,\pm}$$

pour tout $t \in \mathbb{R}$. Ce qui se traduit par

$$\widetilde{\mathcal{C}}_{a,\pm} = B_{\pm} \times \mathbb{R} \text{ où } B_{\pm} \subset S^1 \times S^1.$$

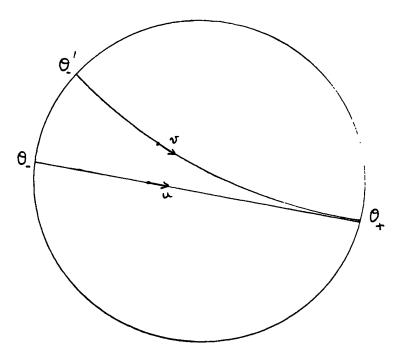
* Maintenant on a réduit le problème à :

But. — Montrer que $m'(B_+) = 0$ ou $m'(B_+^c) = 0$; où m' est la mesure sur $S^1 \times S^1$, $\frac{d\theta_+ d\theta_-}{|\theta_+ - \theta_-|^2}$.

Remarque. — L'espace des couples de points (θ_+, θ_-) deux à deux distincts est l'espace des géodésiques de H^2 .

LEMME. — On a
$$B_+ = S^1 \times A_+$$
 et $B_- = A_- \times S^1$ avec $A_+ \subset S^1$ et $A_- \subset S^1$.

Preuve du lemme. — Soit \tilde{f} le relèvement de f à UH, elle est, comme f, uniformément continue (on rappelle que f est choisie continue à support compact).



Soit alors $(\theta_-, \theta_+) \subset S^1 \times S^1$ déterminant une géodésique et soit $\theta'_- \in S^1$.

Soit $u \cdot (\text{resp. } v)$ un vecteur unitaire sur la géodésique (θ_-, θ_+) (resp. (θ'_-, θ_+)).

Supposons que u et v soient sur le même horocycle, alors avec la distance canonique d sur $U\mathbb{H}^2$ on a

$$d(\varphi_t(u), \varphi_t(v)) \xrightarrow[t \to +\infty]{} 0$$

donc si t est assez grand $(t \ge T_0)$,

$$|f(\varphi_t(u)) - f(\varphi_t(v))| \leq \varepsilon$$

pour $\varepsilon > 0$, petit. D'où

$$\left|\frac{1}{T}\int_{T_0}^T f(\varphi_t(u))dt - \frac{1}{T}\int_{T_0}^T f(\varphi_t(v))dt\right| \leqslant \varepsilon \frac{(T-T_0)}{T} \leqslant \varepsilon$$

ceci étant vrai pour tout $\varepsilon > 0$, on en déduit

$$f_+(u) = f_+(v)$$

et donc

$$f_{+}(u) = f_{+}(\theta_{-}, \theta_{+}, s) = f_{+}(\theta'_{-}, \theta_{+}, s')$$

pour tout $s, s' \in \mathbb{R}$. D'où

$$(\theta'_-,\theta_+)\in B_+.$$

Ce qui prouve le lemme pour B_+ et on fait de même pour B_- .

Fin de la preuve du théorème. — De l'égalité $f_+ \equiv f_-$ presque partout, on tire

$$m(\widetilde{\mathcal{C}}_{a,+}\Delta\widetilde{\mathcal{C}}_{a,-})=0$$

OT

$$\widetilde{\mathcal{C}}_{a,+}\Delta\widetilde{\mathcal{C}}_{a,-}=(B_+\Delta B_-)\times \mathbf{R}$$

d'où

$$m'(B_+\Delta B_-)=0$$

posons $\lambda = d\theta_+ d\theta_-$

$$0 \leqslant \frac{1}{4} \lambda(B_+ \Delta B_-) \leqslant m'(B_+ \Delta B_-) \leqslant 0$$

donc

$$\lambda(B_+\Delta B_-)=0$$

mais

$$B_+\Delta B_-=(A_-^c\times A_+)\cup (A_-\times A_+^c)$$

on a donc

$$\begin{cases} \lambda(A_-^c \times A_+) = 0 \\ \text{et } \lambda(A_- \times A_+^c) = 0 \end{cases}$$

d'où l'alternative

$$\lambda(A_+) = \lambda(A_-) = 0$$

ou bien

$$\lambda(A_{\perp}^c) = \lambda(A_{\perp}^c) = 0$$

(ici λ dénote la mesure de Lebesgue de dimension 1 ou 2).

Soit
$$B_n = \{(\theta_-, \theta_+) \setminus |\theta_+ - \theta_-| \ge n\}$$
, on a donc

$$m\{(A_+ \times S^1) \cap B_n\} \leqslant \frac{1}{n^2} \lambda \{(A_+ \times S^1) \cap B_n\} \leqslant \frac{1}{n^2} \lambda (A_+ \times S^1)$$

soit

$$m\{(A_+\times S^1)\cap B_n\}=0 \text{ si } \lambda(A_+)=0$$

et par limite croissante,

$$m(B_+) = m(A_+ \times S^1) = 0$$
 si $\lambda(A_+) = 0$

de même

$$m(B_+^c)=0 \text{ si } \lambda(A_+^c)=0.$$

D'où le résultat.

Références

- [H] HOPF E. Ergodentheorie, Berlin, 1937.
- [A] ARNOLD V.I. Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Edition MIR.
- [CFS] CORNFELD I.P., FOMIN S.V., SINAÏ Y.G. Ergodic theory, Grundlehren der mathematischen Wissenschaften, Springer Verlag, 245 (1982),.