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Séminaire de théorie spectrale et géométrie

CHAMBÉRY-GRENOBLE

1991-1992 (109-129)

SYMBOLIC DYNAMICS AND GEODESIC FLOWS

by Mark POLLICOTT

Introduction

In these lectures we will try to give a coherent picture of the basic "symbolic
dynamic" approach to geodesie flows (on compact manifolds with négative sectional
curvatures).

The basic theory, as originally developed by Sinai, Bowen and Ruelle applies to
more gênerai differentiable flows (the so called "Anosov" and "Axiom A" flows) - but
to avoid too much abstraction we prefer to keep geodesie flows as our basic context.

Some recent références are :

(a) Ergodic theory, symbolic dynamics and hyperbolic spaces, (ed. T. Bedford,
M. Keane and C. Series), Proc. Conf. at ITCP (Trieste), April 1989.

(b) W. Parry & M. Pollicott, Zêta fonctions and closes orbit structure of hyperbolic
flows, Astérisque 186-187 (henceforth, denoted [PP] in these notes).

Basic setting. — We shall always let M dénote a compact C°° Riemannian
manifold (we shall always dénote its dimension by n = dimM). We shall let
fa ; M _ M dénote a C°° flow (i.e. one-parameter family of diffeomorphisms such
that 4>to<j>s = <£t+3, t, s g R).

Main examples. — Assume that V is a compact ^-dimensional C°° Riemannian
manifold, with ail sectional curvatures ^ c < 0. If || || is the Riemannian metric for
Vj the unit tangent bundle (sphère bundle) is denoted by :

SV = {V€TM\\\V\\ = 1} .

We let M = SV (which is n = (2£ » 1) dimensional) and define the geodesie flow
4>t:M-+Mby <j>tv = %(/), where 7 t : R — V is the geodesie with 7„(0) = V.
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A. Sections and the Markov property

A basic tooi in dynamica! Systems is to reduce a (continuous) fiow to a (discrete)
transfonnation by introducing a finite number of "Poincaré sections" transverse to the
direction of the flow <J, : M —* M.

Assume that we have disjoint (n - l)-dimensional (closed) sections T\,... , Tjt Ç
M (usually assumed to be contained in Cx dises T, C A transverse to the flow) with
the following properties :

Simple properties.

(i) Ti =cl( int7i) ("Proper")
(where the closure and interior are in the topology of the (n — 1) dimensional dises).

(ii)c M = u 4[Qt€]Ti ("Sections sweep out M")

(where e > 0 is some "small" number whose rôle will become apparent in the
construction).

Special property.

(iii) If the future orbit (0 tx, <>0) of a: € int7i0 passes ihrough intTifc, k =
1.2 ,3 , . . . (in séquence) and the past orbit (<j>ty, « 0 ) o f y € intTj0 passes through
int7i - f c , k = 1,2,3, (in séquence) then there exists a single point z = z(x,y) £
int 7i0 which has both properties ("Markov propeny").

•past" for y "future" for x
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DÉFINITION. — We call a family T = {T\,... , T*} of Poincaré sections satis-
fying (i), (ii)c, (iii) a family ofMarkov sections (If also we have m a x ^ , ^ diam(Ti) ^ e
then we say it is of "size e").

Note. — There is an equivalent (and less intuitive) version of property (iii)
which is commonly used. We shall come back to this below.

The main existence theorem we need is the following

THEOREM (Bowen-Ratner). — If <f>t : M —> M is a geodesie fiow (for a
compact C°° manifold with négative sectiona] curvatures) then there exists a
family of Markov sections (of arbitrarily small size).

Warning. — In gênerai, there is nothing canonical/unique about families of
Markov sections (This will be apparent from the sketch of the proof below). The
exception is the fundamentally different construction of Adler-Flatto/Series for surfaces
with K = - 1 (cf Adler-Flatto, B.A.M.S., vol. 25 (1991), 229-334).

B. The proof of the Bowen-Ratner theorem

We want to give a sketch of the construction of a family T (as promised by the
Bowen-Ratner theorem). The reason that négative sectional curvature is important is that
the flow <i>t ' M — M has a special "hyperbolic" structure, which we shall describe
below :

A stable manifold (or horocycle), through ar, 6 M is the set

W*(x) = {y 6 M | dtotz, <t>ty) — 0 as t - +00} ,

and the unstable manifold (or horocycle), through x e M, is the set

Wu(x) = {y e M I d(<t>-tx,4-ty) — 0 as i - +00} .

Note. — For geodesie flows these are C°° immersed submanifolds and Ws =
{Ws(x) I x e M} , Wu = {Wu(x) I x e M} are continuous foliations.

(Observe that <t>tW
s(x) = Ws{<t>tx\ 4>tW

u(x) = Wu(<f>tx)J (Vt € R)).

DÉFINITION. — We call the flow <j>t : M —* M hyperbolic if the convergence
in W9(x\ Wu(x) is exponentially fast (i.e. 3C, A>0 s.t. \\D<f>t \ TxW*(x)\\ ^ Ce'x\
\\D<j>-t \TxW«{x)\\< C-X\t > 0),
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• flow direction

i.e. the flow "contracts lengths" exponentially fast on Ws> and "expands lengths"
exponentially fast on Wu.

Of course, the main examples are geodesie flows :

PROPOSITION (Anosov). — Geodesie flows <f>t : M —> M (for compact Cx

manifolds with négative sectional curvatures) are hyperbolic.

(The proof is based on the study of stable and unstable Jacobi fields, cf. Anosov-
Sinai, Russian Math. Surveys, vol. 22(5) (1967), 103-167).

Armed with these définitions,' we can proceed to the proof of the Bowen-Ratner
theorem :

Sketch proof of theorem. — (This proof also works for gênerai hyperbolic
flows).

Step 1. Choose disjoint C°° dises D\,... ,Ds transverse to the flow. Choose
"Rectangles" Tf C D% (i.e. closed sets such that Vx,y € -Ri the intersection
z = [x,y] = ftcflD, W>(z)nPro}Dt W~(y) € Ri)
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Assume lhat {7f \ i = 1, . . . ,Ar} satisfy (i) and (ii)c. These are our "zeroth"
approximation. They are improved by an inductive argument.

Step 2. For a family T = {T\,... , 7* } to satisfy (iii) it sufEces that the Poincaré
k k

first return map P : |J int T% —• |J int T. satisfy :
i=i t=i

(iü)'

(where

\ x e iintTi,

,Ti) = [Ti,x})

1 ."

i < '

V ' i Tk
e

f////\ TJ
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We enlarge rectangles {Tf, •.. ,T&} as illustrated, so that some return time has
this property "to first order" (as in diagram). Iterate this procedure to get rectangles

{T{,... , 7 £ } , £ > 0. By hyperbolicity, {7;°° := \J Tf] exist, and propeny (iii)' holds
/=o

for some return time.

Step 3. By replacing {7;°°} by {7;} := {cl(int7;o n P'lintTix n ••• n
P~n imTijn)} (for sufficiently large n) we can assume (iii)' holds for the first return
map. •

Référence. — Detailed proofs occur in Bowen, Amer. J. Math., vol. 75, (1973)
and Ratner, Israël J. Math. (1973) and a sketch appears in Appendix III of Parry and
Pollicott [PP], A good gênerai référence is Alexseev-Jakobson, Physics repons, vol. 75.

C. Modelling the Poincaré map

Given sections T = {T\,... , 7*}, we want to introducé a "symbolic" model for
k k

the Poincaré map P : (J 7i — • | J 7i . The symbols are the indices { 1 , . . . ,&} for
i=l i=l

the sections.

Given z e intTro, assume that Pnz € intrXn, xn € {1, . . . , * } , Vn € Z. We
associate to z the séquence (*n )„=-:» •

We define a k x k matrix A with entries

(\ if PGntrjnintT) = 0
^ ^ l J J ~ \ 0 if F(int7;)nint7j^ ^ 0

(1 ^ ij ^ k) and a space of séquences

XA = {x = {Xn)*™^ | ^ (x , - ,^ , ) = 1, f € Z}

we can give this a family of metrics d$ (O<0<1) defined by d$(x,y) = ön, where
n = n(x,y) = sup{m ^ 0 | x, = y,-, |i|<m} (and ds(x,x) = 0). We can define
a homeomorphism a : A'x —• Ar>i by shifting séquences one place to left i.e.

Note. — With this metric, two séquences ar = (zn)n~-oo' !/ = (yn)^-oo ^ A'>i
are "close" if they agree in a larger number of terms.

The following properties are easily checked :

LEMMA.

(a) (XA,de) is compact ;

(b) The sets t / ( r_ n , . . . ,xn) = {y e XA \ y, = Zj, - n ^ i ^ n ) (which are
both open and closed) are a sub-basis for
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k +00
Finally, we define a map ir : XA —> \J Ti by {*(*)} = f] P"n(intTXn).

To see this is well-defined, let Bt(x) = f] P-n(imTXn), £ ^ 0 and observe
OO +OO

Bi(x) = fi P-B(intT,J. Using (iü) we can check Bt(x) £ 0 (£>0), and

since J5i(x) D ^ ( r ) D Ba(x) D • - -, and each is compact, we see that the intersection
is non-empty.

\

?x

\ /

r ; /•

V

/ / '

A-,
To see that the intersection is a single point, we use the hyperbolicity to see that

diam(S^) — 0 (in fact, diam(S/) ^ const^", for some 0 < 7 < I (•)).
k k

The shift a : XA — XA is a good model for P : U Ti —• \J Ti% as shown by
t=i s=i

the following :

LEMMA.

(i) TT is Hölder continuous (i.e. 3C\ o > 0 such that dijtx, *y) ^ C[rf^(x, y)]Q) ;

(ii) Tt is "usually" injective - in fact, one-one on a dense Baire set (i.e.
countable intersection of open dense sets) and surjective ;

(iii) * is always bounded-one (i.e. 3N ^ 1 such that cardj*"1^)} < Ar,
k

z € U Xi, and we can even
t=i
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k
(iv) PTT = ?ra JÏTT(X), *(<TX) G U i n t 7 <*

Remaris.

(a) Notice that the choice of 6 is unimportânt in (i) - if we replace 9 by 6' then
we just replace a by a' = £ £

(b) 7T is "usually" injective in a measurable sensé i.e. it fails to be injective on a
k

subset of U 7; of zero Lebesgue (i.e. volume) measure.
i=i

Sketch proof of lemmau — The Holder continuity in (i) cornes from the
k k

hyperbolicity property (•). For pan (ii), let B = {z G \jTi\P
nzÇi (J int Ti% Vn G Z}

ii ii
then B is a Baire set, and for z e B we construct a unique element x = ^ o o
Pnz G intT r n , then x = TT"1*. Furthermore, by construction -n(XA) 5 JB and since :
XA is compact ; TT is continuous (thus ^(A'^) is closed) ; and B is dense we see that

k

= U Ti (i.e. 7T is surjective) (Part (iii) is easy, but has a trick - so we shall
i=i

skip it). Finally, (iv) is obvious from the définition of ?r.

Note. — The subshift a : XA —* XA gives only the basic configuration of the
sections. Next we must introducé a function which "encodes" information about lengths.

D. Modelling the geodesie flow

It is now a simple matter now to build a model for the whole flow (from the
model for the Poincaré map).

The symbolic model consists of a metric space :

for a Hölder continuous roof function f : XA —* R+ (i.e. 3C, a > 0 such
that \f(x) - f(y)\ <: C[dB(x,y)]°) where we identify the "top" and "bottom" by

We define a suspended flow a{ : X^A —• X^ by a{{x,s) = (x,s + t) (if
, s+t ^ f(x\ and using the identification for other values of t).
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We choose ƒ : XA — R+ by 4>f{x)7r(x) = (**). We can extend n : X{ — Ü
1 = 1

to a map 7r : XJ
A —> A/, by *(*,<) = ^,7r(x) (where (•*) takes care of the identification

~~). Again, we see tr{ is a "good" model for 4>x in the following sense.

LEMMA.

(i) 7T is Hölder continuous ;

(ii) 7T is one-one on a dense Baire set, and surjective ;

(Ui) 7T is always bounded-one ;

(iv) <pr7T = Tra/. < 6 R-

E. Simpler roof functions

Since we have so much flexibility in choosing our Poincaré sections, we want to
make a choice that will simplify life later.

DÉFINITION. — We call g € C°(XA. R) a function of the future ifg(x) = g(y)
whenever xx = y, for i ^ 0 (i.e. g(x) = g(xo, x\, X2,...) dépends only on Zi, i ^ Oj.

Notât ion al comment — The term s a ,̂ i ^ 0, are the "future" (and present)
and the terms x,, i < 0 are the "past". The map u : JV^ — JVA moves the "future" to
the past (like time !).

L E M M A . — For a suitable choice of sections T = {Ti , . . . ,7*} we can
assume ƒ : XA —̂  R+ is a Hölder continuous function of the future.

Sketch proof.— Starting from a family of sections T° = {7?, . . . ,7?}
(satisfying (i), (ii) and (iii)) we "shear" them in the flow direction so that each section
7? is "foliated" by stable manifolds from Wa. The resulting section is denoted T,
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flow

direction

. ^ 'N
stable manifolds
in W

Notice that :

(i) The Poincaré return time is constant along stable manifolds (using the
propeny : 4>tW

9(z) = W°(<fitx), t e R)

At the symbolic level, ƒ is a "function of the future"

(ii) The new sections T still satisfy the important properties. However, we only
expect each Ji to we as regular as the foliations Ws.

Fact (Anosov). — In gênerai, the foliation W' are Hölder continuous.
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(For geodesie flows on surfaces, or with pinching conditions on sectional curva-
ture, we get that W is C1 (Hirsch-Pugh, J. Diff. Geom. (1975))).

Thus, we conclude each 7i is at ieasf Hölder and this means ƒ : XA —> R+ is
Hölder.

Remarks.

(i) In special cases like manifolds with constant négative sectional curvatures,
the foliation Ws is Cw and it is better to retain more geometry (cf. Ruelle, Invent.
Math., vol. 34).

(ii) In some special cases Qikt co-compact manifolds) all the "interesting"
behaviour is on a compact (Récurrent) subset A Ç M of the flow. With some
modifications, we get an analogous symbolic model.

F. Some analysis

The motivation for introducing a symbolic model for the flow is that there
are some useful "tools" associated to shifts. However, there is first a preliminary
"réduction" :

We let X\ = {x = (xn)%L0 \ A(xtixM) = I, i > 0} (i.e. we consider
only the "future" pan of séquences) and define a one-sided shift <r+ : X\ —> X\ by
c+((rn)^L0) = (xn+i)^=o (Je- shifting séquences one place to the left, forgeting the first
term). We define metric(s) on X\ by d(x,y) = ffm, where x = (ar„)~=0. V = (yn)~=o
and m = m(x,y) = sup{O0 | a:,- = yt

Note. — As with A"̂ , the space X\ is compact and has a sub-basis of open-
closed sets. c+ is still continuous (but not invertable!). There is an obvious map
p : XA —> X+A (p((ïn)n^.oo) = (^n)^Lo) ^ d we see that we can identify "functions
of the future" g 6 C°(XA,R) with functions g 6 C°(A^,R) (i.e. g = g o p).

We dénote by F§ := {g : X\ R | 3O0 , \g(x) - g(y)\ < C • dê(x,y)}
(wherc we choose 0 < 6 < 1 sufficiently small that ƒ € F$ ).

LEMMA. — FQ is a Banach space with norm \\g\\# = \\g\\oo + C(g) (where

C(g) = sup { l i ^ l z J ^ l ) is the "best" bound C > 0).
^ l d(x,y) J

(The proof is elementary).

At the very heart of our analysis is a bounded linear operator on this Banach

space.
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D É F I N I T I O N . — Given u; € F§ we define the associated Ruelle operator

L*:F$ Fê by (Lwg){z) = £ e^. g(y)

(wherc the summation is over at most k pre-images (a*)" 1 * = {y = ( î , zo 9 £i i - - - )

Note. — If we assume 0 < 6 < 1 and u/ € F*, then an easy exercise gives :

C(L^g) ^ const ||^||oo + 6 • C(p) (*)

where const = ^ ^ . Thus LW(F€) Ç Ftf.

If we assume u is complex valued then we replace F$ by complex-valued
functions (i.e. the "complexification" of F$).

The basic resuit on this operator is the following ;

THEOREM (Ruelle operator theorem).

(i) Ifu real valued then Lu has a maximal positive eigenvalue Xu > 0 (with
a simple eigenfunction hu ^ 0).

(ii) Ifu; = u + iv then the spectrum of Lw consists of

(a) Isolated eigenvalues (with finite dimensional generalized eigens-
paces) in the annulus Àu ^ \z\ > 6XU ;

(b) The dise {z \ \z\ ^6\u).

9

K/S

Au

«= »

w '••e*. :
0

m

Cu spectrum spectrum
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Sketch prooL

(i) Showing the existence of a positive eigenvalue involves studying a positive
cône V with Lu :V CV.

eigenfunction h.

(ii) This follows from a version of the (Essential) spectral radius theorem, due to
Nussbaum, cf. [PP].

DÉFINITION. — We define P(u) = log Au to be the Pressure fonction.

Remark. — For practical applications, wc let LJ = — sƒ, s 6 C.

G. Topological entropy for the flows

The geodesie flow <j>t : M — M has a countable number of closed orbits y (of
least period £(7)). (These correspond prccisely to the closed geodesics on the manifold).

Given T > 0, dénote by NÇT) = #{7 | £(7)

DÉFINITION. — The topological entropy h(<f>) of the flow <j>t : M —• M is
defined by h(<j>) = lim A log N(T).

T—»c

Ti 72 73 7 4 . . .
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Remark. — Thus h(<j>) is a "growth rate" of closed orbits. There are many
alternative définitions (e.g. "growth rate" of volume in the universal cover). More gênerai
définitions exist of the topological entropy of an y continuous map on a compact space.

Similarly, we can define N(T) to be the number of closed orbits 7 for a{ =
{ with least period £(7) ^ 7\ and define its topological entropy by

PROPOSITION (comparison of entropies). — h(<f>) = h(<rf).

Idea of prooL — It suffices to show that £ ^ —> 1 as i —* oc. In fact, the
"almost one-one" corrcspondence guarantees this.

Remark. — There are various alternative proofs.

We want to find a link between the Pressure (defined at the level of the shift
c+ : A'̂  —* A'^) and the topological entropy (for the suspended flow u{ : XJ

A —* A'^),
which allows us to apply our results on the Ruelle operator. The next section introduces
the machinaiy for this.

H. Measures and the variational principle

We now move into the realm of "Ergodic Theory" where, in panicular, ail
measures are probabilities and invariant under the appropriate transformation or flow.

DÉFINITIONS. — A a-invariant probability measure // on XA satisfies :

(i) V(XA)= 1 (probability) ;

(ii) ƒ F dfi = ƒ Foa d/i, VF G C°(XA, R) (invariance),
(and similarly for a* : XA —> XA).

A a*-invariant probability measure m on XJ
A satisfies :

(i) m(Xf
A) = 1 ;

(ii) fFdm = fFoa{ dm, Çïi G R), VF G C°(X{,R).

SIMPLE LEMMA.

(a) There is a bijection between invariant probability measures on XA &nd
^A'

(h) There is a bijection between invariant probability measures on XA
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A'^, where

/ F dm = / { I F(x,<) dt\dfi(x)/ f ƒ dfi . (written dm = *???*
Jx{ JxA

 lJo } J J f dV

\R

The basic numerical "invariant" associated to invariant probability measures is
"measure iheoretic entropy".

In the case of a cr-invariam propability measure // on X^» we define the measure
theoretic entropy h(<x, ft) by

= lim —
AT-*oo A

(*)

where the sum is over the sets

[z 0 ; - . . ^A'-i] = {y € A',4 | yi = Xi,

Remark. — Using a subadditivity trick, we can see that the limit in (*) is an
infimum (of continuous fonctions in /i).

The "heuristic interprétation" of entropy is that the larger the entropy, the more
complicated (or intercsting) the invariant measure.

The connection with the Ruelle operator is given by the following fondamental
result :

THEOREM (variational principle). — For any real valued u € FQ

P(u)=sup {/i(/i,(r)+ ludfi | fi=<T-invariant probability measure} (*)

and there exists a unique measure /i (called the "equilibrium state") such that
P(u) = A(/i, a) + ƒ u dfi.

Note. — The measure p comes from the eigenprojection £* v = Ai/ by dp/di/ =
h (where Cuh = Xh).

Application. — The variational principle leads to a very useful result, which
will shall refer back to later :
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COROLLARY (Derivatives of Pressures).

(i) "T^(u + <u')|<=o = / u9 dp (fi = equilibrium state for u) ;

(ii) ̂ P(u + tu%=0 = JBn̂  £ ƒ ( £ « ' o

Proof of corollary. — By perturbation theory, i »—• Lu + t U ' »—• AU+<U' »—•
log Au+tu/ = P(u + tu') is analytic. The first derivative how cornes from the variational
principle :

(let t — 0) .

P(u + tu') ^ hifi, a) + f(u + iu') dfi = P(u) + tfu'dfi
P(u - iu') ^ fe^i, <r) + ƒ (u - <u') rf/i = P(u) -tfu'dfi

__ P(u+tu')-P(u) ^ f 9J ^P(u)-P(u-tu')

(The second derivative is also easy, cf. [PP]).

L A symbolic characterisation of entropy

We begin with the following "classical" result :

PROPOSITION.

(i) The c f-invariant measure dm = dfi x dij ƒ ƒ dfx has measure theoretic
entropy h(m) = h(<Tyfi)'/ int f dfi (Abramov) ;

(ii) The topoïogical entropy is given by

h(a!) = sup {h(m) \ m = aJ — invariant } (Adler) .

This brings us to the following important characterisation of topoïogical entropy :

THEOREM (Symbolic characterisation of h(<rf)). — The topoïogical entropy
h{G*) is the unique value t = /i(<r') such that P(-tf) = 0.

Proof of Theorem. — We use the variational principle to write :

P(—tf) = 0 ̂  h(c,fi) — t I f dfi, Va-invariant fi ,

t ^ f ' = A(m), Vtr' -invariant dm = f r ^ (Abramov)
J / dV

(with equality when fi = equilibrium state for — tf)

>i = h(aï) (Adler).
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Comment. — The analyticity of the map t •-> P(—tf) and this characterisation
of h is central to smoothness results on entropy.

J. Periodic points and zeta functions

OUT définition of topological entropy is in terms of the asymptotic behaviour of
closed orbits and P(i). We want to use the symbolic model (and, in particular, the
spectrum of the Ruelle operators L„sj, s 6 C) as a way to advance its study.

SIMPLE LEMMA. — There is a bijection between dosed orbits r for e? of
least period £(r) and dosed orbits {z,crx,... ,<rn-1x}, where / n ( x ) := /(x)+/(<rx)+

1

DÉFINITION. — We define a zeta function for a (gênerai) flow tpt : Q —• Q by
Q(s) = n r ( 1 - e~a£{T))~\ (r = closed orbit, least period £(r». This is a function of
s € C (when it converges).

A particular case. — For the suspended flow a{ : XS
A — XJ

A we have the
following expansion :

(exp o log = identity)

* = 1 T
OO - OO

n kast ƒ

e-8>m ( r ) (*)

oo

(correspondence

y~{z,<rx,... ,<rn-lx})

(m = kn> k= "itérâtes")
n = l
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Another particular case (Geodesie flow). — For the geodesie flow <j>t : M —>
M, the closed orbits correspond to (dirceted) closed geodesics y of length £(y) i.e.

= I77( l - c ' ^ W ) " 1 . Since our symbolic model is a "good" model for the flow :

PROPOSITION (comparing zêta fonctions).

is anaïytic and non-zero for Re(s) ^ h — e (for some e > 0).

Idea of proof. — This is based on the observation that there is "almost" a
bijection between closed orbits for <f> and <rJ\ (The différence being of the form
\N(i) - Ar(0| = 0 ( e ( h > '

Note. — A more subtle version of this resuit (where M(s) is replaced by a
product of zêta functions) appears in Bowen, Amer. J. Math., vol. 95 (1973).

K. The domain of the zeta functions

We now want to put together all the preceeding material to construct a meromor-
phic extension for Çoj (s) (and thus Ç<p(s), using the proposition). The main point is the
following :

TECHNICAL LEMMA. — Assume that we write for s = a + U :

i = isolated eigenvalues.U includes the essential spectrum) then we can estimate

Note. — This plays the rôle of taking a "trace" although £_ a r is not trace class.
The identity (*) is clearer when we observe that (Clsrl)(x) = Y,c*y=* c"^n ( s ' ) ,

Recall that ;

, n
oo , N

n = l t = l
n

i = l
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= n eUM , (*•)

(where u(s) is analytic, by uniform convergence,, provided ps < 1).

This gives us our main resuit on the domain of zêta functions .

THEOREM (Domain of zeta functions). — Both Ç<,s(s) and C$(s) have non-
zero meromorphic extensions to half-planes Re(s) ^ h — E with :

(i) No pôles for Re(s) > h ;

(ii) Only a single (simple) pole on Re(s) = h, at s = h.

The identity (**) tells us that the meromorphic extension is controlled by the
spectrum of £ _ , / (and, panicularly, A_ff/ = eP{~af)). The following "little lemma"
helps us understand this :

LEMMA. — The map t t \—• P(—crf) is surjective (and monotone decrea-
r
<

sing). In particular, 3e > 0 with A_(h_cy0 = 1.

(The proof is an easy exercise using ƒ ^ 0 and the variational principle, cf. [PP]).

Proof of theorem. — The domain follows from (*), the essential spectral radius
of C-sj being A.^/Ö < p3 (Ruelle operator theorem) and the above lemma.

The pole at s = h (and lack of pôles for Rt(s) > h) occurs because the eigenvalue
identity is satisfied for A„^/ = 1 O-e. the symbolic characterisation of entropy). The
pole is simple because

—-A-w
ds J s — n

= — eP{'°D
c —

0 (By first derivative of pressure) .

Finally, a pole at s = h + H corresponds to C-Sjk = k. But compared with
£-hf 1 = 1 we get {fn(x) | anx = x) = aZ+, a > 0 (i.e. ail orbits have lengths which
are multiples of a single constant).

Standard application. — Given the above properties of C<*>(s), there is a "stan-
dard" argument (based on the proof of the prime number theorem) which gives

-rf—- -+ 1 as t - • oo.

L. Differentiability of entropy

A basic problem is "How does the topological entropy depend on the geometry
of V T.
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We need 10 considcr how a small perturbation g\ in the Riemannian metric go is
reflected in the symbolic model.

PROPOSITION (structural stability). — There exists

(i) bomeomorphisms hm : Mo —> M\ (Mx = T\(V,gx)) ;

(ii) a "reparameterissition" a(A) : M\ —> R ; such thai if we reparameterise
to ^W (j.e. X(x!>M) = X(4>w)aw € X°{M)) then hM is a conjugacy (Le.

At the symbolic level, we carry over the sections

o")

with differing return times f{X\x) = /0
/{r)

Technical points.

(i) The 2 Systems of Markov sections give the same subshift a : XA —• XA but
the different functions fmjw € C°(XA,R) (for some Q > 0).
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(ii) The map A — fw e CQ(XA,R) is C°°.

THEOREM. — The topologicaJ entropy X H-> h(<f>w) is C°°.

Proof. — By the "symbolic characterisation" we have that t = ft(A) is the
solution to P(-tf(X)) = 0. But we know that (f,A) ~ P(-tfw) is C°° (even C").
Thus by the implicit function theorem we get À H- hiX) is C°° (after checking

~ p ( - t / < A > ) | < = o =
dl '>=o

(cf. Katok, Knieper, Pollicott and Weiss : Invent. Math., 1989).
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