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BOUNDARY LAYERS AND

INCOMPRESSIBLE NAVIER-STOKES-FOURIER LIMIT OF

THE BOLTZMANN EQUATION IN A BOUNDED DOMAIN

NING JIANG AND NADER MASMOUDI

Abstract. In this note, we review the recent work [23] on the boundary layer and incompress-
ible Navier-Stokes-Fourier limit of the Boltzmann equation with a general cut-off collision in a
bounded domain. Appropriately scaled families of DiPerna-Lions-(Mischler) renormalized solu-
tions with Maxwell reflection boundary conditions are shown to have fluctuations that converge
as the Knudsen number goes to zero. Every limit point is a weak solution to the Navier-Stokes-
Fourier system with different types of boundary conditions depending on the ratio between the
accommodation coefficient and the Knudsen number.

The main new result is that this convergence is strong in the case of Dirichlet boundary
condition. Indeed, we prove that the acoustic waves are damped immediately, namely they
are damped in a boundary layer in time. This damping is due to the presence of viscous and
kinetic boundary layers in space. As a consequence, we also justify the first correction to the
infinitesimal Maxwellian that one obtains from the Chapman-Enskog expansion with Navier-
Stokes scaling.

1. Introduction

The hydrodynamic limits from the Boltzmann equation got a lot of interest in the previous
two decades. Hydrodynamic regimes are those where the Knudsen number ε is small. The
Knudsen number is the ratio of the mean free path and the macroscopic length scales. The
incompressible Navier-Stokes-Fourier (NSF) system can be formally derived from the Boltzmann
equation through a scaling in which the fluctuations of the number density F about an absolute
Maxwellian M are scaled to be on the order ε, see [2].

The program that justifies the hydrodynamic limits from the Boltzmann equation in the
framework of DiPerna-Lions [11] was initiated by Bardos-Golse-Levermore [2, 3] in late 80’s.
Since then, there has been lots of contributions to this program [4, 12, 18, 19, 22, 27, 30, 31,
33, 39]. In particular the work of Golse and Saint-Raymond [18] is the first complete rigorous
justification of NSF limit from the Boltzmann equation in a class of bounded collision kernels,
without making any nonlinear weak compactness hypothesis. They have recently extended their
result to the case of hard potentials [19]. With some new nonlinear estimates, Levermore and
Masmoudi [27] treated a broader class of collision kernels which includes all hard potential cases
and, for the first time in this program, soft potential cases.

All of the above mentioned works were carried out in either the periodic spatial domain or the
whole space, except for [33] and [40]. In [33], the linear Stokes-Fourier system was recovered with
the same collision kernels assumption as in [12], while in [40], the Navier-Stokes limit was derived
with the same kernels assumption as in [19], i.e. hard potential kernels. In [33] and [40], the
fluctuations of renormalized solutions to the Boltzmann equation in a bounded domain (see [37])
was proved to pass to the limit and recovered fluid boundary conditions, either Dirichlet, or
Navier slip boundary condition, depending on the relative sizes of the accommodation coefficient
and the Knudsen number.

The dependance of the boundary conditions of the limiting fluid equations on the relative
importance of the accommodation coefficient and the Knudsen number was observed by Sone
and his collaborators. Their results, mostly formal, are presented in Chapter 3 and 4 in [44]
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for several types of kinetic boundary conditions. The work [33] and [40] rigorously justified
the incompressible Stokes and Navier-Stokes equations from Boltzmann equation imposed with
Maxwell reflection boundary condition.

In his survey paper [45], Ukai proposed the following question: “As far as the Boltzmann
equation in a bounded domain is concerned, some progress has been made recently. In [37] ,
the convergence of the Boltzmann equation to the (linear) Stokes-Fourier equation was proved
together with the convergence of the boundary conditions. It is a big challenging problem to
extend the result to the nonlinear case and to strength the convergence so as to make visible the
boundary layer.” (In the above citation of Ukai’s survey, the reference [37] is the Saint-Raymond
and Masmoudi’s paper [33].)

In this work, we study the incompressible NSF limit in a bounded domain from the Boltz-
mann equation with the Maxwell reflection boundary condition in which the accommodation
might depend on the Knudsen number. We consider a bounded domain Ω ⊂ RD, D ≥ 2, with
boundary ∂Ω ∈ C2. The NSF system governs the fluctuations of mass density, bulk velocity,
and temperature (ρ, u, θ) about their spatially homogeneous equilibrium values in a Boussinesq
regime. Specifically, after a suitable choice of units, these dimensionless fluctuations satisfy the
incompressibility and Boussinesq relations

∇x ·u = 0 , ρ+ θ = 0 , (1.1)

while their evolution is determined by the Navier-Stokes and heat equations

∂tu + u·∇xu +∇xp = ν∆xu , u|t=0 = u0 ,

∂tθ + u·∇xθ = 2
D+2κ∆xθ , θ|t=0 = θ0 ,

(1.2)

where ν > 0 is the kinematic viscosity and κ > 0 is the heat thermal conductivity.
Traditionally, two types of natural physical boundary conditions could be imposed for the

incompressible NSF system (1.2). The first is the homogeneous Dirichlet boundary condition,
namely,

u = 0 , θ = 0 on R+ × ∂Ω . (1.3)

The other is the so-called Navier slip boundary condition, which was proposed by Navier [38]:

[2νd(u)·n + χu]tan = 0 , u·n = 0 on R+ × ∂Ω ,

κ∂nθ + χD+1
D+2θ = 0 on R+ × ∂Ω ,

(1.4)

where d(u) = 1
2(∇xu + ∇xu>) denotes the symmetric part of the stress tensor and ∂n denotes

the directional derivative along the outer normal vector n(x), x ∈ ∂Ω. In the above Navier
boundary condition, χ > 0 is the reciprocal of the slip length which depends on the material of
the container.

In the current work, for general cut-off collision kernels, namely in the framework of [27], we
justify the NSF system. Regarding the weak convergence results, our proof is basically the same
as in [33] and [40]: the boundary conditions of the limiting NSF system depend on the ratio
of the accommodation coefficient and the Kundsen number, namely when αε

ε → ∞ as ε → 0,

Dirichlet condition is derived, while when αε
ε →

√
2πχ, the Navier-slip boundary condition is

derived. The main difference is that [40] used the same renormalizations of [19], applicable for
hard potentials, while in the current work, we use the renormalization of [27], which works for
more general cut-off kernels, including soft potentials.

The main novelty of the current work is the treatment of the Dirichlet boundary condition
case. Indeed, we prove that when αε

ε → ∞, the convergence is strong. Furthermore, as a
consequence of this strong convergence, the first correction to the infinitesimal Maxwellian,
which is a quadratic term obtained from the Chapman-Enskog expansion with the Navier-
Stokes scaling, is rigorously justified. We point out that in all the previous works mentioned
above, the convergence is in w-L1, unless the initial data is well-prepared, i.e. is hydrodynamic
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and satisfies the Boussinesq and incompressibility relations. This weak convergence is caused
by the persistence of fast acoustic waves. In the Navier-Stokes regime, the Reynold number Re
is order O(1), then the von Kámán relation ε = Ma

Re implies that in the fluid limit ε → 0, the
Mach number Ma must go to zero. As is well know physically, one expects that as Ma → 0,
fast acoustic waves are generated and carry the energy of the potential part of the flow. For the
periodic flows, or for some particular boundary conditions such as Navier condition (1.4), these
waves subsist forever and their frequency grows with ε. Mathematically, this means that the
convergence is only weak. This phenomenon happens in many singular limits of fluid equations
among which we only mention [28, 29].

One of the ingredients of the convergence proof is the treatment of the acoustic waves which are
highly oscillating. A compensated compactness type argument was used by Lions and Masmoudi
[30] to prove that these acoustic waves have no contribution on the equation satisfied by the
weak limit. This argument was previously used in the compressible incompressible limit [29].

In [10], a striking phenomenon, namely the damping of acoustic waves caused by the Dirich-
let boundary condition was found by Desjardins, Grenier, Lions, and Masmoudi in considering
the incompressible limit of the isentropic compressible Navier-Stokes equations. In the case of
a viscous flow in a bounded domain with Dirichlet boundary condition, and under a generic
assumption on the domain (related to the so-called Schiffer’s conjecture and the Pompeiu prob-
lem [9]), they showed that the acoustic waves are instantaneously (asymptotically) damped, due
to the formation of a thin boundary layer in time. This layer is caused by a boundary layer in
space and dissipates the energy carried by the acoustic waves. From a mathematical point of
view, strong convergence was obtained.

Inspired by the idea of [10], the current paper considers the much more involved kinetic-
fluid coupled case. We prove that if the accommodation coefficient is bigger than the Knudsen
number, there is no need for the argument in [29] since we can prove that the acoustic waves are
damped instantaneously. Our work is based on the construction of viscous and kinetic Knudsen
boundary layers of size

√
ε and ε. The main idea is to use a family of test functions which

solve approximately a scaled stationary linearized Boltzmann equation and can capture the
propagation of the fast acoustic waves. These test functions are constructed through considering
a family of approximate eigenfunctions of a dual operator with a dual kinetic boundary condition
with respect to the original Boltzmann equation. The approximate eigenvalue is the sum of
several terms with different order of ε: the leading term is purely imaginary, which describes
the acoustic mode, and the real part of the next order term is strictly negative which gives the
strict dissipation when applying the test functions to the renormalized Boltzmann equation.

In contrast to [10], the approximate eigenfunctions include interior part and two boundary
layers: fluid viscous layer and kinetic Knudsen layer, while in [10], only a fluid boundary layer
was necessary. Another important difference is that a generic assumption on the domain had to
be made in [10] (in particular there are modes which are not damped in the disc), while in the
current work, this assumption is not needed. The reason is that we deal with the full acoustic
system, namely including the temperature. The NSF system has also some dissipation in the
temperature equation which is ignored in the isentropic model. (in particular this dissipation
property holds in the case of the ball). This was also considered in [24] in which we reinforced
the result of [10].

When the accommodation coefficient αε is asymptotically larger than the Knudsen number ε
in the sense that αε/ε → ∞ as ε → 0, the fluid limit is the NSF equations with Dirichlet
boundary condition. For example, we can assume αε = χεβ with 0 ≤ β < 1. We found
that β = 1/2 is a threshold in the sense that the kinetic-fluid coupled boundary layers behave
differently for 0 ≤ β < 1/2 and 1/2 ≤ β < 1, but for both cases the kinetic-fluid layers have
damping effect. The current paper focuses on the threshold case β = 1/2 and we leave the other
cases for a separate paper due to the more complex construction of the boundary layers.
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One of the difficulties of the construction happens in the case the Laplace operator −∆x with
Neumann boundary condition has multiple eigenvalues. As a consequence, the dimension of
the null space of the the operator A − iλk0 is greater than one, where A denotes the acoustic

operator, and D
D+2 [λk0]2 are eigenvalues for k ∈ N (for details see Section 5.2). Thus, as each

stage of the construction of boundary layers, the terms in the null space of A− iλk0 can not be
determined uniquely. To completely determine all the terms in the ansaza of boundary layers,
we have to add some orthogonality conditions. Surprisingly, all these orthogonality conditions
are consistent, at least for the threshold case β = 1

2 treated in the current paper. Similar idea
has been used in [24] which can be applied to the compressible-incompressible limit of the full
Navier-Stokes-Fourier system in a bounded domain.

A key role is played by the linearized kinetic boundary layer equation in the coupling of
viscous and kinetic layers. More specifically, its solvability provides the boundary conditions of
the fluid variables in the interior and viscous boundary layers which satisfy the acoustic systems
with source terms and second order ordinary differential equations respectively. This linearized
kinetic boundary layer equation has been studied extensively (see [1, 8, 15, 14, 46]). Applying
the boundary layer equations to construct the two layer eigenfunctions is the main novelty of
the current paper. To the best of our knowledge these two layer eigenfunctions are new even in
the applied literature.

2. Boltzmann Equation in Bounded Domain

Here we introduce the Boltzmann equation in a bounded domain, only so far as to set our no-
tations, which are essentially those of [3] and [33]. More complete introduction to the Boltzmann
equation can be found in [6, 7, 16, 44].

2.1. Maxwell Boundary Condition. We consider Ω, a smooth bounded domain of RD, and
O = Ω×RD, the space-velocity domain. Let n(x) be the outward unit normal vector at x ∈ ∂Ω
and let dσx be the Lebesgue measure on the boundary ∂Ω. We define the outgoing and incoming
sets Σ+ and Σ− by

Σ± = {(x, v) ∈ Σ : ±n(x)·v > 0} where Σ = ∂Ω× RD .

Denoted by γF the trace of F over Σ, the boundary condition takes the form of a balance
between the values of the outgoing and incoming parts of γF , namely γ±F = 1Σ±γF . In order
to describe the interaction between particles and the wall, Maxwell [34] proposed in 1879 the
following phenomenological law which splits into a local reflection and a diffuse reflection

γ−F = (1− α)Lγ+F + αKγ+F on Σ− , (2.1)

where α ∈ [0 , 1] is a constant, called the “accommodation coefficient.” The local reflection
operator L is given by

Lφ(x , v) = φ(x ,Rxv) , (2.2)

where Rxv = v − 2 [n(x)·v] n(x) is the velocity before the collision with the wall. The diffuse
reflection operator K is given by

Kφ(x , v) =
√

2π φ̃(x)M(v) ,

where φ̃ is the outgoing mass flux

φ̃(x) =

∫

v·n(x)>0

φ(x , v)v ·n(x) dv ,

and M is the absolute Maxwellian M(v) = 1
(2π)D/2

exp
(
−1

2 |v|2
)
.
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2.2. Nondimensionalized Form of the Boltzmann Equation. We consider a sequence of
renormalized solutions Fε(t, x, v) to the rescaled Boltzmann equation

ε∂tFε + v · ∇xFε =
1

ε
B(Fε , Fε) on R+ ×O ,

Fε(0 , x , v) = F in
ε (x , v) ≥ 0 on O ,

γ−Fε = (1− α)Lγ+Fε + αKγ+Fε on R+ × Σ− .

(2.3)

The Boltzmann collision operator B acts only on the v argument of F and is formally given by

B(F , F ) =

∫∫

SD−1×RD

(F ′1F
′ − F1F )b(ω , v1 − v) dω dv1 .

The collision kernel b is a positive, locally integrable function and has the classical form

b(ω , v) = |v|Σ(|ω · v̂| , |v|) ,
where v̂ = v/|v| and Σ is the specific differential cross section. This symmetry implies that the
quantity

∫
b(ω , v) dω is a function of |v| only. The DiPerna-Lions theory requires that b satisfies

lim
|v|→∞

1

1 + |v|2
∫∫

SD−1×K

b(ω , v1 − v) dω dv1 = 0 (2.4)

for any compact set K ⊂ RD. There are some additional assumptions on b needed as in [27].

2.3. Navier-Stokes Scaling. The incompressible NSF system can be formally derived from
the Boltzmann equation through a scaling in which the fluctuations of the kinetic densities Fε
about the absolute Maxwellian M are scaled to be of order ε. More precisely, we take

Fε = MGε = M(1 + εgε) . (2.5)

In terms of gε the system (2.3) finally reads

ε∂tgε + v ·∇xgε + 1
εLgε = Q(gε , gε) on R+ ×O ,

gε(0 , x , v) = gin
ε (x , v) on O ,

γ−gε = (1− α)Lγ+gε + α〈γ+gε〉∂Ω on R+ × Σ− .

(2.6)

2.4. DiPerna-Lions-(Mischler) Solutions. We will work in the setting of renormalized so-
lutions which were initially constructed by DiPerna and Lions [11] over the whole space RD for
any initial data satisfying natural physical bounds. Recently, their result was extended to the
case of a bounded domain by Mischler [35, 36, 37] with general Maxwell boundary conditions
(2.1).

The DiPerna-Lions-(Mishler) theory does not yield solutions that are known to solve the
Boltzmann equation in the usual weak sense. Rather, it gives the existence of a global weak
solution to a class of formally equivalent initial value problems:

(ε∂t + v ·∇x)Γ(Gε) =
1

ε
Γ′(Gε)Q(Gε , Gε) on R+ ×O ,

Gε(0 , · , ·) = Gin
ε ≥ 0 on O .

(2.7)

Here the admissible function Γ : [0 ,∞)→ R is continuously differentiable and for some constant
CΓ <∞ its derivative satisfies

|Γ′(z)|
√

1 + z ≤ CΓ . (2.8)
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The weak formulation of the renormalized Boltzmann equation (2.7) is given by

ε

∫

Ω

〈Γ(Gε(t2))Y 〉 dx− ε
∫

Ω

〈Γ(Gε(t1))Y 〉 dx

−
∫ t2

t1

∫

Ω

〈Γ(Gε)v ·∇xY 〉 dx dt+

∫ t2

t1

∫

∂Ω

〈Γ(γGε)Y [n(x) · v]〉 dσx dt

=
1

ε

∫ t2

t1

∫

Ω

〈Γ′(Gε)Q(Gε , Gε)Y 〉dx dt ,

(2.9)

for every Y ∈ C1 ∩ L∞(Ω̄× RD) and every [t1 , t2] ⊂ [0 ,∞]. Moreover, the boundary condition
is also understood in the renormalized sense:

Γ(γ−Gε) = Γ
(

(1− α)Lγ+Gε + αF̃ε

)
on R+ × Σ− , (2.10)

where the equality holds almost everywhere and in the sense of distribution.

3. Statement of the Main Results

3.1. Dirichlet Boundary Condition. The main theorem of this work is the following strong
convergence to the NSF system with Dirichlet boundary condition when the accommodation
coefficient αε is much larger than the Knudsen number ε, i.e. αε

ε →∞ as ε→ 0.

Theorem 3.1. (Dirichlet Boundary Condition) Let b be a collision kernel that satisfies condi-
tions. Let gin

ε be the associated family of fluctuations given by Gin
ε = 1 + εgin

ε . Assume that the
families Gin

ε and gin
ε satisfy

H(Gin
ε ) ≤ C inε2 , (3.1)

and

lim
ε→0

(
〈gin
ε 〉 , 〈vgin

ε 〉 , 〈( |v|
2

D − 1)gin
ε 〉
)

= (ρin,uin, θin) , (3.2)

in the sense of distributions for some (ρin, uin, θin) ∈ L2(dx ;R×RD×R). Let Gε be any family of
DiPerna-Lions renormalized solutions to the Boltzmann equation that have Gin

ε as initial values,
and the accommodation coefficient αε satisfies

αε =
√

2π χ
√
ε . (3.3)

Then the family of fluctuations gε given by (2.5) is relatively compact in L1
loc(dt;L

1(σMdvdx)) .
Every limit point g of gε has the infinitesimal Maxwellian form

g = v ·u +
(

1
2 |v|2 − D+2

2

)
θ , (3.4)

where (u, θ) ∈ C([0,∞);L2(dx ;RD × R)) ∩ L2(dt ;H1(dx ;RD × R)) with mean zero over Ω,
and it satisfies the NSF system with Dirichlet boundary condition (1.1), (1.2), and (1.3), where
kinematic viscosity ν and thermal conductivity κ are given by

ν = 1
(D−1)(D+2)〈Â :LÂ〉 , κ = 1

D〈B̂·LB̂〉 . (3.5)

The initial data is given by

u0 = Puin , θ0 = D
D+2θ

in − 2
D+2ρ

in . (3.6)

Here the operator P is the Leray’s projection on the space of divergence free vector fields. More-
over, every subsequence gεk of gε that converges to g as εk → 0 also satisfies

〈vgεk〉 → u in Lploc(dt;L
1(dx;RD)) ,

〈( 1
D |v|2 − 1)gεk〉 → θ in Lploc(dt;L

1(dx;R)) for every 1 ≤ p <∞ .
(3.7)
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Furthermore, 1
εP⊥gε is relatively compact in w-L1

loc(dt;w-L1(σMdvdx)). For every subse-
quence εk so that gεk converges to g,

1

ε
P⊥gεk →1

2A : u⊗ u + B·uθ + 1
2Cθ2

− Â : ∇xu− B̂·∇xθ , in w-L1
loc(dt;w-L1(σMdvdx)) ,

(3.8)

as εk → 0.

Remark: In the formal Chapman-Enskog expansion,

gε = g + εP⊥g1 + εPg1 + ε2g2 + · · · ,
where g is given by (3.4) and P⊥g1 is the righthand side term in (3.8). In previous works
[18, 19, 27], under the assumptions (3.1) and (3.2), the convergence to (3.4) and (3.7) are
only in w-L1. So the convergence to the quadratic term (3.8), which is the first correction to
the infinitesimal Maxwellian that one obtains from the Chapman-Enskog expansion with the
Navier-Stokes scaling, could not be obtained. In Theorem 3.1, by showing the acoustic waves
are instantaneously damped, we justify not only the strong convergence to the leading order
term g, but also weak convergence to the kinetic part of the next order corrector (3.8).

3.2. Navier Boundary Condition. The second result is about Navier boundary condition.
For this case, although the coupled viscous boundary layer and the Knudsen layer still have
dissipative effect, however, the damping happens a longer time scale O(1). Consequently, unlike
the Dirichlet boundary condition case, the fast acoustic waves can be damped, but not instan-
taneously. Nevertheless, we can show the weak convergence result, thus justify the NSF limit
with slip Navier boundary condition, while the linear Stokes-Fourier limit was justified in [33].

Theorem 3.2. (Navier Boundary Condition) With the same assumptions with Theorem 3.1,
except that the accommodation coefficients satisfy

αε√
2π ε

→ χ , as ε→ 0 . (3.9)

Then the family gε is relatively compact in w-L1
loc(dt;w-L1(σMdvdx)) . Every limit point g

of gε in w-L1
loc(dt;w-L1(σMdvdx)) has the infinitesimal Maxwellian form as (3.4) in which

(u, θ) ∈ C([0,∞);L2(dx ;RD × R)) ∩ L2(dt;H1(dx ;RD × R)) is a Larey solution of the NSF
system with Navier boundary condition (1.1), (1.2), and (1.4), where kinematic viscosity ν and
thermal conductivity κ are given by (3.5), the initial data is given by (3.6).

Moreover, every subsequence gεk of gε that converges to g as εk → 0 also satisfies

P〈vgεk〉 → u in C([0,∞) ;D′(Ω ;RD)) ,

〈( 1
D+2 |v|2 − 1)gεk〉 → θ in C([0,∞) ;w-L1(Ω ;R)) .

(3.10)

Remark: For the Navier-slip boundary condition case, since the convergence is weak, the
convergence (3.8), i.e. the justification of the first correction to the infinitesimal Maxwellian in
the Chapman-Enskog expansion can not be obtained.

4. Acoustic operator and analysis of the Kinetic Boundary Layer Equation

In this section, we collect results about the acoustic operator and the linear kinetic boundary
layer equation which will be used to determine the boundary conditions of the fluid variables.

We first define the acoustic operator A:

A



ρ
u
θ


 =




∇x ·u
∇x(ρ+ θ)

2
D∇x ·u


 , (4.1)
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over the domain
Dom(A) = {U = (ρ ,u , θ) ∈ V : u·n = 0 on ∂Ω} .

The null space of A and its orthogonal with respect to the usual inner product are character-
ized as

Null(A) = {(−ϕ ,w , ϕ) ∈ V : ∇x ·w = 0 and w·n = 0 on ∂Ω} , (4.2)

and
Null(A)⊥ = {(ρ ,u , θ) ∈ V : θ = 2

Dρ ,u = ∇xφ , for some φ ∈ H1(Ω)} , (4.3)

respectively. Because Null(A) includes the incompressibility and Boussinesq relations, we call
it incompressible regime. We will see in the next subsection that Null(A)⊥ is spanned by the
eigenspaces of the acoustic operator A, so we call it acoustic regime.

For any U = (ρ ,u , θ) ∈ H, we can define Π and Π⊥ the projections to the incompressible
regime Null(A) and acoustic regime Null(A)⊥ respectively as follows:

ΠU =
(

2
D+2ρ− D

D+2θ ,Pu , D
D+2θ − 2

D+2ρ
)
,

Π⊥U =
(

D
D+2(ρ+ θ) ,Qu , 2

D+2(ρ+ θ)
)
.

We define the kinetic boundary layer operator LBL, reflection boundary operator LR and
diffusive boundary operator LD acting on functions {gbb(x, v, ξ) : (x, v, ξ) ∈ Ωδ × RD × R+} as
follows:

LBLgbb := −(v ·∇xd)∂ξg
bb + Lgbb , (4.4)

where L is the linearized Boltzmann operator.

LRgbb := γ+g
bb − Lγ−gbb , and LDgbb :=

√
2π χ

[
〈γ−gbb〉∂Ω − Lγ−gbb

]
.

Lemma 4.1. Considering the following linear kinetic boundary layer equation of gbb(x, v, ξ) in
half space:

LBLgbb = Sbb , in ξ > 0 ,

gbb −→ 0 , as ξ →∞ ,
(4.5)

with boundary condition

LRgbb = Hbb , on ξ = 0 , v · n > 0 . (4.6)

In the above equations, the boundary source term Hbb is taken of the following form:

Hbb = −LRg + LDf , (4.7)

where g and f are of the forms:

g =ρg + ug · v + θg

(
|v|2
2 − D

2

)

−(∂ζu
b⊗n : Â + ∂ζθ

bn·B̂) + (∂πα ũb⊗∇xπα : Â + ∂πα θ̃
b∇xπα ·B̂)

+(∇xuint : Â +∇xθint · B̂) + Sg ,

(4.8)

and

f = ρf + uf · v + θf

(
|v|2
2 − D

2

)
+ Sf , (4.9)

and where Sg , Sf ∈ Null(L)⊥ are source terms.

Then there exists a solution gbb(x, v, ξ) of the equation (4.5) if and only if the following
boundary conditions are satisfied by the fluid variables:

(i) On the boundary ∂Ω, the normal components of velocity is

ug · n =

∫ ∞

0
〈Sbb〉dξ . (4.10)
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(ii) On the boundary ∂Ω, the tangential components of velocities and temperature satisfy

[uf ]tan = ν
χ

[
∂ζu

b
]tan
− ν

χ

[
2d(uint) · n

]tan − ν
χ∇π[ũb ·n]

+

[∫

v·n>0
(LDSf )v(v ·n)M dv

]tan

− 1
χ〈(v ·n)vSg〉tan + 1

χ

∫ ∞

0
〈Sbbv〉tan dξ ,

(4.11)

and

θf =D+2
D+1

κ
χ∂ζθ

b − D+2
D+1

κ
χ∂nθ

int +
√

2π
2(D+1)uf · n +

√
2π

D+1

∫

v·n>0
(LDSf )|v|2(v ·n)M dv

− 1
(D+1)χ〈(v ·n)|v|2Sg〉+ D+2

D+1
1
χ

∫ ∞

0
〈Sbb( |v|

2

D+2 − 1)〉dξ ,
(4.12)

where kinematic viscosity ν and thermal conductivity κ are given by (3.5), utan denotes the
tangential components of the vector u, and ∇π denotes the tangential derivative.

5. Approximate Eigenfunctions-Eigenvalues

5.1. Motivation. We define the operators Lε and L∗ε as

Lε :=
1

ε
L − v ·∇x , L∗ε :=

1

ε
L+ v ·∇x .

Formally, Lε and L∗ε are “dual” in the following sense:

〈L∗εg∗ , g〉 = 〈g∗ ,Lεg〉 , (5.1)

provided that g∗ satisfies the Maxwell reflection boundary condition

γ−g∗ = (1− α)Lγ+g
∗ + α〈γ+g

∗〉∂Ω on Σ− , (5.2)

and g satisfies the dual boundary condition

γ+g = (1− α)Lγ−g + α〈γ−g〉∂Ω on Σ+ . (5.3)

If gε is the fluctuation defined in (2.5), then gε obeys the scaled Boltzmann equation (2.6)
in which L∗εgε appears and gε satisfies the boundary condition (5.2). Then from (5.1), LεgBLε
appears in the weak formulation of the Boltzmann equation if we take gBLε as a test function.
Thus, it is natural to construct eigenfunctions and eigenvalues of Lε satisfying the dual boundary
condition (5.3). Specifically, we consider the kinetic eigenvalue problem:

LεgBLε = −iλBLε gBLε , (5.4)

with gBLε satisfying the dual Maxwell boundary condition (5.3), where the accommodation
coefficient α takes the value αε =

√
2πχ
√
ε. By doing so, formally the equation (2.6) becomes

an ordinary differential equation of bε =
∫

Ω〈gε , gBLε 〉 dx:

d
dtbε + iλBLε

ε bε = cε .

To solve the eigenvalue problem (5.4) and (5.3), a key observation is that the solutions must in-
clude interior and two boundary layer terms: the fluid viscous boundary layer with thickness

√
ε,

and the kinetic Knudsen layer with thickness ε. We make the ansatz of gBLε and λBLε as

gBLε =
∑

m≥0

[
gint
m (x, v) + gb

m(π(x), d(x)√
ε
, v)
]
εm/2 +

∑

m≥1

gbb
m (π(x), d(x)

ε , v)εm/2 , (5.5)

and
λBLε =

∑

m≥0

λmε
m/2 . (5.6)

Each gb
m and gbb

m are defined in Ωδ. After rescaling by
√
ε and ε respectively,

gb
m, g

bb
m : (∂Ω× R+)× RD −→ R .
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Both gb
m and gbb

m will vanish in the outside of Ωδ. Thus gb
m and gbb

m are required to be rapidly

decreasing to 0 in the ζ and ξ respectively, which are defined by ζ = d(x)√
ε

and ξ = d(x)
ε .

In the ansatz (5.5), gBLε consists three types of terms: the interior terms gint
m , the fluid viscous

boundary layer terms gb
m, and the kinetic Knudsen layer terms gbb

m . They are coupled through
the boundary condition (5.3).

5.2. Statement of the Proposition. Now we state the proposition which can be considered
as a kinetic analogue of the Proposition 2 in [10].

Proposition 5.1. Let Ω be a C2 bounded domain of RD and the accommodation coefficient
αε =

√
2πχ
√
ε. Then, for every acoustic mode k ≥ 1, non-negative integer N , and each τ ∈

{+ ,−}, there exists approximate eigenfunctions gτ,kε,N and eigenvalues −iλτ,kε,N of Lε , and error

terms Rτ,kε,N and rτ,kε,N respectively, such that

Lεgτ,kε,N = −iλτ,kε,Ng
τ,k
ε,N +Rτ,kε,N , (5.7)

and gτ,kε,N satisfy the approximate dual Maxwell boundary condition:

LRgτ,kε,N =
√
εLDgτ,kε,N + rτ,kε,N on Σ+ . (5.8)

Moreover, there exits complex numbers λτ,k1 , such that iλτ,kε,N has the following expansions:

iλτ,kε,N = iλτ,k0 + iλτ,k1

√
ε+O(ε) , with Re(iλτ,k1 ) < 0 . (5.9)

Furthermore, for all 1 < r, p ≤ ∞, we have error estimates:

‖Rτ,kε,N‖Lr(dx,Lp(a1−pMdv)) = O(
√
ε
N−1

) , (5.10)

and
‖gτ,kε,N − g

τ,k,int
0 ‖Lr(dx,Lp(a1−pMdv)) = O(ε1/2r) . (5.11)

where gτ,k,int
0 is defined as

gτ,k =
√

D+2
2D

{
D

D+2Ψk + v · ∇xΨk

iλτ,k
+ 2

D+2Ψk( |v|
2

2 − D
2 )
}
. (5.12)

Here Ψk is the eigenfunction of the Laplace operator. We also have the boundary error estimates:

‖rτ,kε,N‖Lr(dσx,Lp(a1−pMdv)) = O
(√

ε
N+1

)
. (5.13)

6. Proof of the Strong Convergence in Theorem 3.1

We choose the renormalization:

Γ(Z) =
Z − 1

1 + (Z − 1)2
, (6.1)

and define g̃ε = 1
εΓ(Gε), and its associated fluid moments:

Ũε = (ρ̃ε , ũε , θ̃ε) = (〈g̃ε〉 , 〈vg̃ε〉 , 〈( |v|
2

D − 1)g̃ε〉) .
Ũε can be orthogonally decomposed as parts in the null space of the acoustic operator A and
its orthogonal:

Ũε = ΠŨε + Π⊥Ũε

=
(
〈(1− |v|2

D+2)g̃ε〉 ,P〈vg̃ε〉 , 〈( |v|
2

D+2 − 1)g̃ε〉
)

+
(
〈 |v|2D+2 g̃ε〉 ,Q〈vg̃ε〉 , 〈

2|v|2
D(D+2) g̃ε〉

)
,

(6.2)

in which we call ΠŨε and Π⊥Ũε the incompressible and acoustic parts of Ũε respectively.
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Using the same method as in [33] and [40], we can prove that the incompressible part of

the fluid moments Ũε, i.e. ΠŨε converges only weakly to solutions of the incompressible NSF

equations. This weak convergence is caused by the persistence of fast acoustic part Π⊥Ũε, as in

the periodic domain [27]. If Π⊥Ũε vanishes in some strong sense as ε goes to zero, we can improve

the convergence of ΠŨε from weak to strong. The main novelty of this paper is to prove that in
the bounded domain Ω, when αε = O(

√
ε), the acoustic part will be damped instantaneously.

This damping effect comes from the kinetic-fluid coupled boundary layers. More precisely, we
have the following proposition:

Proposition 6.1. Let Π⊥Ũε be defined as (6.2). If αε = O(
√
ε), then

Π⊥Ũε → 0 in L2
loc(dt;L

2(dx)) ,

as ε→ 0.

Then we can apply Proposition 6.1 to prove the Main Theorem 3.1.

6.1. Strong Convergence in L1: Proof of Theorem 3.1. We first show that we can improve
the relative compactness of the family of fluctuations gε from weak to strong in L1

loc(dt;L
1(σMdvdx)).

Indeed, gε can be decomposed as

gε =P g̃ε + P⊥g̃ε +
ε2g3

ε

Nε

=v ·Pũε +
(

D
D+2 θ̃ε − 2

D+2 ρ̃ε

)(
|v|2
2 − D+2

2

)
+ v ·Qũε + |v|2

D+2

(
ρ̃ε + θ̃ε

)

+ P⊥g̃ε +
ε2gε√
Nε

g2
ε√
Nε

,

where P is the projection to Null(L), P is the Leray projection, and Q = I− P.
It has been proved in [27] that P⊥g̃ε → 0 in L2

loc(dt;L
2(aMdvdx)), (see (6.41) in [27]). We

can also show that

Pũε → u , D
D+2 θ̃ε − 2

D+2 ρ̃ε → θ , in L2
loc(dt;L

2(dx)) . (6.3)

Indeed, this convergence is justified in Lemma 5.6 in [18]. Although the renormalization and
decomposition of gε are different in [18] and the current paper, the proof of the convergence
(6.3) can follow the argument in the proof of Lemma 5.6 in [18]. Furthermore, the Proposition
6.1 yields that

v ·P⊥ũε + |v|2
D+2

(
ρ̃ε + θ̃ε

)
→ 0 in L2

loc(dt;L
2(Mdvdx)) .

Thus P g̃ε → g = v ·u +
(

1
2 |v|2 − D+2

2

)
θ in L2

loc(dt;L
2(Mdvdx)), as ε → 0. The key nonlinear

estimate in [3] claims that

σ
g2
ε√
Nε

= O(| log ε|) in L∞(dt;L1(aMdvdx)) .

It is easy to see that εg̃ε√
Nε

is bounded, hence

ε2g3
ε

Nε
→ 0 in L1

loc(dt;L
1(σMdvdx)) . (6.4)

We deduce that gε is relatively compact in L1
loc(dt;L

1(σMdvdx)) and that every limit g has the
form (3.4), combining the above estimates.

Next, we can also improve the convergence of the moments of gε. In [27], it was proved that
the incompressible part (P〈vgε〉 , 〈( 1

D+2 |v|2 − 1)gε〉) converge to (u , θ) in C([0,∞);w-L1(dx)).

We also have (P〈vgε〉 , 〈( 1
D+2 |v|2 − 1)gε〉) converge to (u , θ) in L2

loc(dt;L
2(dx)). Now, from
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Proposition 6.1, we know that the acoustic part Q〈vg̃ε〉 and 〈( 1
D+2 |v|2g̃ε〉 converge strongly to 0

in L2
loc(dt;L

2(dx)). So combining this with (6.4), we get

〈vgε〉 → u in L1
loc(dt;L

1(dx;RD)) ∩ C([0,∞);w-L1(dx;RD)) ,

〈( 1
D |v|2 − 1)gε〉 → θ in L1

loc(dt;L
1(dx;R)) ∩ C([0,∞);w-L1(dx;R)) .

Furthermore, since now we have ũε → u and θ̃ → θ in L2
loc(dt;L

2(dx)), we can improve the
Quadratic Limit Theorem 13.1 in [27] to

ũε ⊗ ũε → u⊗ u , θ̃εũε → uθ , θ̃2
ε → θ2 in L1

loc(dt;L
1(dx)) , (6.5)

as ε→ 0.
Let p = 2 + 1

s−1 , so that p = 2 when s =∞. Let ξ̂ ∈ Lp(aMdv) be such that P ξ̂ = 0 and set

ξ = Lξ̂, hence,
1

ε
〈ξg̃ε〉 =

1

ε
〈ξP⊥g̃ε〉 = 〈ξ̂Q(g̃ε , g̃ε)〉 − 〈〈ξ̂q̃ε〉〉+ 〈〈ξ̂Tε〉〉 .

We know from in [27] that

〈〈ξ̂Tε〉〉 → 0 in L1
loc(dt;L

1(dx)) , (6.6)

and
〈〈ξ̂q̃ε〉〉 → 〈ξÂ〉 : ∇xu+ 〈ξB̂〉·∇xθ in w-L2

loc(dt;w-L2(dx)) . (6.7)

Note that
〈ξ̂Q(g̃ε , g̃ε)〉 = 〈ξ̂Q(P g̃ε ,P g̃ε)〉+ 2〈ξ̂Q(P g̃ε ,P⊥g̃ε)〉

+ 〈ξ̂Q(P⊥g̃ε ,P g̃ε)〉 .
It is easy to show that the last two terms above vanish as ε→ 0. For the first term,

〈ξ̂Q(P g̃ε ,P g̃ε)〉 = 1
2〈ξP⊥(P g̃ε)2〉

=1
2〈ξA〉 : (ũε ⊗ ũε) + 〈ξB〉·ũεθ̃ε + 1

2〈ξC〉θ̃2
ε .

(6.8)

Applying the quadratic limit (6.5), (6.8) can be taken limit in L1
loc(dt;L

1(dx)) strongly. Com-
bining with convergence (6.6) and (6.7), we get

1

ε
〈ξP⊥g̃ε〉 →

〈
ξ
(

1
2A : u⊗ u + B·uθ + 1

2Cθ2 − Â : ∇xu− B̂·∇xθ
)〉

in w-L1
loc(dt;w-L1(dx)). Since gε − g̃ε → 0 in L∞(dt;L1(σMdvdx)), the convergence above

implies (3.8). Thus we finish the proof of the Main Theorem 3.1.

6.2. Proof of Proposition 6.1. We can reduce the proof of the Proposition 6.1 to show that

the projection of Ũε on each fixed acoustic mode goes to zero in L2
loc(dt;L

2(dx)). Furthermore,
the relation

〈Ũε, U τ,k〉H =

∫

Ω

〈
g̃ε , g

τ,k,int
0

〉
dx

implies that the proof of Proposition 6.1 is reduced to showing that :

Proposition 6.2. Assume that αε = O(
√
ε) and let g̃ε be the renormalized fluctuation, satisfying

the scaled Boltzmann equation, and gτ,k,int0 (τ is + or -) be the infinitesimal Maxwellian of
acoustic mode k ≥ 1:

gτ,k,int0 = D
D+2Ψk + ∇xΨk

τiλk
· v + 2

D+2Ψk( |v|
2

2 − D
2 ) .

Then, for any fixed mode k,∫

Ω

〈
g̃ε , g

τ,k,int
0

〉
dx→ 0 in L2(0, T ) , as ε→ 0 .
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Proof. We start from the weak formulation of the rescaled Boltzmann equation (2.9) with the
renormalization Γ defined in (6.1) and the test function Y taken to be the approximate eigen-

functions of Lε constructed in Proposition 5.1 to the order N = 4, namely Y = gτ,kε,4 :
∫

Ω
〈g̃ε(t2)gτ,kε,4 〉 dx−

∫

Ω
〈g̃ε(t1)gτ,kε,4 〉 dx

+
1

ε

∫ t2

t1

∫

Ω
〈g̃εLεgτ,kε,4 〉 dx dt+

1

ε

∫ t2

t1

∫

∂Ω
〈γg̃εγgτ,kε,4 (v ·n)〉 dσx dt

=
1

ε

∫ t2

t1

∫

Ω
〈〈Rεgτ,kε,4 〉〉 dx dt ,

(6.9)

where

Rε = Γ′(Gε)qε +
1

ε

(
gε1
Nε1

+
gε
Nε
− g′ε1
N ′ε1
− g′ε
N ′ε

)
.

Define

b̃τ,kε (t) =

∫

Ω
〈g̃ε(t)gτ,kε,4 〉 dx .

Then from (6.9) b̃τ,kε (t) satisfies

b̃τ,kε (t2)− b̃τ,kε (t1)− 1

ε
iλτ,kε,4

∫ t2

t1

b̃τ,kε (t) dt =

∫ t2

t1

cτ,kε (t) dt , (6.10)

where cτ,kε (t) is:

cτ,kε (t) =− 1

ε

∫

Ω
〈g̃ε(t)Rτ,kε,4〉dx−

1

ε

∫

∂Ω
〈γg̃εγgτ,kε,4 (v ·n)〉 dσx

+
1

ε

∫

Ω
〈〈Rεgτ,kε,4 〉〉 dx .

(6.11)

We claim that the boundary contribution in (6.11) is zero as ε→ 0, i.e.

Lemma 6.1. Let gτ,kε,4 be the approximate eigenfunction of Lε constructed in Proposition 5.1.
Then,

1

ε

∫

∂Ω

〈γg̃εγgτ,kε,4 (v ·n)〉 dσx = Γτ,k1 + Γτ,k2 , (6.12)

where Γτ,k1 is bounded in Lploc(dt) for p > 1, and Γτ,k2 vanishes in L1
loc(dt) as ε→ 0.

6.3. Estimates of b̃τ,kε . From (6.10), b̃τ,kε satisfies the ordinary differential equation

d

dt
b̃τ,kε −

1

ε
iλτ,kε,4 b̃

τ,k
ε = cτ,k1,ε(t) + cτ,k2,ε(t) . (6.13)

The solution to (6.13) is given by

b̃τ,kε (t) = b̃τ,kε (0)e
1
ε
iλτ,kε,4 t +

∫ t

0
[cτ,k1,ε(s) + cτ,k2,ε(s)]e

− 1
ε
iλτ,kε,4 (s−t) ds . (6.14)

From the Proposition 5.1, iλτ,kε,4 = τiλk + iλτ,k1

√
ε+ iλ̃τ,k1 ε, where λ̃τ,k1 = O(1).

1

ε
iλτ,kε,4 t =

1√
ε

[
Re(iλτ,k1 ) +

√
εRe(iλ̃τ,k1 )

]
t

− i
[
τ

1

ε
λk +

1√
ε

Im(iλτ,k1 ) + Im(iλ̃τ,k1 )

]
t .

(6.15)
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Using (6.15), the first term in (6.14) is estimated as follows:

‖b̃τ,kε (0)e
1
ε
iλτ,kε,4 t‖L2(0,T )

=|̃bτ,kε (0)|
[
−2
(

Re(iλτ,k1 ) +
√
εRe(iλ̃τ,k1 )

)]−1/2
(

1− e
1√
ε
[Re(iλτ,k1 )+

√
εRe(iλ̃τ,k1 )]T

)1/2

ε1/4 .

To estimate |̃bτ,kε (0)|, from

b̃τ,kε (0) =

∫

Ω

〈g̃in
ε , g

k,int
0 〉dx+

∫

Ω

〈g̃in
ε , g

τ,k
ε,4 − gk,int

0 〉dx ,

noticing that gτ,k,int
0 ∈Null(L) and ‖〈ζ(v)g̃in

ε 〉‖L2(dx) is bounded for every ζ(v) ∈Null(L), and the

error estimate for gτ,kε,4 − gτ,k,int
0 in (5.11), we deduce that |̃bτ,kε (0)| is bounded. Using the key fact

that Re(iλτ,k1 ) < 0, we deduce that for any 0 < T <∞, sufficiently small ε:

‖b̃τ,kε (0)e−
1
ε2
iλτ,kε,4 t‖L2(0,T ) ≤ Cε1/4 .

In order to estimate the remaining term in (6.14), we observe that for any a ∈ Lp(0, t) and
1 ≤ p, r ≤ ∞, such that p−1 + r−1 = 1, we have

∣∣∣
∫ t

0
a(s)e−

1
ε
iλτ,kε,4 (s−t) ds

∣∣∣ ≤ C
∫ t

0
e
− 1√

ε
Re(iλτ,k1 )(s−t)|a(s)| ds .

Direct calculations show that
∥∥∥∥e
− 1√

ε
Re(iλτ,k1 )(t−s)

∥∥∥∥
Lr(0,t)

= ε1/2r

[
1

−rRe(iλτ,k1 )

(
e
− r√

ε
Re(iλτ,k1 )t − 1

)]1/r

e
− 1√

ε
Re(iλτ,k1 )t

.

Using the fact Re(iλτ,k1 ) < 0 again, we have
∣∣∣
∫ t

0
a(s)e−

1
ε
iλτ,kε,4 (s−t) ds

∣∣∣ ≤ C‖a‖Lp(0,t)ε
1/2r . (6.16)

Now applying a(t) in (6.16) to cτ,k1,ε and cτ,k2,ε , finally we get:

b̃τ,kε → 0 , strongly in L2
loc(dt) .

To finish the proof of the Proposition, we notice that
∫

Ω

〈
g̃ε , g

τ,k,int
0

〉
dx = b̃τ,kε +

∫

Ω

〈g̃ε , gτ,k,int
0 − gτ,kε,4 〉dx .

Applying the error estimate (5.11) in Proposition 5.1, we finish the proof of the Proposition
6.2. �

Consequently, we prove the Proposition 6.1.
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