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CONSTRUCTION OF TWO-BUBBLE SOLUTIONS
FOR SOME ENERGY-CRITICAL WAVE EQUATIONS

JACEK JENDREJ

Abstract. We present a construction of pure two-bubbles for some energy-critical wave equations,
that is solutions which in one time direction approach a superposition of two stationary states both
centered at the origin, but asymptotically decoupled in scale. Our solution exists globally, with
one bubble at a fixed scale and the other concentrating in infinite time, with an error tending
to 0 in the energy space. We treat the cases of the power nonlinearity in space dimension 6,
the radial Yang-Mills equation and the equivariant wave maps equation with equivariance class
k ≥ 3. The concentration speed of the second bubble is exponential for the first two models
and a power function in the last case.

1. Introduction

This note is devoted to the study of the long-time behavior of scalar semilinear energy-critical
focusing wave equations. We consider the case of the power nonlinearity in dimension N ≥ 3:

(NLW) ∂2t u(t, x) = ∆u(t, x) + |u(t, x)| 4
N−2u(t, x), (t, x) ∈ R× RN ,

the equivariant wave-map equation from R2 to S2:

(WM) ∂2t u(t, r) = ∂2ru(t, r) +
1

r
∂ru(t, r)− k2

2r2
sin(2u(t, r)), (t, r) ∈ R× (0,+∞),

and the critical Yang-Mills equation for radial data:

(YM)
∂2t u(t, r) = ∂2ru(t, r) +

1

r
∂ru(t, r)− 4

2r2
u(t, r)(1− u(t, r))

(
1− 1

2
u(t, r)

)
,

(t, r) ∈ R× (0,+∞).

In the case of (NLW) we always assume that the solutions are spherically symmetric in space
variables: u(t, x) = u(t, |x|).

Probably the first rigourous results about the dynamics of solutions of nonlinear wave equations
are the works of Keller [22] and Jörgens [21]. Since that time, nonlinear wave models were examined
by many authors (Morawetz, Strauss, Brenner, Grillakis, Shatah and others) from the point of view
of Hamiltonian and dispersive PDEs.

About ten years ago, Kenig and Merle [23] initiated a detailed study of (NLW) in relation with
the Soliton Resolution Conjecture. This conjecture states that “generically” a solution of a nonlinear
dispersive equation should decompose as a sum of travelling waves (solitons) and a radiation term
(which is a solution of the corresponding linear equation). In other words, elliptic objects should be
the only manifestation of the nonlinearity after a sufficiently long time. This was proved for (NLW)
in the case N = 3 by Duyckaerts, Kenig and Merle [12]. The only other cases where such a decom-
position is known to hold are some completely integrable models, cf. Eckhaus and Schuur [14] for
the KdV equation.

Whether the soliton resolution is known or just believed to hold for some model, solutions which
exhibit no dispersion in one or both time directions play a distinguished role. One obvious example
of such solutions are the solitons, obtained by solving appropriate elliptic equations. The situa-
tion is more complicated if we want to consider solutions decomposing into at least two solitons,
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the so-called (pure) multi-solitons. For completely integrable models such solutions can in principle
be calculated explicitely and they are multi-solitons in both time directions. For non-integrable
equations it is often possible to construct solutions which are multi-solitons say for large positive
times, cf. Martel [27], but generally they are not expected to be multi-solitons for negative times,
cf. Martel and Merle [28].

In the energy-critical setting, the role of solitons is played by the static solutions called bubbles.
The problem of decomposition into bubbles was studied by several authors for the harmonic map
heat flow from S2 to S2, see Topping [44] and references therein. The notion corresponding to
a multi-soliton is that of a multi-bubble, which is a solution of the evoution equation approaching
a superposition of at least two bubbles developing at a single point but at different scales.

In [19], solutions behaving as pure two-bubbles in one time direction were constructed for (NLW)
in dimension N = 6, for (WM) in the case k ≥ 3 and for (YM). The purpose of this note is to
present these results and give the main ideas of the proofs. In Section 2, the meaning of the soliton
resolution in the particular case of energy-critical wave equations is specified. The main results are
stated in Section 3. Section 4 is devoted to the proof in the case of (NLW).

2. Preliminaries

2.1. Scaling invariance. Introducing a supplementary unknown u̇(t), equation (NLW) can be
rewritten in a standard way as a first-order (in time) system:

{
∂tu(t) = u̇(t),

∂tu̇(t) = ∆u(t) + f(u(t)).

By an abuse of notation, we will say that (u(t), u̇(t)) verifies (NLW) if it verifies the equation above.
Equation (NLW) has a natural energy functional, defined for u0 = (u0, u̇0) ∈ E := Ḣ1(RN )×L2(RN )
by the formula

E(u0) :=

∫
1

2
|u̇0|2 +

1

2
|∇u0|2 − F (u0) dx,

where F (u0) := N−2
2N |u0|

2N
N−2 . Note that E(u0) is well-defined due to the Sobolev Embedding

Theorem. The differential of E is DE(u0) = (−∆u0− f(u0), u̇0), where f(u0) = |u0|
4

N−2 ·u0, hence
we can rewrite equation (NLW) as a Hamiltonian PDE:

{
∂tu(t) = J ◦DE(u(t)),

u(t0) = u0 ∈ E .

Here, J :=

(
0 Id
− Id 0

)
is the natural symplectic structure.

Equation (NLW) is locally well-posed in the space E , see for example Ginibre, Soffer and Velo
[15], Shatah and Struwe [39] (the defocusing case), as well as a complete review of the Cauchy
theory in Kenig and Merle [23] (for N ∈ {3, 4, 5}) and Bulut, Czubak, Li, Pavlović and Zhang [4]
(for N ≥ 6). By “well-posed” we mean that for any initial data u0 ∈ E there exists τ > 0 and
a unique solution in some subspace of C([t0 − τ, t0 + τ ]; E), and that this solution is continuous
with respect to the inital data. By standard arguments, there exists a maximal time of existence
(T−, T+), −∞ ≤ T− < t0 < T+ ≤ +∞, and a unique solution u ∈ C((T−, T+); E). If T+ < +∞,
then u(t) leaves every compact subset of E as t approaches T+. A crucial property of the solutions
of (NLW) is that the energy E is a conservation law.

For functions v ∈ Ḣ1
rad(RN ), v̇ ∈ L2

rad(RN ), v = (v, v̇) ∈ E and λ > 0, we denote

vλ(x) :=
1

λ
N−2

2

v
(x
λ

)
, v̇λ(x) :=

1

λ
N
2

v̇
(x
λ

)
, vλ(x) :=

(
vλ, v̇λ

)
.
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A change of variables shows that

E
(
(u0)λ

)
= E(u0).

Equation (NLW) is invariant under the same scaling: if u(t) = (u(t), u̇(t)) is a solution of (NLW)
and λ > 0, then t 7→ u

(
(t− t0)/λ

)
λ
is also a solution with initial data (u0)λ at time t = 0. This is

why equation (NLW) is called energy-critical.
In the case of (WM) and (YM), the energy space is given by E := H× L2(r dr), where H is the

completion of C∞0 ((0,+∞)) for the norm

‖v‖2H := 2π

∫ +∞

0

(
|∂rv(r)|2 + |k

r
v(r)|2

)
rdr

(one takes k = 2 for the Yang-Mills equation). Note that the transformation ṽ(eiθr) := e2iθv(r) de-
fines an isometric embedding of H into Ḣ1(R2;R2), whose image is given by k-equivariant functions
in Ḣ1(R2;R2). With this definition of H, u0 ∈ H forces limr→+∞ u0(r) = 0, but we could just as
well consider states of finite energy such that limr→+∞ u0(r) = lπ with l ∈ Z, see [7, 6] for details.

The energy functionals associated to (WM) and (YM), defined for u0 = (u0, u̇0) ∈ E , are

EWM(u0) := π

∫ +∞

0

(
(u̇0)

2 + (∂ru0)
2 +

k2

r2
(sin(u))2

)
rdr

and

EYM(u0) := π

∫ +∞

0

(
(u̇0)

2 + (∂ru0)
2 +

1

r2
(u0(2− u0))2

)
rdr

respectively. For v = (v, v̇) ∈ E we have the energy-critical scaling

vλ(x) := v
(x
λ

)
, v̇λ(x) :=

1

λ
v̇
(x
λ

)
, vλ(x) :=

(
vλ, v̇λ

)
.

The Cauchy theory in the energy space is due to Shatah and Tahvildar-Zadeh [40].

2.2. Ground states. A fundamental object in the study of (NLW) is the family of stationary
solutions u(t) ≡ ±W λ = (±Wλ, 0), where

W (x) =
(

1 +
|x|2

N(N − 2)

)−N−2
2
.

The functions Wλ are called ground states or bubbles (of energy). They are the only radially
symmetric solutions and, up to translation, the only positive solutions of the critical elliptic problem

(2.1) −∆u− f(u) = 0.

Let us mention that the non-radial solutions of (2.1) are not classified, see [?] for an overview of
the problem. The ground states are the solutions of (2.1) having the least energy, which is related
to their role as “mountain passes” for the potential energy Ep(u0) :=

∫
RN

1
2 |∇u0|2 − F (u0) dx.

Aubin [1] and Talenti [42] proved the ground states achieve the optimal constant in the critical
Sobolev inequality:

‖u‖
L

2N
N−2

‖∇u‖L2

≤
‖W‖

L
2N
N−2

‖∇W‖L2

, ∀u ∈ Ḣ1(RN ).

Payne and Sattinger [34] were the first to make a connection between variational properties of
the ground state and the long-time behavior of solutions of the focusing wave equation.

In the case of the wave maps equation, the stationary states are precisely the harmonic maps.
When the domain is R2 and the target is S2, they correspond to rational complex functions, hence
are completely classified, even in the non-equivariant case. In the special case of k-equivariant
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data, we obtain stationary solutions WWM(r) := 2 arctan(rk) and its rescaled versions WWM
λ (r) :=

2 arctan
((

r
λ

)k), which are the counterparts of the ground states Wλ described above. Viewed as
functions from R2 to S2, WWM

λ are harmonic maps of topological degree k. An elementary proof
shows thatWWM

λ have minimal energy among k-equivariant maps joining 0 at r = 0 to π at r = +∞.
Note that WWM /∈ H precisely because of the fact that WWM(r)→ π as r → +∞.

The stationary solutions of (YM) are WYM
λ (r) := 2r2

λ2+r2
.

2.3. Soliton resolution. The notion of soliton resolution was described in the Introduction in
a rather vague way. In the context of energy-critical equations, the commonly accepted precise mean-
ing of a soliton resolution is provided by the following result of Duyckaerts, Kenig and Merle [12]:

Theorem 1 ([12]). Let N = 3 and let u(t) : [t0, T+)→ E be a radial solution of (NLW). Then one
of the following holds:

• Type I blow-up: T+ <∞ and

lim
t→T+

‖u(t)‖E = +∞.

• Type II blow-up: T+ < ∞ and there exist v0 ∈ E, an integer n ∈ N \ {0}, and for all
j ∈ {1, . . . , n}, a sign ιj ∈ {±1}, and a positive function λj(t) defined for t close to T+ such
that

λ1(t)� λ2(t)� . . .� λn(t)� T+ − t as t→ T+

lim
t→T+

∥∥u(t)−
(
v0 +

n∑

j=1

ιjW λj(t)

)∥∥
E = 0.

• Global solution: T+ = +∞ and there exist a solution vl of the linear wave equation, an
integer n ∈ N, and for all j ∈ {1, . . . , n}, a sign ιj ∈ {±1}, and a positive function λj(t)
defined for large t such that

λ1(t)� λ2(t)� . . .� λn(t)� t as t→ +∞

lim
t→+∞

∥∥u(t)−
(
vl(t) +

n∑

j=1

ιjW λj(t)

)∥∥
E = 0.

�
Remark 2.1. An analogous decomposition for a sequence of times was proved in the non-radial
case by Duyckaerts, Jia, Kenig and Merle [11]. Note that non-radial multi-solitons were constructed
by Martel and Merle [29] using the Lorentz transform.

Remark 2.2. Also for a sequence of times, Côte [5] proved such a decomposition for the wave maps
equation for 1-equivariant data, see also Struwe [41]. In the case of higher equivariance degrees and
for the Yang-Mills equation, this was settled by Jia and Kenig [20].

Remark 2.3. The decompositions in Theorem 1 are proved to hold in the energy space. No
description of the dynamics in any stronger topology is currently available.

3. Examples of solutions with two bubbles

We are ready to state the results of [19].

Theorem 2. There exists a solution u : (−∞, T0]→ E of (NLW) such that

lim
t→−∞

‖u(t)− (W + W 1
κ
e−κ|t|)‖E = 0, with κ :=

√
5

4
.
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Remark 3.1. We construct here pure two-bubbles, that is the solution approaches a superposition
of two stationary states, with no energy transformed into radiation. By the conservation of energy
and the decoupling of the two bubbles, we necessarily have E(u(t)) = 2E(W ). Pure one-bubbles
cannot concentrate and are completely classified, see [13].

Remark 3.2. It was proved in [18], in any dimension N ≥ 3, that there exist no solutions u(t) :
[t0, T+)→ E of (NLW) such that ‖u(t)−(W µ(t)−W λ(t))‖E → 0 with λ(t)� µ(t) as t→ T+ ≤ +∞.

Remark 3.3. In any dimension N > 6 one can expect an analogous result with concentration rate
λ(t) ∼ |t|− 4

N−6 .

The corresponding result for (WM) reads:

Theorem 3. Fix k > 2. There exists a solution u : (−∞, T0]→ E of (WM) such that

(3.1) lim
t→−∞

‖u(t)− (−WWM + WWM
k−2
κ

(κ|t|)−
2

k−2
)‖E = 0, with κ :=

k − 2

2

(8k

π
sin
(π
k

)) 1
k .

Remark 3.4. The constructed solution is a pure two-bubble, hence by the conservation of energy
E(u(t)) = 2E(WWM), and it is clear that it has the homotopy degree 0. In the case of equivariant
class k = 1, Côte, Kenig, Lawrie and Schlag [6] showed that any degree 0 initial data of energy
< 2E(WWM) leads to dispersion (the proof is expected to generalize to all equivariance classes).
Theorem 4 gives the first example of a non-dispersive solution at the threshold energy.

Note that pure two-bubbles of homotopy degree 2k (hence of type bubble-bubble and not bubble-
antibubble) do not exist because the energy of such a map has to be > 2E(WWM). This is similar
to the case of opposite signs for (NLW), see Remark 3.2.

Remark 3.5. The fact that the signs of the bubbles in (3.1) are opposite comes from a slightly
different structure of the corresponding elliptic problem. As a result, the case of opposite signs for
(NLW) resembles the case of the same sign for (WM).

Remark 3.6. It is conceivable that the proof could be adapted to deal with a more general equation
∂2t u = ∂2ru+ 1

r∂ru+ 1
r2

(gg′)(u) with g satisfying the assumptions of [7] and g′(0) ∈ {3, 4, 5, . . .}.
We have a very similar result for (YM):

Theorem 4. There exists a solution u : (−∞, T0]→ E of (YM) such that

lim
t→−∞

‖u(t)− (−WYM + WYM
1
κ
e−κ|t|)‖E = 0, with κ := 2

√
3.

Remark 3.7. The case of wave maps in the equivariance class k = 2 should be almost the same.

Remark 3.8. In all the three cases, we expect the constructed solutions to be smooth and very
unstable.

We see that the common feature of all these theorems is that one bubble is stationary and the other
one concentrates. It is clear that the control of the concentrating bubble is going to be the delicate
part of the proof. The possibility of concentration of a harmonic map at the origin for the wave
maps flow was observed numerically by Bizoń, Chmaj and Tabor [3]. First mathematical results in
this direction were obtained by Krieger, Schlag and Tataru [25, 26], both for the power nonlinearity
case in dimension N = 3 and for the wave maps equation. These seminal works were followed by
[10], [24], [9], [33] and [35].

Stable (in an appropriate topology) blow-up solutions for the wave maps and Yang-Mills equations
were obtained in [38] and [37]. A similar result for (NLW) in dimension N = 4 is proved in [16].

A still different approach to controlling the concentration of one bubble, which is adopted here,
was developped in [17].
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Let us stress that an important difference between our results and other constructions of multi-
solitons lies in the strong interaction of the two bubbles for long times. By this, we mean that the
interaction has an influence on the dynamics – it induces the concentration of the second bubble.
To the author’s knowledge, the only result where a strong interaction of solitons is observed for
a Hamiltonian equation is the recent work of Martel and Raphaël [31].

In the context of the harmonic map heat flow, Topping [43] proved the existence of towers of
bubbles for a well chosen target manifold. Towers of bubbles for the Yamabe flow were constructed
in [8] by using a change of variables which reduces the problem to a construction of spatially
decoupled bubbles.

4. Elements of the proof

In this section the main ideas of the proof of Theorem 2 are presented. The proofs of Theorems 3
and 4 follow a similar scheme.

4.1. Formal computation. The usual method of performing a formal analysis of blow-up solutions
is to search a series expansion with respect to a small scalar parameter depending on time and
converging to 0 at blow-up. In our case the blow-up time is −∞.

Recall that N = 6, hence for v ∈ Ḣ1
rad(R6), and v̇ ∈ L2

rad(R6) we have

vλ(x) :=
1

λ2
v
(x
λ

)
, v̇λ(x) :=

1

λ3
v̇
(x
λ

)
.

We denote Λv := − ∂
∂λvλ|λ=1 = (2 + x · ∇)v̇ and Λ0v̇ := − ∂

∂λ v̇λ|λ=1 = (3 + x · ∇)v̇. For v = (v, v̇)
we denote Λv := (Λv,Λ0v̇).

If u(t) 'W +Wλ(t), then ∂tu(t) ' −λ′(t)ΛWλ(t), hence

u(t) ' (W +Wλ(t), 0)− λ′(t) · (0,ΛWλ(t)) = W + U
(0)
λ(t) + b(t) ·U (1)

λ(t),

with b(t) := λ′(t), U (0) := (W, 0) and U (1) := (0,−ΛW ). This suggests considering b(t) = λ′(t) as
the small parameter with respect to which the formal expansion should be sought. Hence, we make
the ansatz

u(t) = W + U
(0)
λ(t) + b(t) ·U (1)

λ(t) + b(t)2 ·U (2)
λ(t),

and try to find the conditions under which a satisfactory candidate for U (2) = (U (2), U̇ (2)) can be
proposed. Neglecting irrelevant terms and replacing λ′(t) by b(t), we compute

∂2t u(t) = −b′(t)(ΛW )λ(t) +
b(t)2

λ(t)
(Λ0ΛW )λ(t) + lot.

On the other hand, using the fact that f(W +Wλ) = f(W )+f(Wλ)+f ′(Wλ)W ' f(W )+f(Wλ)+
f ′(Wλ) for λ� 1 and f ′(Wλ) = λf ′(W )λ, we get

∆u(t) + f(u(t)) = −b(t)
2

λ(t)
(LU (2))λ(t) + λ(t)f ′(W )λ(t) + lot,

where L := −∆− f ′(W ) is the linearization of −∆− f(u) near u = W . We discover that, formally
at least, we should have

(4.1) LU (2) = −Λ0ΛW +
λ(t)

b(t)2
(
b′(t) · ΛW + λ(t) · f ′(W )

)
.
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The operator L is self-adjoint. Because of the scaling invariance, ΛW ∈ ker(L), which yields a
natural solvability (or Fredholm) condition

∫
ΛW ·

(
−Λ0ΛW +

λ(t)

b(t)2
(
b′(t) · ΛW + λ(t) · f ′(W )

))
dx = 0.

Since 〈ΛW,Λ0ΛW 〉L2 = 0, we get equivalently
∫

ΛW ·
(
b′(t) · ΛW + λ(t) · f ′(W )

)
dx = 0⇔ b′(t) =

5

4
λ(t) = κ2λ(t).

It turns out that if this condition is satisfied, then equation (4.1) has indeed a decaying regular
solution U (2) = Q + λ(t)2

b(t)2
P , where P and Q are some explicit profiles. The formal parameter

equations

(4.2) λ′(t) = b(t), b′(t) = κ2λ(t)

have a solution

(λapp(t), bapp(t)) =
(1

κ
e−κ|t|, e−κ|t|

)
, t ≤ T0 < 0.

In any space dimension N , ignoring the problems related to the slow decay of W , a similar
analysis would yield b′(t) = κ2λ(t)

N−4
2 . For N < 6 this leads to a finite time blow-up, which was

studied in [17] for N = 5. For N > 6, we obtain a global solution λ(t) ∼ |t|− 4
N−6 , see Remark 3.3.

4.2. Control of the error. The computation in the last paragraph leads us to define the following
approximate solution:

ϕ(µ, λ, b) := W µ + U
(0)
λ + b ·U (1)

λ + b2 ·U (2)
λ .

We search a solution which is close in the energy space to ϕ(1, λapp(t), bapp(t)) as t→ −∞.
The key idea is to obtain a uniformly controlled sequence of solutions of (NLW), that is solutions

un(t) : [Tn, T0]→ E with Tn → −∞ such that

(4.3) ‖un(t)−ϕ(1, λapp(t), bapp(t))‖E ≤ Ce−
1
2
κ|t| for t ∈ [Tn, T0],

with C independent of n.
Since the bound (4.3) is the most restricitve at time t = Tn, a natural idea is to impose the

initial condition at this time, which will guarantee that (4.3) will hold at least in a neighborhood
of t = Tn. We consider thus the sequence of solutions un(t) of (NLW) with the initial data

un(Tn) = ϕ(1, λapp(Tn), bapp(Tn)),

where Tn is any decreasing sequence tending to −∞. In fact, an adjustment has to be made because
of the exponential instability of the flow near W , but this is not a major difficulty and will not be
discussed here.

Suppose for a moment that we have proved (4.3) and let us show how to finish the proof of
Theorem 2. The sequence un(T0) being bounded in E , it contains a subsequence (still denoted un)
converging weakly to a certain u0 ∈ E . Let u(t) be the solution of (NLW) with the initial data
u(T0) = u0. Using the profile decomposition of Bahouri and Gérard [2], one can prove that u(t) is
defined for t ∈ (−∞, T0] and for all t ∈ (−∞, T0] we have un(t) ⇀ u(t). By the Fatou property of
the weak limit, we obtain

‖u(t)−ϕ(1, λapp(t), bapp(t))‖E ≤ Ce−
1
2
κ|t| for t ∈ (−∞, T0],

which finishes the proof.
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Let us sketch the proof of (4.3). Using suitable orthogonality conditions in order to determine
µ(t) and λ(t), we decompose un(t) = ϕ(µ(t), λ(t), b(t)) + g(t). The parameter b(t) is defined as
follows:

b(t) := bapp(Tn) + κ2
∫ t

Tn

λ(τ) dτ,

because that is what equation (4.2) indicates. Of course µ(t), λ(t), b(t) and g(t) depend on n. The
goal is to control the size of g(t), uniformly in n, on a time interval [Tn, T0].

To this end, we introduce a mixed energy-virial functional H(t), which is a correction of the
energy functional E(ϕ(t)+g(t))−E(ϕ(t))−〈DE(ϕ(t)), g(t)〉 by a small localized virial term. This
functional has the following coercivity property:

‖g(t)‖2
Ḣ1×L2 . H(t) (modulo the unstable modes).

Moreover, the fact that ϕ(t) is a refined ansatz can be used to show that for some large constant
C0 we have

(4.4) ‖g(t)‖E ≤ C0e
− 3

2
κ|t| for t ∈ [Tn, T ] ⇒ H ′(t) ≤ c · C2

0 · e−3κ|t| for t ∈ [Tn, T ],

with a small constant c0. A classical continuity argument yields the uniform control

(4.5) ‖g‖E ≤ C0e
− 3

2
κ|t|.

While proving (4.4), one shows in particular that the bound ‖g(t)‖E ≤ C0e
− 3

2
κ|t| implies the

following bounds for t ∈ [Tn, T0]:

(4.6)
|µ(t)/µapp(t)− 1| . C0e

− 1
2
κ|t|,

|λ(t)/λapp(t)− 1| . C0e
− 1

2
κ|t|.

This is proved by solving the modulation equations (modulation inequalities, to be precise). Now
(4.6) and (4.5) lead to (4.3).

The idea of constructing a uniformly controlled sequence of solutions converging to a singular
solution was introduced by Merle [32]. Combining this technique with energy estimates was an idea
of Martel [27]. This is a typical scheme for proofs of existence of “special” objects like multi-
solitons or minimal blow-up solutions. Such a proof provides no information on the stability of the
constructed solutions. This being said, we do not expect any finite-codimensional stability of our
solutions, hence the method seems well adapted to the problem at hand.

Raphaël and Szeftel [36] used a virial correction of the energy functional in a similar context
in their study of minimal mass blow-up solutions for the non-homogeneous nonlinear Schrödinger
equation. The first step of the proof (the formal computation) is also inspired by the work of
Martel, Merle and Raphaël [30] on exotic blow-up for the L2-critical generalized Korteweg-de Vries
equation. They observed that the blow-up rate is directly related to the size of interaction of the
bubble with the “background”, which is the heart of our construction of the approximate solution.
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