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CONVERGENCE TO EQUILIBRIUM

FOR LINEAR FOKKER-PLANCK EQUATIONS

ISABELLE TRISTANI

Abstract. In this note, we investigate the spectral analysis and long time asymptotic
convergence of semigroups associated to discrete, fractional and classical Fokker-Planck
equations in some regime where the corresponding operators are close. We successively
deal with the discrete and the classical Fokker-Planck model and the fractional and the
classical Fokker-Planck model. In each case, we present results of uniform convergence
to equilibrium based on perturbation and/or enlargement arguments and obtained in
collaboration with S. Mischler in [7].
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1. Introduction

1.1. The models. In this note, we are interested in the long time asymptotic conver-
gence of semigroups associated to some discrete, fractional and classical Fokker-Planck
equations. They are simple models for describing the time evolution of a density func-
tion f = f(t, v), t ≥ 0, v ∈ Rd, of particles undergoing both diffusion and (harmonic)
confinement mechanisms and write

(1.1) ∂tf = Λf = Df + div(vf), f(0) = f0.

The diffusion term may either be a discrete diffusion

Df = ∆κf := κ ∗ f − ‖κ‖L1f,

for a convenient (at least nonnegative and symmetric) kernel κ. It can also be a fractional
diffusion

(Df)(x) = −(−∆)
α
2 f(v)(1.2)

:= cα

∫

Rd

f(y)− f(v)− χ(v − y)(v − y) · ∇f(v)

|v − y|d+α
dy,
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with α ∈ (0, 2), χ ∈ D(Rd) a truncation function which is radially symmetric and satisfies
the inequality 1B(0,1) ≤ χ ≤ 1B(0,2), and a convenient normalization constant cα > 0. It
can finally be the classical diffusion

Df = ∆f :=

d∑

i=1

∂2
vivif.

1.2. Basic properties. The main features of these equations are (expected to be) the
same: they are mass preserving, namely

〈f(t)〉 = 〈f0〉, ∀ t ≥ 0, 〈f〉 :=

∫

Rd
f dv,

positivity preserving, have a unique positive stationary state with unit mass and that
stationary state is exponentially stable, in particular

(1.3) f(t)→ 0 as t→∞,
for any solution associated to an initial datum f0 with vanishing mass. Such results can
be obtained using different tools as the spectral analysis of self-adjoint operators, some
(generalization of) Poincaré inequalities or logarithmic Sobolev inequalities as well as the
Krein-Rutman theory for positive semigroup.

The aim of this work is to initiate a kind of unified treatment of the above generalized
Fokker-Planck equations and more importantly to establish that the convergence (1.3) is
exponentially fast uniformly with respect to the diffusion term for a large class of initial
data which are taken in a fixed weighted Lebesgue or weighted Sobolev space X.

1.3. Outline of the note. We investigate two regimes where these diffusion operators
are close and for which such a uniform convergence can be established. In Section 3, we
first consider the case when the diffusion operator is fractional

Df = Dεf := −(−∆)(2−ε)/2f, ε ∈ (0, 2),

so that in the limit ε → 0 we also recover the classical diffusion operator D0 = ∆. In
Section 4, we next consider the case when the diffusion operator is discrete

Df = Dεf := ∆κεf, κε :=
1

ε2
kε,

where k is a nonnegative, symmetric, normalized, smooth and decaying fast enough kernel
and where we use the notation kε(v) = k(v/ε)/εd, ε > 0. In the limit ε → 0, one then
recovers the classical diffusion operator D0 = ∆.

1.4. Main result. In order to write a rough version of our main result, we introduce some
notation. We define the weighted Lebesgue space L1

r , r ≥ 0, as the space of measurable
functions f such that f 〈x〉r ∈ L1, where 〈x〉2 := 1 + |x|2. For any f0 ∈ L1

r , we denote
as f(t) the solution to the generalized Fokker-Planck equation (1.1) with initial datum
f(0) = f and then we define the semigroup SΛ on X by setting SΛ(t)f := f(t).

Theorem 1.1 (rough version). There exist r > 0 and ε0 ∈ (0, 2) such that for any
ε ∈ [0, ε0], the semigroup SΛε is well-defined on X := L1

r and there exists a unique positive
and normalized stationary solution Gε to (1.1). Moreover, there exist a < 0 and C ≥ 1
such that for any f0 ∈ X and any ε ∈ [0, ε0], there holds

(1.4) ‖SΛε(t)f −Gε〈f〉‖X ≤ C eat ‖f −Gε〈f〉‖X , ∀ t ≥ 0.
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Our approach is a semigroup approach in the spirit of the semigroup decomposition
framework introduced by Mouhot in [8] and developed subsequently in [5, 2, 10, 4, 3].
Theorem 1.1 generalizes to the discrete diffusion Fokker-Planck equation similar results
obtained for the classical Fokker-Planck equation in [2, 4] (Section 4). It also makes
uniform with respect to the fractional diffusion parameter the convergence results obtained
for the fractional diffusion equation in [10] (Section 3). It is worth mentioning that there
exists a huge literature on the long-time behaviour for the Fokker-Planck equation as
well as (to a lesser extend) for the fractional Fokker-Planck equation. We refer to the
references quoted in [2, 4, 10] for details. There also probably exist many papers on the
discrete diffusion equation since it is strongly related to a standard random walk in Rd,
but we were not able to find any precise reference in this PDE context.

2. Elements of proof in an abstract setting

2.1. Notations. In what follows, for some given Banach spaces (E, ‖ · ‖E) and (E , ‖ · ‖E),
we denote by B(E, E) the space of bounded linear operators from E to E and we denote
by ‖ · ‖B(E,E) or ‖ · ‖E→E the associated operator norm. We write B(E) = B(E,E) when
E = E . We denote by C (E, E) the space of closed unbounded linear operators from E
to E with dense domain, and C (E) = C (E,E) in the case E = E . Moreover, for a Banach
space X and Λ ∈ C (X) we denote by SΛ(t), t ≥ 0, its associated semigroup. An eigenvalue
ξ ∈ Σ(Λ) is said to be isolated if there exists r > 0 such that

Σ(Λ) ∩ {z ∈ C, |z − ξ| ≤ r} = {ξ}.
In the case when ξ is an isolated eigenvalue we may define ΠΛ,ξ ∈ B(X) the associated
spectral projector by

ΠΛ,ξ := − 1

2iπ

∫

|z−ξ|=r′
(Λ− z)−1 dz

with 0 < r′ < r. When moreover the so-called “algebraic eigenspace” R(ΠΛ,ξ) is finite
dimensional we say that ξ is a discrete eigenvalue, written as ξ ∈ Σd(Λ).

2.2. Strategy of the proof. Let us explain our approach. First, we may associate a
semigroup SΛε to the evolution equation (1.1) in many Sobolev spaces, and that semigroup
is mass preserving and positive. In other words, SΛε is a Markov semigroup and it is then
expected that there exists a unique positive and unit mass steady state Gε to the equation
(1.1). Next, we are able to establish that the semigroup SΛε splits as

SΛε = S1
ε + S2

ε ,(2.5)

S1
ε ≈ etTε , Tε finite dimensional, S2

ε = O(eat), a < 0,

in these many weighted Sobolev spaces. The above decomposition of the semigroup is the
main technical issue of the paper. It is obtained by introducing a convenient splitting

(2.6) Λε = Aε + Bε
where Bε enjoys suitable dissipativity property and Aε enjoys some suitable Bε-power
regularity. It is worth emphasizing that we are able to exhibit such a splitting with uniform
(dissipativity, regularity) estimates with respect to the diffusion parameter ε ∈ [0, ε0] in
several weighted Sobolev spaces.

As a consequence of (2.5), we may indeed apply the Krein-Rutman theory developed
in [6, 3] and exhibit such a unique positive and unit mass steady state Gε. Of course
for the classical and fractional Fokker-Planck equations the steady state is trivially given
through an explicit formula (the Krein-Rutman theory is useless in that cases). A next
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direct consequence of the above spectral and semigroup decomposition (2.5) is that there
is a spectral gap in the spectral set Σ(Λε) of the generator Λε, namely

(2.7) λε := sup{<e ξ ∈ Σ(Λε)\{0}} < 0,

and next that an exponential trend to the equilibrium can be established, namely

(2.8) ‖SΛε(t)f‖X ≤ Cε eat ‖f‖X ∀ t ≥ 0, ∀ ε ∈ [0, ε0], ∀ a > λε,

for any initial datum f ∈ X with vanishing mass.

Our final step consists in proving that the spectral gap (2.7) and the estimate (2.8) are
uniform with respect to ε, more precisely, there exists λ∗ < 0 such that λε ≤ λ∗ for any
ε ∈ [0, ε0] and Cε can be chosen independent to ε ∈ [0, ε0].

2.3. Enlargement theorem. A first way to get such uniform bounds is just to have in
at least one Hilbert space Eε ⊂ L1(Rd) the estimate

∀ f ∈ D(Rd), 〈f〉 = 0, (Λεf, f)Eε ≤ λ∗‖f‖2Eε ,

and then (2.8) essentially follows from the fact that the splitting (2.6) holds with operators
which are uniformly bounded with respect to ε ∈ [0, ε0]. It is the strategy we use in the
case of the fractional diffusion (Section 3) and the work has already been made in [10]
except for the simple but fundamental observation that the fractional diffusion operator is
uniformly bounded (and converges to the classical diffusion operator) when it is suitable
(re)scaled.

We here state the abstract enlargement theorem from [2] that we use:

Theorem 2.2. Let E and E two Banach spaces with E ⊂ E dense with continuous em-
bedding and consider L ∈ C (E), L ∈ C (E) with L|E = L. We suppose that the operators
L and L split as L = A+B and L = A+B with A|E = A and B|E = B. We assume that
there exist a ∈ R, n ∈ N such that:

(E1) Localization of the spectrum of L:

Σ(L) ∩Da = {0} ⊂ Σd(L),

where Da := {ξ ∈ C, <e ξ > a}; L generates a semigroup on E and L − a is
dissipative on R(Id−ΠL,0).

(E2) Dissipativity of B and boundedness of A:
(B − a) is hypodissipative on E and A ∈ B(E), A ∈ B(E).

(E3) Regularizing properties of Tn(t) := (ASB(t))(∗n):

‖Tn(t)‖B(E,E) ≤ Ca,n eat.

Then, the spectrum Σ(L) satisfies in E the separation property:

Σ(L) ∩Da = {0} ⊂ Σd(L).

Moreover, for any initial datum f ∈ E and any a′ > a, we have the following estimate:

∀ t ≥ 0,
∥∥∥SL(t)f −ΠL,0 SL(t)f

∥∥∥
E
≤ Ca′ ea

′t‖f −ΠL,0 f‖E .

Isabelle Tristani
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2.4. Perturbative theorem. A second way to get the desired uniform estimate is to use
a perturbation argument. Observing that, in the discrete case (Section 4),

∀ ε ∈ [0, ε0], Λε − Λ0 = O(ε),

for a suitable operator norm, we are able to deduce that ε 7→ λε is a continuous function
at ε = 0, from which we readily conclude. We use here again that the considered model
converges to the classical Fokker-Planck equation. In other words, the discrete model can
be seen as (singular) a perturbation of the limit equation and our analyze takes advantage
of such a property in order to capture the asymptotic behaviour of the related spectral
objects (spectrum, spectral projector) and to conclude to the above uniform spectral
decomposition. This kind of perturbative method has been introduced in [5] and improved
in [9]. We here give a new and improved version of the abstract perturbation argument
where some dissipativity assumptions are relaxed with respect to [9] and only required to
be satisfied on the limit operator (ε = 0). Here is a version of this perturbative theorem
in an abstract setting:

Theorem 2.3. We consider (Λε)ε≥0 a family of operators which split into two parts as
Λε = Aε + Bε and three Banach spaces X1 ⊂ X0 ⊂ X−1 with continuous and dense
embeddings. We suppose that exist a ∈ R, n ∈ N and ε0 > 0 such that the following
assumptions are satisfied:

(P1) Localization of spectrum of Λ0: in X0 and X1, we have

Σ(Λ0) ∩Da = {0} ⊂ Σd(Λ0).

(P2) Dissipativity of Bε and boundedness of Aε:
for any ε ∈ [0, ε0], Bε − a is hypodissipative in X0, B0 − a is hypodissipative in Xj

and Aε ∈ B(Xj) for j = −1, 0, 1.

(P3) Regularizing properties of Tn(t) := (Aε SBε(t))(∗n):
for any ε ∈ [0, ε0], Tn satisfies for j = −1, 0:

‖Tn(t)‖B(Xj ,Xj+1) dt ≤ Ca,n e
at.

(P4) Estimate on Λε − Λ0: for j = 0, 1,

‖Aε −A0‖B(Xj ,Xj−1) + ‖Bε − B0‖B(Xj ,Xj−1) ≤ η1(ε) −−−→
ε→0

0.

Then, there exist ε1 ∈ (0, ε0] and η2(ε)→ 0 as ε→ 0 such that for any ε ∈ (0, ε1],

Σ(Λε) ∩Da = {ξε1, . . . , ξεk} ⊂ Σd(Λε);

∀ 1 ≤ j ≤ k, |ξεj | ≤ η2(ε).

dim R(ΠΛε,ξε1
+ · · ·+ ΠΛε,ξεk

) = dim R(ΠΛ0,0).

Moreover, for any a′ ∈ (a,∞) \ {<e ξε1, . . . ,<e ξεk} and for any f ∈ X0, we have for
any t ≥ 0:

∥∥∥SΛε(t)f −
k∑

j=1

SΛε(t)ΠΛε,ξεj
f
∥∥∥
X0

≤ Ca′ ea
′t
∥∥∥f −

k∑

j=1

ΠΛε,ξεj
f
∥∥∥
X0

.
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3. Fractional and classical Fokker-Planck equations

3.1. The equations and the result. In this part, for sake of simplicity, we denote
α := 2− ε ∈ (0, 2] and we deal with the equations

(3.9)

{
∂tf = −(−∆)α/2f + div(vf) = Λ2−αf =: Lαf, α ∈ (0, 2)

∂tf = ∆f + div(vf) = Λ0f =: L2f.

We here recall that the fractional Laplacian ∆α/2f is defined for a Schwartz function f
through the integral formula (1.2). Moreover, the constant cα in (1.2) is chosen such that

cα
2

∫

|z|≤1

z2
1

|z|d+α
= 1,

which implies that cα ≈ (2−α). By duality, we can extend the definition of the fractional
Laplacian to the following class of functions:

{
f ∈ L1

loc(Rd),
∫

Rd
|f(x)| 〈x〉−d−α dx <∞

}
.

In particular, one can define (−∆)α/2m when q < α.
In this part, we would like to apply an enlargement argument (Theorem 2.2) to this

family of equations (3.9) and obtain a result uniform in α ∈ [α0, 2]. To do that, it is
necessary to be able to check that the assumptions of Theorem 2.2 are fulfilled uniformly
in α.

We recall that the equation ∂tf = Lαf admits a unique equilibrium of mass 1 that
we denote Gα (see [1] for the case α < 2). Moreover, if α < 2, one can prove the
following estimate Gα(x) ≈ 〈x〉−d−α (see [10]) and for α = 2, we have an explicit formula

G2(x) = (2π)−d/2e−|x|
2/2. The main result of this section reads:

Theorem 3.4. Assume α0 ∈ (0, 2) and q < α0. There exists an explicit constant a0 < 0
such that for any α ∈ [α0, 2], the semigroup SLα(t) associated to the fractional Fokker-
Planck equation (3.9) satisfies: for any f ∈ L1

q, any a > a0 and any α ∈ [α0, 2],

‖SLα(t)f −Gα〈f〉‖L1
q
≤ Caeat‖f −Gα〈f〉‖L1

q

for some explicit constant Ca ≥ 1. In particular, the spectrum Σ(Lα) of Lα satisfies the
separation property Σ(Lα) ∩Da0 = {0} in L1

q for any α ∈ [α0, 2].

3.2. Idea of the proof. Let us consider α0 ∈ (0, 2) and q < α0. For sake of simplicity,

we denote m(v) := 〈v〉q and ∆α := −(−∆)α/2. The spaces that we are going to consider
in view of applying the enlargement theorem are:

Eα := L2(G−1/2
α ) ⊂ E := L1(m).

The goal is to apply the enlargement theorem (Theorem 2.2) for each α ∈ [α0, 2]. To do
that, we introduce the following splitting of the operator Lα:

Aαf := M χRf, Bαf := Lαf −Aαf
where χR ∈ D(Rd) satisfies 1B(0,R) ≤ χR ≤ 1B(0,2R) for some constants M , R ∈ R+ to be
determined later.

Isabelle Tristani
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3.2.1. Check of (E1). We recall a result from [1] which establishes an exponential decay

to equilibrium for the semigroup SLα(t) in the small space L2(G
−1/2
α ).

Theorem 3.5. There exists an explicit constant λ > 0 such that for any α ∈ (0, 2),

(1) in Eα = L2(G
−1/2
α ), there holds Σ(Lα) ∩D−λ = {0};

(2) the following estimate holds: for any f ∈ Eα and any a > −λ,

‖SLα(t)f −Gα〈f〉‖Eα ≤ eat ‖f −Gα〈f〉‖Eα , ∀ t ≥ 0.

3.2.2. Check of (E2). We first recall some elements on the notion of dissipativity. An
operator Λ − a is said to be dissipative in (X, ‖ · ‖X) if for any f ∈ D(Λ), there exists
φ ∈ F (f) := {φ ∈ X ′, 〈f, φ〉 = ‖f‖2X = ‖φ‖2X′} such that <e〈(Λ − a)f, φ〉 ≤ 0. We do
not enter into details concerning the notion of hypodissipativity but one can keep in mind
that hypodissipativity is nothing but dissipativity for an equivalent norm.

In practice, there is no need to go back to the definition given above. It is enough to
estimate integrals to prove that an operator is dissipative. For example, if we want to
prove that Λ− a is dissipative in X = L1(m), showing the inequality:

∀ f ∈ D(Λ),

∫

Rd
(Λf) sign(f)m ≤ a

∫

Rd
|f |m

is enough to conclude. Indeed, if we consider f ∈ D(Λ), one can define ϕf ∈ X ′ by

〈ϕf , h〉 =

(∫

Rd
h sign(f)m

)
‖f‖L1(m), ∀h ∈ X

and both check that ϕf ∈ F (f) and <e〈(Λ− a)f, ϕf 〉 ≤ 0.
Let us now go back to our operator Lα. Before going into the proof of the dissipativity

of Bα, one can notice that Aα ∈ B(E) and B(E) since Aα is just a truncation operator.
To get the dissipativity properties of Bα, we first estimate the integral

∫
Rd(Lαf) sign(f)m.

This proof is an adaptation of the proof of Lemma 5.1 from [10] taking into account the
constant cα. Indeed, we have

∫

Rd
(Lαf) signf m ≤

∫

Rd
|f |m

(
∆α(m)

m
− v · ∇m

m

)
.

We can then show that thanks to the rescaling constant cα, ∆α(m)/m goes to 0 at infinity
uniformly in α ∈ [α0, 2). As a consequence, if a > −q, since (v · ∇m)/m goes to −q at
infinity, one may choose M and R such that for any α ∈ [α0, 2),

∆α(m)

m
− v · ∇m

m
−M χR ≤ a, on Rd,

which gives us the dissipativity of Bα uniformly in α in E .
Finally, up to change the constants M and R, if a > min(−λ,−q) (where λ is defined in

Theorem 3.5), one can check that Bα − a is also dissipative in Eα using the dissipativity
property of Lα coming from Theorem 3.5.

3.2.3. Check of (E3). We now want to investigate the regularization properties of the
semigroup AαSBα(t). More precisely, we want to prove that taking the n-convolution of
this semigroup allows us to go from the large space E into the small one Eα. Let us notice
that we can get rid of the weights thanks to the truncation operator Aα. It remains to
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prove that the semigroup SBα(t) regularizes from L1 to L2. The key argument to get this
kind of property is the fractional Nash inequality :

‖f‖L2 ≤ C ‖f‖α/(d+α)
L1 ‖f‖d/(d+α)

Ḣα/2
, ∀ f ∈ L1(Rd) ∩Hα/2(Rd).

The following computations allow to understand the role of Nash inequality. If we consider
ft solution of ∂tft = Bαft, f0 = f , we can compute

1

2

d

dt
‖SBα(t)f‖2L2 =

∫

Rd
(Bαft) ft.

It is thus crucial to estimate the integral
∫
Rd(Bαf) f . We have:

(3.10)

∫

Rd
(Bαf) f ≤ −1

2

∫

Rd×Rd
(f(v)− f(y))2 |v − y|−d−α dy dv + b

∫

Rd
f2

≤ −1

2
‖f‖2

Ḣα/2 + b ‖f‖2L2 ,

≤ −C ‖f‖2(d+α)/d
L2 ‖f‖−(2α)/d

L1 + b ‖f‖2L2 , b ∈ R+.

Consequently, we have a non positive term which is going to induce a gain of regularity.
Thanks to this inequality, we can obtain a differential inequality on ft = SBα(t)f and
obtain:

‖SBα(t)f‖L2 ≤ C ebt

td/(2α)
‖f‖L1 , ∀ t ≥ 0.

One can notice that we have the gain of regularity that we wanted. However, the rate in
the previous equality is not the one that we expected. But, thanks to a trick developed
in [2, 4], one can recover the wanted rate taking the n-convolution of the semigroup, for
n large enough. As a conclusion, one can obtain that there exists n ∈ N such that

‖(AαSBα(t))(∗n)‖B(E,Eα) ≤ C eat, ∀ t ≥ 0

which concludes this part.

3.2.4. Conclusion. In summary, we have checked that assumptions (E1), (E2) and (E3)
are fulfilled for any α ∈ [α0, 2]. We can thus apply the enlargement theorem (Theorem 2.2)
for each α with the spaces Eα ⊂ L1(〈v〉q) with q < α0. The fact that the assumptions are
satisfied uniformly in α implies that we obtain a rate of decrease for the semigroup SLα(t)
which is uniform with respect to α in Theorem 3.4.

4. Discrete and classical Fokker-Planck equations

4.1. The equations and the result. In this section, we consider a kernel k ∈W 2,1(Rd)∩
L1

3(Rd) which is symmetric, i.e. k(−v) = k(v) for any v ∈ Rd, satisfies the normalization
condition

(4.11)

∫

Rd
k(v)




1
v

v ⊗ v


 dv =




1
0

2Id


 ,

as well as the positivity condition: there exist κ0, ρ > 0 such that

(4.12) k ≥ κ0 1B(0,ρ).
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We define kε(v) := 1/εdk(v/ε), v ∈ Rd for ε > 0, and we consider the discrete and
classical Fokker-Planck equations

(4.13)




∂tf =

1

ε2
(kε ∗ f − f) + div(vf) =: Λεf, ε > 0,

∂tf = ∆f + div(vf) =: Λ0f.

The goal of this part is to get a result of convergence to the equilibrium uniform with
respect to the parameter ε. To do that, we are going to combine the two theorems exposed
in the abstract section (Section 2). First, we apply the perturbative one (Theorem 2.3)
and then, in order to get a result of convergence in a weighted L1 space, we conclude by
using the enlargement theorem (Theorem 2.2).

The main result of the section reads as follows.

Theorem 4.6. Let us assume that r > d/2 and consider a symmetric kernel k belonging
to W 2,1(Rd) ∩ L1

2r0+3 where r0 > max(r + d/2, 5 + d/2) which satisfies (4.11) and (4.12).
(1) For any ε > 0, there exists a positive and unit mass normalized steady state Gε in

L1
r(Rd) to the discrete Fokker-Planck equation (4.13).
(2) There exist explicit constants a0 < 0 and ε0 > 0 such that for any ε ∈ [0, ε0], the

semigroup SΛε(t) associated to the discrete Fokker-Planck equation (4.13) satisfies: for
any f ∈ L1

r and any a > a0,

‖SΛε(t)f −Gε〈f〉‖L1
r
≤ Ca eat ‖f −Gε〈f〉‖L1

r
, ∀ t ≥ 0,

for some explicit constant Ca ≥ 1. In particular, the spectrum Σ(Λε) of Λε satisfies the
separation property Σ(Λε) ∩Da0 = {0} in L1

r, where we recall that Dα is defined through
Dα = {ξ ∈ Rd; <e ξ > α}.
4.2. Idea of the proof. We recall that χ ∈ D(Rd) is a truncation function radially
symmetric and satisfying 1B(0,1) ≤ χ ≤ 1B(0,2). We define χR by χR(v) := χ(v/R) for
R > 0 and we denote χcR := 1− χR.

For ε > 0, we define the splitting Λε = Aε + Bε with

Aεf := M χR (kε ∗ f),

Bεf :=

(
1

ε2
−M

)
(kε ∗ f − f) +M χcR (kε ∗ f − f) + div(vf)−M χR f,

for some constants M , R to be chosen later. Similarly, we define the splitting Λ0 = A0+B0

with A0f := M χRf and thus B0f := Λ0f −M χRf for some constants M , R to be chosen
later.
First step of the proof. The first step is to develop the perturbative argument coming
from Theorem 2.3 with the following spaces:

X1 := H6
r0+1 ⊂ X0 := H3

r0 ⊂ X−1 := L2
r0 ,

where r0 > d/2 + 5, we denote m(v) := 〈v〉r0 .

4.2.1. Check of (P1). The behavior of the semigroup associated to Λ0, the classical Fokker-
Planck operator has been largely studied for a few decades by different means: Logarith-
mic Sobolev inequalities , Poincaré inequality and Lyapunov condition in spaces of type

L2(e|v|
2/2) with a weight prescribed by the maxwellian equilibrium. More recently, im-

provements have been made in the sense that the space in which such a decay property
holds has been enlarged thanks to the theory developed in [2] by Gualdani et al. and [4]
by Mischler and Mouhot (Theorem 2.2). In particular, we have the following result:
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Theorem 4.7. Consider i ∈ {−1, 0, 1}. There exists a0 < 0 such that for any f ∈ Xi and
any a > a0,

‖SΛ0(t)f −G0〈f〉‖Xi ≤ Ca eat ‖f −G0〈f〉‖Xi , ∀ t ≥ 0

where SΛ0(t) is the semigroup associated to the generator Λ0 and G0 is the unique equilib-
rium of the equation of mass 1.

We thus deduce that (P1) is checked.

4.2.2. Check of (P2). First, we clearly have that Aε is bounded in Xi, for i ∈ {−1, 0, 1}
uniformly in ε. This comes from Young inequality and the fact that ‖kε‖L1 = 1.

Concerning the dissipativity properties of Bε, we just give an example of computation
in L2(m) with m(v) = 〈v〉r0 . We split the operator in several pieces

Bεf =

(
1

ε2
−M

)
(kε ∗ f − f) +M χcR (kε ∗ f − f)

+ div(vf)−M χR f =: B1
εf + · · ·+ B4

εf,

and we estimate each term

Ti :=

∫

Rd

(
Biεf

)
f m2

separately. From now on, we consider a > d/2− r0, we fix ε1 > 0 such that M ≤ 1/(2ε2
1)

and we consider ε ∈ (0, ε1].
We first deal with T1. We observe that

(4.14) (f(y)− f(v)) f(v) = −1

2
(f(y)− f(v))2 +

1

2
(f2(y)− f2(v)).

We then compute

T1 =

(
1

ε2
−M

)∫

Rd×Rd
kε(v − y) (f(y)− f(v)) f(v)m2(v) dy dv

≤ 1

2

(
1

ε2
−M

)∫

Rd×Rd

(
f2(y)− f2(v)

)
kε(v − y)m2(v) dy dv

=
1

2

(
1

ε2
−M

)∫

Rd×Rd

(
m2(y)−m2(v)

)
kε(v − y) f2(v) dy dv,

where we have performed a change of variables to get the last equality. From a Taylor
expansion, we have

m2(y)−m2(v) = (y − v) · ∇m2(v) + Θ(v, y),

where

|Θ(v, y)| ≤ 1

2

∫ 1

0
|D2m2(v + θ(y − v))(y − v, y − v)| dθ

≤ C |v − y|2 〈v〉2r0−2 〈v − y〉2r0−2,

for some constant C ∈ (0,∞). The term involving the gradient of m2 gives no contribution
because of (4.11) and we thus obtain

(4.15)

T1 ≤ C
(
1−Mε2

) ∫

Rd×Rd
kε(v − y)

|v − y|2
ε2

〈v − y〉2r0−2 dy f2(v)〈v〉2r0−2 dv

≤ C
∫

Rd
f2(v) 〈v〉2r0−2 dv.
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We now treat the second term T2. Proceeding as above and thanks to (4.14) again, we
have

T2 =

∫

Rd×Rd
M χcR(v) kε(v − y) (f(y)− f(v)) f(v)m2(v) dy dv

≤ M

p

∫

Rd×Rd
k(z) {χcR(v + εz)m2(v + εz)− χcR(v)m2(v)} dz f2(v) dv

Using the mean value theorem

χcR(v + εz) = χcR(v) + ε z · ∇χcR(v + θεz), m2(v + εz) = m2(v) + εz · ∇m2(v + θ′εz),

for some θ, θ′ ∈ (0, 1), and the estimates

|∇χcR| ≤ CR and |∇m2(v + θ′εz)| ≤ C 〈v〉2q−1〈z〉2q−1,

we conclude that

(4.16) T2 ≤M CR ε

∫

Rd
f2m2.

As far as T3 is concerned, we just perform an integration by parts:

(4.17)

T3 = d

∫

Rd
f2m2 − 1

2

∫

Rd
f2 div(vm2)

=

∫

Rd
f2(v)m2(v)

(
d

2
− r0 |v|2
〈v〉2

)
dv.

The estimates (4.15), (4.16) and (4.17) together give

∫

Rd
(Bεf) f m2 ≤

∫

Rd
f2m2

(
C 〈v〉−2 +

d

2
− r0 |v|2
〈v〉2 +M CR ε−M χR

)

=

∫

Rd
f2m2 (ψεR −M χR) ,

where we have denoted

(4.18) ψεR(v) := C 〈v〉−2 +
d

2
− r0 |v|2
〈v〉2 +M CR ε.

Because ψεR(v) → d/2 − r0 when ε → 0 and |v| → ∞, and a > d/2 − r0, we can choose
M ≥ 0, R ≥ 0 and ε0 ≤ ε1 such that for any ε ∈ (0, ε0],

∀ v ∈ Rd, ψεR(v) ≤ a.

As a conclusion, for such a choice of constants, we obtain the uniform dissipativity of Bε
in L2

r0 . We refer to [2, 4] for the proof in the case ε = 0.
We do not enter into details concerning the dissipativity properties of Bε in higher

Sobolev norms of kind Hs
r0 with s ≥ 1. The notion of hypodissipativity is here necessary.

Indeed, we are not able to prove that Bε is dissipative in Hs
r0 for s ≥ 1. However, we can

prove such a property for an equivalent norm to the usual Hs norm, which corresponds
with the notion of hypodissipativity.
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4.2.3. Check of (P3). We here need to prove that the semigroup AεSBε(t) regularizes
from L2 to H1. Indeed, if we are able to do that, if we take n large enough, we’ll have the
desired result: (AεSBε)(∗n)(t) regularizes from Xi to Xi+1, i = −1, 0.

To get such a property, we are going to exploit the non positive term coming from the
decomposition (4.14): we consider ft solution of

∂tft = Bεft, f0 = f.

Then

1

2

d

dt
‖ft‖2L2(m) =

∫

Rd
(Bεft) ftm2

≤ − 1

4ε2

∫

Rd×Rd
(ft(y)− ft(v))2 kε(v − y) dy dv + a ‖ft‖2L2(m).

One can notice that this computation is similar to the one done for the fractional Fokker-
Planck equation (3.10). However, in the latter case, it was easy to idendify the non positive
term (a homogeneous fractional Sobolev norm). In our case, it is not clear that the non
positive term induces a gain of regularity. The key estimate, which is obtained thanks to
the assumptions made on the kernel k, is the following:

‖kε ∗v f‖2Ḣ1 ≤
K

ε2

∫

Rd×Rd
(f(y)− f(v))2 kε(v − y) dy dv.

We can then prove that:
∫ t

0
‖kε ∗v fs‖2Ḣ1e

−2as ds ≤ − 1

2a
‖f‖2L2(m), ∀ t ≥ 0,

and then ∫ ∞

0
‖AεSBε(s)f‖H1(m) e

−as/2 ds ≤ C ‖f‖L2(m).

If we take the 2-convolution of the semigroupAεSBε(t), we are able to recover a pointwise of
type of (P3). Then, taking the n convolution of the semigroup AεSBε(t) for n large enough

allows us to recover the good rate in the last inequality and prove that (AεSBε)(∗n)(t)
regularizes from Xi to Xi+1 for i = −1, 0.

4.2.4. Check of (P4). The proof of the convergences for s ∈ N

‖Aε −A0‖B(Hs+1(m),Hs(m)) −−−→
ε→0

0 and ‖Bε − B0‖B(Hs+3(m),Hs(m)) −−−→
ε→0

0

is quasi immediate. Let us just mention that we need to perform a Taylor expansion to
prove the second one.

4.2.5. Krein-Rutman argument. Before going into the conclusion given by the perturbative
argument, let us underline the fact that the semigroup SΛε(t) is a positive semigroup.
Moreover, we can prove that it satisfies a strong maximum principle thanks to (4.12). We
can thus use the Krein-Rutamn theory revisited in [6] which implies that for any ε > 0,
there exists a unique Gε > 0 such that ‖Gε‖L1 = 1, ΛεGε = 0 and Πεf = 〈f〉Gε. It also
implies that for any ε > 0, there exists aε < 0 such that in X = L1

r or X = Hs
r0 for any

s ∈ N, there holds

Σ(Λε) ∩Daε = {0}
and

(4.19) ∀ t ≥ 0, ‖SΛε(t)f − 〈f〉Gε‖X ≤ eat‖f − 〈f〉Gε‖X , ∀ a > aε.
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4.2.6. Conclusion 1. Combining this argument with the perturbative one, we are thus able
to prove the following proposition:

Proposition 4.8. There exist a0 < 0 and ε0 > 0 such that for any ε ∈ [0, ε0], the following
properties hold in X0 = H3

r0:

(1) Σ(Λε) ∩Da0 = {0};
(2) for any f ∈ X0 and any a > a0,

‖SΛε(t)f −Gε〈f〉‖X0 ≤ Ca eat ‖f −Gε〈f〉‖X0 , ∀ t ≥ 0

for some explicit constant Ca > 0.

Second step of the proof. We now want to enlarge the space in which the conclusion
of the previous proposition holds. To do that, we use the enlargement Theorem 2.2. Our
“small” space is H3

r0 and our “large” space is L1
r (notice that r0 > r + d/2 implies the

embedding H3
r0 ⊂ L1

r) and we use exactly the same splitting as in the previous part. (E1)
is satisfied from the first step of the proof. The boundedness of Aε and the dissipativity
of Bε are trivially satisfied similarly as in the first step of the proof and thus (E2) is
checked. However, it remains to prove that the semigroup AεSBε(t) regularizes from L1

to L2 to get that (E3) is checked. To do that, we use a duality argument. Performing
similar computations as for the check of (P3), we show that for any s ∈ N (in particular
for s > d/2), there exists n ∈ N such that

(A∗εSB∗ε (t))(∗n) : L2 → Hs

where A∗ε and B∗ε are the formal dual operators of Aε and Bε. Consequently,

(SBε(t)Aε)(∗n) : H−s → L2.

We then use the Sobolev embedding L1 ↪→ H−s for s > d/2 to conclude that

(AεSBε(t))(∗(n+1)) : L1 → L2.

Up to increase the value of n, we can suppose that this regularization property is satisfied
with a good rate, which yields the result and conclude the proof of Theorem 4.6.

5. Perspectives

The Landau equation is a kinetic model in plasma physics and writes

∂tf = QL(f, f).

It can be obtained in grazing collision limit of the Boltzmann equation. For a good choice
of rescaling of the Boltzmann collision operator Bε, the following convergence holds

QBε(g, f)→ QL(g, f) as ε→ 0.

In order to study the longtime behavior of those equations, we can study the linearized
problems and consider both linearized problems in the same family:

{
∂tf = Λεh := QBε(µ, h) +QBε(h, µ), ε > 0

∂tf = Λ0h := QL(µ, h) +QL(h, µ),

where µ is the maxwellian equilibrium of both equations. The perturbative strategy used
to handle the Fokker-Planck problems might be applied in this case, it would provide us
a rate of convergence to equilibrium uniform with respect to ε for Boltzmann and Landau
equations in a close to equilibrium regime.
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