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BOUNDS FOR KDV AND THE 1-D CUBIC NLS EQUATION
IN ROUGH FUNCTION SPACES

HERBERT KOCH

Abstract. We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-
de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori
local in time Hs bounds in terms of the Hs size of the initial data for s ≥ − 1

4 (joint work

with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in H−1

(joint work with T. Buckmaster [2]).

1. Introduction

The Korteweg-de-Vries (KdV) equation

(1) ut + uxxx − 6uux = 0

its close relatives, the modified KdV (mKdV) equation

(2) vt + vxxx − v2vx = 0

and the cubic Nonlinear Schrödinger equation (NLS)

(3) iut − uxx ± u|u|2 = 0, u(0) = u0,

in one space dimension, either focusing or defocusing have rich, closely related and multiply
connected structures: KdV and NLS are the most important asymptotic equations in non-
linear wave propagation. All three equations have a property called integrability. Integrable
equations often come in families called hierarchies. It is interesting to note that mKdV is
the second equation in the NLS hierarchy, and the flows of complex mKdV and defocusing
NLS commute. On the other hand the Miura map

v → vx + v2

maps solutions of mKdV to solutions of KdV.
The KdV is invariant with respect to the scaling

u(x, t)→ λ2u(λx, λ2t)

as is the Sobolev space Ḣ−
3
2 with −3/2 derivatives in L2, mKdV and NLS are invariant with

respect to the scaling
u(x, t)→ λu(λx, λ2t)

as is Ḣ−1/2, the space of functions with −1/2 derivatives in L2. Solutions to suitable initial
data can be constructed using the contraction mapping principle and Fourier restriction
spaces in H−3/4 (KdV, [7]), H1/4 (mKdV) and L2 on the real line, and in H−1/2 (KdV),
L2(NLS) and H1/2 (mKdV) on the one dimensional torus. The simplest case is NLS on the
real line: The Strichartz estimates

‖v‖L6 . ‖v(0)‖L2
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for solutions to i∂tv − vxx = 0 imply for solutions to NLS

‖u‖L∞([−T,T ];L2(R)) + ‖u‖L6((−T,T )×R) .‖u(0)‖L2 + ‖|u|2u‖L1([0,T ],L2)

.‖u(0)‖L2 + T 1/2‖u‖3
L6

which by a contraction argument yields existence of a unique solution if

T << ‖u(0)‖−4
L2 .

Global existence is easy since the L2 norm is conserved, but control on differences is weak:

(4) ‖u(t)− v(t)‖L2(R) ≤ ect
1/2‖u0‖2

L2‖u(0)− v(0)‖L2

is the best one gets out of the contraction argument. The argument for KdV and mKdV is
considerably more involved but the structure of the argument is the same.

The statements are sharp in the following sense: The construction mapping principle
combined with the implicit function theorem yields solutions depending smoothly on the
initial data, and in Hs with s below this critical number the map from initial data to the
solutions is known to fail to be uniformly continuous in balls. (see [13], [4]). Recently Molinet
[18] has shown a much stronger failure of wellposedness for KdV in Hs with s < −1: The
map from the initial data L2 3 u0 → D fails to be continuous when considered with topology
of Hs to distributions D∗. This ends the hope to obtain wellposedness results for KdV up
to the critical space H−3/2.

There are reasons to try to go beyond these wellposedness results: One would like to get a
better understanding of the interaction of waves and one would like to have more information
on the flow for large data and large initial data than (4) provides. A Priori estimates below
the regime of the contraction mapping principle are likely to provide information for large
times resp. large data.

It is remarkable that Kappeler and Topalov [11] were able to show for periodic KdV that
the map from the initial data u0 ∈ L2 to C(L2) extends to a unique continuous map from
H−1 to C(I,H−1). The proof relies on inverse scattering theory and the theory of Riemann
surfaces. It is optimal in view of Molinet’s illposedness result [18] , and it seems to be out of
reach by PDE arguments. The periodic case is more difficult to address by PDE arguments
since there is less dispersion on the circle.

The first result [2] is concerned with a priori estimates and weak solutions to KdV in H−1.

Theorem 1. Let u0 ∈ L2 and u the solution to KdV with initial data u0. There exists c so
that

‖u(t)‖H−1 ≤ c‖u0‖H−1 .

Moreover, given initial data u0 ∈ H−1 there exists a weak solution in a suitable function
space which embeds into L∞loc(H

−1).

The proof relies on the Miura map

v = vx + v2.

It has the following properties

(1) If v satisfies mKdV then u = vx + v2 satisfies the KdV equation.
(2) Inverting the Miura map gains roughly one derivative.
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(3) There is the factorization of the Schrödinger operator

−∂2
xxψ + uψ = −(∂x + v)(∂x − v)ψ

if u = vx + v2. Since∫
(−∂2

xxψ + uψ)ψdx = ‖∂xψ − vψ‖2
L2

we see that the range of the Miura map consists of potentials corresponding to non-
negative Schrödinger operators. In particular it is not surjective from Hs → Hs−1 for
s ≥ 0. Nevertheless, for initial data in the range of the Miura map Perry, Kappeler
Shubin and Topalov [12] have shown global estimates of solutions in H−1. They have
also shown that, if u is such a potential (lets say in L∞+H−1) then there is v ∈ L2

loc

which is mapped to u.
(4) Interchanging the factors is equivalent to applying the Miura map to the negative of

the argument.
(5) The Miura map maps λ tanh(λx) to λ2 and −λ tanh(λx) to λ2 − λ2 sech2(λx).

We adopt the following strategy: The KdV equation is invariant under the Galilean trans-
form, i.e. if u satisfies the KdV equation then the same is true for

u(x− 6ht, t) + h

We add a constant λ2 to the initial data to obtain a potential with positive definite Schrodinger
operator. Then we show that there is a unique function v + λ tanh(λ(x)), v ∈ L2 which is
mapped to u + λ2 by the Miura map. Next we study the solution v to the modified KdV
equation with this initial data. Finally we set

u(t− 6λ2t, x) = wx + w2 − λ2

which satisfies KdV. Bounds on v turn into bounds for u.
We also obtain also as an extension of [2] a result on asymptotic stability of the soliton

u(t, x) = Q(x− 4t) with Q = 2 sech2(x).

Theorem 2. There exists δ > 0 such that the following is true: If u ∈ L2,

(5) ‖u(0)−Q‖H−1 ≤ δ

then
sup
t

inf
y
‖u(t)−Q(x− y)‖H−1 . δ.

Moreover for ε > 0 there exists δ > 0 so that the following is true: If (5) holds then there
exists λ close to 1 so that

(6) inf
y
‖(1 + tanh(x0 + x− εt))1/2(u− λ2Q(λx− y))‖H−1 → 0

as t→∞.

The truncation at εt cannot be avoided due to the existence of small solitons. Similar
asymptotic stability in H1 has been shown by Martel and Merle [16], and in L2 by Merle
and Vega [17].

We turn to related questions for the nonlinear Schrödinger equation. It is natural to
ask whether local well-posedness also holds in negative Sobolev spaces between H−1/2 and
L2. Uniform continuity cannot hold in this range. However, it is not implausible that one
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may have well-posedness with only continuous dependence on the initial data. Relaxing the
exponential bound in (4) to a polynomial bound is a related challenging problem. It is not
clear whether the problem differs in the focusing or the defocusing problem.

The problem of obtaining a priori estimates in negative Sobolev spaces was previously
considered by Christ-Colliander-Tao [3] (s ≥ −1/12) and by Koch and Tataru [15](s ≥ −1/6)
and [14] (s ≥ −1/4). Key ideas are: 1) bootstrap suitable Strichartz type norms of the
solution but only on frequency dependent time-scales. 2) use the I-method to construct
better almost conserved Hs type norms for the problem 3) use of related local energy bounds.

In the process of proving a priori bounds , we also establish certain space-time bounds
for the solution, as well as for the nonlinearity in the equation; these bounds insure that
the equation is satisfied in the sense of distributions even for weak limits, and hence we also
obtain existence of global weak solutions for initial data in Hs for −1/4 ≤ s < 0. It is likely
that −1/4 is not optimal.

The main result of [14] is as follows:

Theorem 3. There exists ε > 0 such that the following is true. Let

−1

4
≤ s < 0, Λ ≥ 1

and assume that the initial data u0 ∈ L2 satisfies

‖u0‖2
Hs

Λ
:=

∫
(Λ2 + ξ2)s|û0|2dξ < ε2.

Then the solution u to (3) satisfies

(7) sup
0≤t≤1

‖u(t)‖Hs
Λ
≤ 2‖u0‖Hs

Λ
.

The above theorem captures most of the technical contents of the analysis. However,
it is not scale invariant, so taking scaling into account we obtain further bounds. Indeed,
rescaling

uµ(x, t) = µu(µx, µ2t)

we have

(8) ‖uµ(0)‖Hs
µΛ

= µ
2s+1

2 ‖u(0)‖Hs
Λ
.

Applying the above theorem to uµ for s = 1
4

we obtain the case s = 1
4

of the following

Corollary 1.1. Let −1
4
≤ s ≤ 0. Suppose that M > 0 and Λ > 0 satisfy Λ�M4. Let u be

a solution to (3) with initial data u0 ∈ L2 so that

‖u0‖
H
− 1

4
Λ

≤M

Then u satisfies

(9) sup
|t|≤T
‖u(t)‖Hs

Λ
. ‖u0‖Hs

Λ
, for T �M−8.

The general case follows from the s = 1
4

case due to the following equivalence:

(10) ‖v‖2
Hs

Λ
≈
∑

λ≥Λ

λ
1
2

+2s‖v‖2

H
− 1

4
λ

.

Here and below all the λ summations are dyadic.
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Applying the above corollary to a given solution for increasing values of Λ yields global in
time bounds. Consider first the case when 1/4 < s < 0. Given M ≥ 1 and initial data u0 so
that ‖u0‖Hs ≤M we have

‖u0‖
H
− 1

4
Λ

. Λ−s−
1
4M, Λ ≥ 1

By the above corollary this yields

sup
0≤t≤T

‖u(t)‖Hs
Λ
. ‖u0‖Hs

Λ
, Λ� max{T 1

8s+2M
4

4s+1 ,M
2

2s+1}

Hence we have proved

Corollary 1.2. Let −1
4
< s < 0 and M ≥ 1. Let u be a solution to (3) with initial data

u0 ∈ L2 so that
‖u0‖Hs ≤M

Then for all T > 0 the function u satisfies

(11) sup
|t|≤T
‖u(t)‖Hs

Λ(T )
.M, Λ(T ) = max{T 1

8s+2M
4

4s+1 ,M
2

2s+1}.

It is unlikely that the s = −1
4

result is sharp. The case s = −1
4

is more delicate. There
instead of (8) we only have

lim
Λ→∞

‖u0‖
H
− 1

4
Λ

= 0 for u0 ∈ H−
1
4 .

Thus we obtain

Corollary 1.3. Let u be a solution to (3) with initial data u0 ∈ L2. Then for all T > 0 the
function u satisfies

(12) sup
|t|≤T
‖u(t)‖

H
− 1

4
Λ(T )

≤ 1

for some increasing function Λ(T ) which only depends on the H−
1
4 frequency envelope of u0.

The a priori estimates suffice to construct global weak solutions. Using the uniform bounds
(7) one may prove the following statement.

Theorem 4. Suppose that u0 ∈ Hs, s ≥ −1
4
. Then there exists a weak solution u ∈

C(R, Hs), so that for all T > 0 we have

(13) sup
−T≤t≤T

‖u(t)‖Hs
Λ
≤ C

with Λ depending on T and on the H−
1
4 frequency envelope of u0.

2. KdV and mKdV

2.1. The Miura map. As indicated above the Miura map on ±λ tanh(λx) + L2 plays a
crucial role. We study the two maps. Given λ > 0 we define

F λ
− : L2 3 v →

(
vx + (v + 2λ tanh(λx))v,

∫
v sech2(x)

)
∈ L2 × R.

Proposition 2.1. The map F λ
− is an analytic diffeomorphism from L2 to the open set of

potentials in H−1 with ground state energy larger than −λ2.
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In particular, if for the potential u such that u+λ2 is a potential for which the Schrödinger
operator is positive definite than u is in the range of the Miura map. Moreover the Miura
map is injective on λ tanh(λx) + L2.

Similarly we define

F+ : L2 × (0,∞) 3 (v, λ)→ −vx + (v − 2λ tanh(λx))v ∈ H−1

and recall that

F+(0, λ) = −2λ2 sech2(λx).

Proposition 2.2. The map F+ maps L2 to the open subset of potentials on H−1 with at
least one eigenvalue. It is an analytic diffeomorphism to its image. If v ∈ L2 then F (v, λ)
has ground state energy −λ2.

2.2. mKdV near the kink. The (defocusing) modified KdV equation

vt − vxxx + 6|v|2vx = 0

has no solitons but kinks:

λ tanh(λx+ 2λ3t)

satisfies mKdV . We will study solutions of the form

v = tanh(x− y(t)) + w

which satisfy

wt − wxxx + 2(w3 + 3 tanh(x− y(t))w2 + 3 tanh2(x− y(t)w)x = (ẏ − 2) sech2(x− y(t))

where ẇ is determined by a suitable orthogonality condition
∫
wη(x − y(t))dx = 0 with a

function η which we will choose below.
It is instructive to consider the linearized equation, in a frame moving with the kink

wt − wxxx + 4wx − 6( sech2(x)w)x = α sech2(x)

where α is chosen so that
∫
ex sech2(x)wdx = 0 is preserved.

Then

d

dt

∫
exw2dx = −B(ex/2w) := −3

∫
w2
x +

5

4
w2 − 2 sech2(x)w2 − 4 sech2(x) tanh(x)w2dx

We claim that there exists κ > 0 so that

(14) B(f) ≥ κ‖f‖2
H1

provided
∫
fex/2 sech2(x)dx = 0. It should be possible to give an analytic proof for this

statement. In any case it is easy to check it numerically.

Theorem 5. Let γ < 6. There exists δ > 0 such that, if

‖v − tanh(x)‖L2 < δ

then

sup
t
‖v(t)− tanh(x− y(t))‖L2 . δ

where the continuous function y(t) satisfies

|ẏ + 2| . δ + g

Herbert Koch
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with
‖g‖L1 . δ.

Moreover, for all x0 ∈ R,∫
(1+tanh(x+γt−x0))|v(t)−tanh(x−y(t))|2dx .

∫
(1+tanh(x−x0))|v(0, x)−tanh(x)|2dx.

The proof has two parts: First, with η = e−2R + 1 + tanh(x− y(t) +R)

d

dt

∫
ηw2dx ≤ −δ

∫
η′(w2 + w2

x)dx

ensures that the L2 norm of the deviation from the kink is uniformly bounded. Second

d

dt

∫
η(1+tanh(x+γt+x0))w(t, x)2dx .

∫
η′(w2+w2

x)dx

∫
η(1+tanh(x+γt+x0))w(t, x)2dx

and Gronwall’s inequality together with the (integrated) first bound imply the estimate.
Asymptotic stability is an immediate consequence: The right hand side becomes small if

x0 →∞, and hence so does the left hand side.

2.3. Completion of the proof for KdV. Let u0 ∈ L2. We choose λ so that λ2 is large
depending on ‖u0‖H−1 . Then there exists w0 so that u0 = F λ

−(w0), and, since λ is large,

‖w0‖L2 ≤ c‖u0‖H−1 .

By Theorem 5 there is a unique global solution w to the mKdV near the kink with

‖w(t)‖L2 . ‖w(0)‖L2

Then
u(x, t) = F λ

−(w(t, x− y(t)))(x− 6λ2t+ y(t), t)

is the solution to KdV and it satisfies the claimed bounds.

3. The nonlinear Schrödinger equation

The nonlinear Schrödinger equation is completely integrable. Depending on whether we
look at the focusing or the defocusing problem, we expect two possible types of behavior for
frequency localized data.

In the defocusing case, we expect the solutions to disperse spatially. However, in frequency
there should only be a limited spreading, to a range below the dyadic scale, which depends
only on the L2 size of the data. Precisely energy estimates show that for frequency localized
data with L2 norm λ, frequency spreading occurs at most up to scale λ.

In the focusing case, the expected long time behavior is a resolution into a number of soli-
tons (possibly infinitely many) plus a dispersive part. The situation is somewhat complicated
by the fact that some of these solitons may have the same speed, and thus considerable over-
lapping. The inverse scattering formalism provides formulas for such solutions with many
interacting solitons. Nevertheless it is instructive to consider first the case of a single soliton,
which in the simplest case has the form

u(x, t) = e−it sech(2−1/2x).

Rescaling we get a soliton with L2 norm λ, namely

uλ(x, t) = e−itλ
4

λ2 sech(2−1/2λ2x).
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More soliton solutions can be obtained due to the Galilean invariance. However, our function
spaces here break the Galilean invariance, so the zero speed solitons are among the worst
enemies.

The above solution is constant in time, up to a phase factor. It is essentially localized to
an interval of size λ−2 in x, and of size λ2 in frequency. It also saturates our local energy
estimates in (7) for s = −1

4
, exactly when Λ = λ4.

In many cases error estimates for a nonlinear semiclassical ansatz for solutions are avail-
able. An example is the initial data

u0(x) = λ sech(2−1/2x)

where a semiclassical ansatz for an approximate solution is given by

u(t, x) = λA(x, t)e−iλS(t,x)

where ρ = A2 and µ = A2∂xS satisfy the Whitham equations

ρt + λ∂xµ = 0 ∂tµ+ λ∂x(µ
2/ρ± ρ2/2) = 0

with + in defocusing and − in the focusing case. The Whitham equations are hyperbolic
for the defocusing case and they can be solved up to an time T ∼ λ−1, when singularities
corresponding to caustics occur. Grenier [6] has justified this ansatz up to the time when
caustics occur.

The Whitham equations are elliptic in the focusing case. Akhmanov, Khokhlov and Sukho-
rukov [1] realized that the implicit equation

(15) µ = −2λtρ2 tanh

(
ρx− µλt

ρ

)
, ρ = (1 + λ2t2ρ2) sech2 (ρx− µt)

defines a solution to the Whitham equation with the λ sech initial data. The semiclassical
ansatz for small semiclassical times has been studied by Thomann [20].

The direct scattering problem has been solved by Satsuma and Yajima [19]. In particular,
if λ is an integer one obtains a pure soliton solution with λ solitons with velocity 0. In this
case the solution is periodic with period 2. Formula (15) seems to indicate that the solution
remains concentrated in an spatial area for size ∼ ln(1+λ). The semiclassical limit has been
worked out in a number of problems, see Jin, Levermore and McLaughlin [8], Kamvissis [9],
Deift and Zhou [5]. and Kamvissis, McLaughlin and Miller [10].

These examples indicate that energy may spread over a large frequency interval even if
the energy is concentrated at frequencies . 1 initially, and there are solutions with energy
distributed over a large frequency interval with velocity zero. For the proof of our main
result we use localization in frequency and space. These examples provide natural limits for
the localization. This is reflected in the estimates and the definition of the function spaces.

3.1. The proof. We begin with a dyadic Littlewood-Paley frequency decomposition of the
solution u,

u =
∑

λ≥Λ

uλ, uλ = Pλu

where λ takes dyadic values not smaller than Λ, and uΛ contains all frequencies up to size
Λ. Here the multipliers Pλ are standard Littlewood-Paley projectors. For each such λ we

Herbert Koch
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also use a spatial partition of unity on the λ1+4s scale,

(16) 1 =
∑

j∈Z
χλj (x), χλj (x) = χ(λ−1−4sx− j)

with χ ∈ C∞0 (−1, 1). To prove the theorem we will use

(i) Two energy spaces, namely a standard energy norm

(17) ‖u‖2
l2L∞Hs

Λ
=
∑

λ≥Λ

λ2s‖uλ‖2
L∞L2

and a local energy norm1 adapted to the λ1+4s spatial scale,

(18) ‖u‖2
l2l∞L2H−sΛ

=
∑

λ≥Λ

λ−2s−2 sup
j∈Z
‖χλj ∂xuλ‖2

L2

(ii) Two Banach spaces Xs
Λ and Xs

Λ,le measuring the space-time regularity of the solu-
tion u. The first one measures the dyadic parts of u on small frequency dependent
timescales, and is mostly similar to the spaces introduced in [3], [15]. The second is
introduced in [14] , and measures the spatially localized size of the solution on the
unit time scale.

(iii) Two corresponding Banach spaces Y s
Λ and Y s

Λ,le measuring the regularity of the non-

linear term |u|2u.

The linear part of the argument is a straightforward consequence of our definition of the
spaces, and is given by

Proposition 3.1. The following estimates hold for solutions to (3):

(19) ‖u‖Xs
Λ
. ‖u‖l2L∞Hs

Λ
+ ‖(i∂t −∆)u‖Y sΛ

respectively

(20) ‖u‖Xs
Λ,le

. ‖u‖l2l∞L2H−sΛ
+ ‖(i∂t −∆)u‖Y sΛ,le

To estimate the nonlinearity we need a cubic bound,

Proposition 3.2. Let u ∈ Xs
Λ ∩Xs

Λ,le. Then |u|2u ∈ Y s
Λ ∩ Y s

Λ,le and

(21) ‖|u|2u‖Y sΛ∩Y sΛ,le . ‖u‖
3
Xs

Λ∩Xs
Λ,le

Finally, to close the argument we need to propagate the energy norms:

Proposition 3.3. Let u be a solution to (3) with

‖u‖l2L∞Hs
Λ
� 1.

Then we have the energy bound

(22) ‖u‖l2L∞Hs
Λ
. ‖u0‖Hs

Λ
+ ‖u‖3

Xs
Λ∩Xs

Λ,le
,

1For s = − 1
4 the spatial scale is one and this corresponds to the familiar gain of one half of a derivative. It

may seem more natural to remove the ∂x derivative and appropriately adjust the power of λ. This would be
equivalent for all frequencies λ > Λ. However, in uΛ we are including all lower frequencies, which correspond
to waves with lower group velocities and to a worse local energy bound.
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respectively the local energy decay

(23) ‖u‖l2l∞L2H−sΛ
. ‖u0‖Hs

Λ
+ ‖u‖3

Xs
Λ∩Xs

Λ,le
.

A standard bootstrap argument leads from Propositions 3.1,3.2 and 3.3 to Theorem 3.
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