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ASYMPTOTIC STABILITY OF

ZAKHAROV-KUZNETSOV SOLITONS

DIDIER PILOD

Abstract. In this report, we review the proof of the asymptotic stability
of the Zakharov-Kuznetsov solitons in dimension two. Those results were

recently obtained in a joint work with Raphaël Côte, Claudio Muñoz and

Gideon Simpson.

1. Introduction

This report describes a recent work of the author with Raphaël Côte, Claudio
Muñoz and Gideon Simpson [4] on the Zakharov-Kuznetsov (ZK) equation

(1.1) ∂tu+ ∂x1

(
∆u+ u2

)
= 0, (x, t) ∈ R×Rd, x = (x1, x2) ∈ R×Rd−1 .

Here, u denotes a real valued function. When the spatial dimension d is equal
to 1, equation (1.1) becomes the well-known Korteweg- de Vries (KdV) equation.
We also refer to Chapter 4 of Raphaël Côte’s HDR [3] for another nice report on
the subject.

The ZK equation was introduced by Zakharov and Kuznetsov in [13] to describe
the propagation of ionic-acoustic waves in uniformly magnetized plasma in the two
dimensional and three dimensional cases. Lannes, Linares and Saut [15] carried
out the derivation of ZK from the Euler-Poisson system with magnetic field in the
long wave limit and Han-Kwan [10] derived rigorously ZK from the Vlasov-Poisson
system in a combined cold ions and long wave limit.

The mass and the energy

(1.2) M(u) =

∫
u2dx and H(u) =

∫ (1

2
|∇u|2 − 1

3
u3
)
dx

are conserved by the flow of ZK. Moreover, the equation is L2 subcritical in dimen-
sion 2 and 3.

The well-posedness theory for ZK has been extensively studied in the recent
years. Let us focus on the two and three dimensional cases:

• In the two dimensional case, Faminskii proved that the Cauchy problem
associated to the ZK equation is globally well-posed in the energy space
H1(R2) [7] (the local well-posedness result was pushed down to Hs(R2)
for s > 3/4 by Linares and Pastor [17] and for s > 1/2 by Grünrock and
Herr [9] and Molinet and the author [23]).

† The author would like to thank the Centre de Mathématiques Laurent Schwartz at École
Polytechnique for the kind hospitality during February 2015.
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• The best result for the ZK equation in the three dimensional case was
obtained last year by Ribaud and Vento [25]. They proved local well-
posedness in Hs(R3) for s > 1. Those solutions were extended globally in
time in [23].

Note however that it is still an open problem to obtain well-posedness for ZK in
the energy space H1(R3).

In order to understand better the dynamic of ZK, we look for special solutions
on the form

(1.3) u(x, t) = Qc(x1 − ct, x2) with Qc(x) −→ 0
|x|→+∞

,

where Qc(x) = cQ(c1/2x). Then Q must solve the elliptic PDE

(1.4) −∆Q + Q− Q2 = 0 ,

which also appears in the Nonlinear Schrödinger (NLS) equation context and was
already extensively studied (see for example [1], [14]). In particular in dimension
d = 2 and d = 3, (1.4) has a unique (up to translation) positive radial solution
Q ∈ H1(Rd) that we will call ground state solution. It is also well known that
Q ∈ C∞(R) and satisfies the pointwise decay estimates

∣∣∂αQ(x)
∣∣ .α e−δ|x|, ∀x ∈ Rd, ∀α ∈ Nd .

Remark 1.1. We proved in [4] that (1.1) has no other finite energy solutions of the
form ϕ(x1 − c1t, x2 − c2t) with c2 6= 0.

The solutions of (1.1) of the form (1.3) with Q = Q are called solitary waves or
solitons. They were proved by de Bouard [5] to be orbitally stable in H1(Rd) for
d = 2 and 3. Our goal here is to prove that they are actually asymptotically stable
in H1(Rd) by following the Martel, Merle approach [19, 20, 21]. Our main result
writes as follows.

Theorem 1.1 (Asymptotic stability. Côte, Muñoz, P., Simpson [4]). Assume
d = 2. Let c0 > 0. For any β > 0, there exists ε0 > 0 such that if 0 < ε ≤ ε0 and
u ∈ C(R : H1(R2)) is a solution of (1.1) satisfying

(1.5) ‖u0 −Q‖H1 ≤ ε ,
then the following holds true.

There exist c+ > 0 with |c+− c0| ≤ K0ε, for some positive constant K0 indepen-
dent of ε0, and ρ = (ρ1, ρ2) ∈ C1(R : R2) such that

(1.6) u(·, t)−Qc+(· − ρ(t)) −→
t→+∞

0 in H1(x1 > βt) ,

(1.7) ρ′1(t) −→
t→+∞

c+ and ρ′2(t) −→
t→+∞

0 .

Let us start with a few remarks.

Remark 1.2. The convergence in (1.6) can not hold in the whole space H1(R2),
because of conservation of mass and energy, and of the variational characterization
of the soliton. There must be some loss, which can be due to smaller (and slower)
solitons, or to dispersion. One way to get rid of them is to use weighted spaces.
Our analysis here is sharper, as we use local spaces without weights.
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x1

x2

•
βt

θ

x1 = βt

x1 + (tan θ)x2 = βt

θ

AS(t, θ)

Figure 1. AS(t, θ) :=
{

(x1, x2) ∈ R2 : x1 − βt+ (tan θ)x2 > 0
}

.

Remark 1.3. When looking at plane wave solutions of the linear part of (1.1) on
the form u(x1, x2, t) = ei(k1x1+k2x2−wt) with w(k1, k2) = −(k31 + k1k

2
2), we find out

that the group velocity vector ∇w = −
[
3k21 + k22, 2k1k2

]T
is always contained in

a semi-cone of angle π
3 around the negative k1 direction. In particular dispersion

points toward left while solitons evolve on the right. This is in sharp contrast with
other famous multidimensional models such as the NLS and KP1 equations, for
which asymptotic stability is still a very challenging open problem.

Remark 1.4. It will be clear from the proof that the convergence in (1.6) can also
be obtained in regions of the form

AS(t, θ) :=
{

(x1, x2) ∈ R2 : x1 − βt+ (tan θ)x2 > 0
}
, where θ ∈ (−π

3
,
π

3
) .

Note that the maximal angle of improvement θ ≥ 0 must be strictly less than π
3 on

each side of the vertical line x1 = βt (see Figure 1).

Remark 1.5. Our proof does not rely on the structure of the nonlinearity of (1.1)
(i.e. ∂x1(u2)) neither on the dimension d. Actually, our main theorem could be
extended to (1.1) in dimension d = 3 or to the following generalization of gZK

(1.8) ∂tu+ ∂x1(∆u+ |u|p−1u) = 0 ,

where p is a real number 1 < p < 1 + 4
d under the following conditions:

• The Cauchy problem associated to (1.1) with d = 3 or to (1.8) is well-posed
in H1.
• The spectral condition

∫
L−1ΛQΛQ < 01 holds true.

This spectral condition was shown in the appendix of [4] to be true in dimension
d = 2 for 2 ≤ p < p2, where p2 is a real number satisfying 2 < p2 < 3.

1Here L denotes the operator linearizing (1.4) around Q. See below for a precise definition in
the case p = 2.
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On the other hand, in dimension d = 3, it is shown that
∫
L−1ΛQ,ΛQ > 0.

Note however that in this case, one could try to verify the more general property:

the operator L restricted to the space
{

kerL,ΛQ
}⊥

is positive definite.

Recall that the first result of asymptotic stability of solitons for generalized KdV
equations was proved by Pego and Weinstein [24] in weighted spaces. In [19], Martel
and Merle have given the first asymptotic result for the solitons of gKdV in the
energy space H1. They improved their result in [20] and generalized it to a larger
class of nonlinearities than the pure power case in [21].

Their proof relies on a Liouville type theorem for L2-compact solutions around
a soliton. Then, it is proved that a solution near a soliton converges (up to subse-
quence) to a limit object, whose emanating solution satisfies a good decay property.
Due to the rigidity result, this limit object has to be a soliton. One of the main
ingredient in the proofs is the use of monotonicity formulas for a part of the mass
and the energy.

It is worth noting that this technique of proof was also adapted to prove as-
ymptotic stability in the energy space for other one dimensional models such as
the Benjamin-Bona-Mahony equation [6], the Benjamin-Ono equation [12] and the
Gross-Pitaevskii equation [2, 8].

Here, we adapt the ideas of Martel and Merle to a multidimensional model.
As far as we know, Theorem 1.1 is the first result of asymptotic stability for a
two dimensional model, in the energy space, and with no nonstandard spectral
assumptions on the linearized dynamical operator.

In the next section, we state the Liouville theorems and explain what are the
main new difficulties in proving them. In Section 3, we give a sketch of the proof
of Theorem 1.1, while Section 4 is dedicated to the stability of multi-solitons.

2. Liouville theorems

The Liouville theorems classify the L2 compact solutions (solutions which are
localized in the x1 direction, uniformly in x2) around the solitons.

2.1. Linear Liouville theorem. First, we prove such a property in the linear
case. Let Lc denote the linearized operator of (1.4) around Qc, i.e.

Lc = −∆ + c− 2Qc .

In the case c = 1, we also denote L = L1.

The spectral properties of the operator L are now well understood (see for ex-
ample [26]).

• L is a self-adjoint operator and σess(L) = [1,+∞).
• kerL = span

{
∂x1

Q, ∂x2
Q
}

.
• L has a unique single negative eigenvalue −λ0 (with λ0 > 0).
• Let Λ denote the scaling operator, i.e.

ΛQ :=
( d
dc
Qc
)
c=1

= Q+
1

2
x · ∇Q .

Then, LΛQ = −Q and
∫
QΛQ = 1

2 ‖Q‖2L2 .

Didier Pilod
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Theorem 2.1 (Linear Liouville property aroundQc0 . Côte, Muñoz, P., Simpson [4]).
Let c0 > 0 and η ∈ C(R : H1(R2)) be a solution to

(2.1) ∂tη = ∂x1
Lc0η on R× R2 .

Moreover, assume that there exists a constant σ > 0 such that

(2.2)

∫

x2

η2(x1, x2, t)dx2 . e−σ|x1| , ∀ (x1, t) ∈ R2 .

Then, there exists (a1, a2) ∈ R2 such that

(2.3) η(x, t) = a1∂x1
Qc0(x) + a2∂x2

Qc0(x), ∀ (x, t) ∈ R3 .

Remark 2.1. We can replace assumption (2.2) by the weaker assumption that the
solution η is L2-compact in the x1 direction, i.e.: η ∈ Cb(R : H1(R2)) and

∀ ε > 0, ∃A > 0 such that sup
t∈R

∫

|x1|>A
η2(x, t)dx ≤ ε .

Sketch of the proof of Theorem 2.1. Without loss of generality, we can work with
c0 = 1.

1) Following Martel [18] and Martel, Merle [21], we work on the dual problem

(2.4) v = Lη + α0Q .

By using the equation (2.1), we verify easily that

(2.5) ∂tv = L∂x1
v + α0L∂x1

Q = L∂x1
v,

and v satisfies the orthogonality conditions

(2.6) (v, ∂x1
Q) = (v, ∂x2

Q) = 0 .

and

(2.7) (v,ΛQ) = 0 .

Indeed, by using the properties of L, we have that

d

dt
(v,ΛQ) = (L∂x1v,ΛQ) = −(v, ∂x1LΛQ) = (v, ∂x1Q) = 0 ,

which implies the orthogonality relation in (2.7) if α0 is chosen properly, since
(ΛQ,Q) > 0 in the L2-subcritical case.

This last orthogonality condition was not the one used by Martel and Merle in the
gKdV context. However, the additional dimension makes things harder by inducing
transversal variations that seem to destroy any virial-type inequality with a weight
function depending on the extra dimension. As we will see below, the condition
(2.7) seems quite natural when the weight function depends only on the x1 variable.
Moreover, it is worth noting that this condition has already been used by Kenig
and Martel in the Benjamin-Ono context [12] for different reasons.

2) By using monotonicity formulas2 for a part of the mass and the energy, we deduce
regularity properties for the L2-compact solution η. In particular v ∈ C(R : H1(R2))
and

(2.8)

∫

x2

v2(x, t) dx2 . e−σ̃|x1|, ∀x1, t ∈ R ,

for some σ̃ > 0.

2We will detail those formulas in the next section.
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3) Virial identity. Let φ ∈ C2(R) be an even positive function such that φ′ ≤ 0
on R+,

φ|[0,1]
= 1, φ(x1) = e−x1 on [2,+∞), e−x1 ≤ φ(x1) ≤ 3e−x1 onR+ .

|φ′(x1)| ≤ Cφ(x1) and |φ′′(x1)| ≤ Cφ(x1) ,

for some positive constant C. Let ϕ be defined by ϕ(x1) =
∫ x1

0
φ(y)dy. For

a parameter A (to be fixed large enough), we set ϕA(x1) = Aϕ(x1/A) so that
ϕ′A(x1) = φ(x1/A) =: φA(x1) and ϕA(x1) = x1 on [−A,A].

Then, we have from (2.5) that

− 1

2

d

dt

∫
ϕAv

2dx

=

∫
φA(∂x1v)2dx+

1

2

∫
φA(|∇v|2 + v2 − 2Qv2)dx− 1

2

∫
φ′′Av

2 −
∫
ϕA∂x1Qv

2dx .

On the one hand, it follows from the properties of Q and the weight function ϕA
that

−
∫
ϕA∂x1

Qv2dx ≥ 03 .

On the other hand, there exists λ > 0 such that

1

2

∫
φA(|∇v|2 + v2 − 2Qv2)dx ≥ λ

∫
φAv

2dx

if A is chosen large enough, assuming the spectral property: L|{ΛQ,∇Q}⊥
> 0. Thus,

it follows that

(2.9) − 1

2

d

dt

∫
ϕAv

2dx ≥ λ

2

∫
φAv

2dx .

Therefore, we deduce by integrating (2.9) in time and using (2.8) that v ≡ 0, which
concludes the proof of Theorem 2.1.

4) Finally, let us say a word about the spectral property L|{ΛQ,∇Q}⊥
> 0. From the

work of Weinstein [26], it suffices to verify the property

(2.10) (L−1ΛQ,ΛQ) < 0 .

Unlike in the gKdV context, obtaining a direct proof of this result in dimension 2
seems far from trivial because the soliton Q, and therefore the function L−1ΛQ,
have no closed and explicit forms. This is another of the main differences with
respect to the one dimensional case: here we work with a solitary wave which is
not explicit at all.

Nevertheless, we were able to verify this property numerically in dimension 2
(but not in dimension 3). The graphics below represent the numerical computation
of the scalar product (L−1ΛQ,ΛQ) as a function of p, where L is the linearized
operator corresponding to (1.8).

3This is the advantage to work with the dual problem.
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2.2. Nonlinear Liouville theorem. The proof of Theorem 1.1 is based on the
following rigidity result for the solutions of (1.1) in spatial dimension d = 2 around
the soliton Qc0 which are uniformly localized in the direction x1.

Theorem 2.2 (Nonlinear Liouville property around Qc0). Assume d = 2. Let
c0 > 0. There exists ε0 > 0 such that if 0 < ε ≤ ε0 and u ∈ C(R : H1(R2))
is a solution of (1.1) satisfying for some function ρ(t) =

(
ρ1(t), ρ2(t)

)
and some

positive constant σ

(2.11) ‖u(·+ ρ(t))−Qc0‖H1 ≤ ε, ∀ t ∈ R ,

and

(2.12)

∫

x2

u2(x1 + ρ1(t), x2 + ρ2(t), t)dx2 . e−σ|x1| , ∀ (x1, t) ∈ R2 ,

then, there exist c1 > 0 (close to c0) and ρ0 = (ρ01, ρ
0
2) ∈ R2 such that

(2.13) u(x1, x2, t) = Qc1(x1 − c1t− ρ01, x2 − ρ02) .

Remark 2.2. Due to the stability result of de Bouard [5], Theorem 2.2 still hold
true if we assume that

(2.14) ‖u0 −Qc0‖H1 ≤ ε ,
instead of (2.11).

Remark 2.3. Theorem 2.2 still holds true if we replace assumption (2.12) by the
weaker assumption that the solution u is L2-compact in the x1 direction, i.e.:

∀ ε > 0, ∃A > 0 such that sup
t∈R

∫

|x1|>A
u2(x+ ρ(t), t)dx ≤ ε .

To prove this nonlinear version of the Liouville theorem, we cannot use its linear
counterpart as a black box, due to the rigidity nature of the theorem. However,
the method of proof is robust and carries over very well to the nonlinear case. The
additional ingredient is the modulation of the scaling parameter to make up for α0

in (2.4) and recover the orthogonality condition (2.7).

Moreover, we would like to emphasize another new technical difficulty appearing
in the proof of Theorem 2.2 due to the extra dimension. In R2, we lack L∞ control
on the solutions assuming only a priori H1 bounds. Such a control would be useful
in order to ensure regularity and pointwise exponential decay for compact solutions
around a soliton. Therefore, we must prove new monotonicity properties at higher
regularity level, which are obtained by performing an induction on the level of

Exp. no XIII— Asymptotic Stability of Zakharov-Kuznetsov solitons
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regularity and using suitable Sobolev embeddings of the form H1(R2) ↪→ Lp(R2),
for p <∞, to control the nonlinear terms.

3. Proof of Theorem 1.1

In this section, we give a sketch of the proof of Theorem 1.1. Without loss of
generality, we can assume that c0 = 1.

1) By using de Bouard’s stability result, we deduce from (1.5) that

(3.1) sup
t∈R
‖u(·+ ρ(t), t)−Q‖H1 ≤ K0ε ,

for some positive constant K0 > 0 and C1 function ρ = (ρ1, ρ2) ∈ C1(R : R2).

2) Let tn ↗ +∞ be a sequence such that

(3.2) u(·+ ρ(tn), tn) ⇀ u∞ weak in H1,

for some u∞ ∈ H1(R2). Let ũ denote the solution of (1.1) satisfying ũ(·, 0) = u∞.
The main point is to show that this limit object enjoys nice localization properties.
In particular, we prove that

(3.3) ‖ũ(·+ ρ̃(t), t)−Q‖H1 ≤ K0ε ,

(3.4)

∫

x2

ũ2(x+ ρ̃(t), t)dx2 . e−σ̃|x1|, ∀x1, t ∈ R ,

for some constant σ̃ > 0 and some C1 function ρ̃ = (ρ̃1, ρ̃2) ∈ C1(R : R2), and that

(3.5) u(·+ ρ(tnk), tnk) −→ u∞ in H1(x1 > −A),

for any A > 0.
Therefore, we deduce from Theorem 2.2 that u∞ = Qc+ , for some c+ close to 1,

which concludes the proof of Theorem 1.1.

3) Monotonicity properties: This is the main ingredient in order to prove (3.4) and
(3.5).

Lemma 3.1 (Monotonicity formula in the x1-direction for a part of the mass).
Let x̃1 := x1 − ρ1(t0) + 1

2 (t0 − t)− y0, ψM (x1) := 2
π arctan(ex1/M ) with M ≥ 4 and

(3.6) Iy0,t0(t) :=

∫
u2(x, t)ψM (x̃1)dx .

Then

(3.7) Iy0,t0(t0)− Iy0,t0(t) . e−y0/M ,

for all y0 > 0, t0 ∈ R and t ≤ t0.

Note that Iy0,t0 represents the part of the mass located on the right of the soliton
(which is moving here with a velocity ρ′1 close to c0 = 1). Formula (3.7) tells us
that the increase of this quantity is at best very small (if y0 is chosen very large).
This corresponds to the idea that some mass is expelled on the left under the form
of slower and smaller solitons or dispersion.

The proof of estimate (3.7) goes in the spirit of Kato [11]. We derive Iy0,t0 with
respect to time, use equation (1.1), integrate by parts and use (3.1) and the Sobolev
embedding H1(R2) ↪→ L3(R2) to deal with the nonlinear terms.

Didier Pilod
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As a first consequence, we deduce by using (3.7) between 0 and t0 that

lim sup
t→+∞

∫
u2(x+ ρ(t), t)ψM (x1 − y0)dx . e−y0/M ,

for any y0 > 0. This provides the exponential decay on the right of u∞. In one
dimension, this fact together with (3.2) would also be sufficient to prove the L2

part of the strong convergence on the right in (3.5). However, this argument fails
to work directly in R2, since the strip −A < x1 < B is not compact anymore (for
any A > 0, B > 0).

To solve this problem, we need to derive monotonicity formulas for the part of
mass along oblique lines on the form x2 = tan(θ0)x1 for |θ| < π

3 .

Lemma 3.2 (Monotonicity formula in oblique lines for a part of the mass). Let
θ0 ∈ (−π3 , π3 ), M ≥ 4 and

Iy0,t0,θ0(t) =

∫
u2(x, t)ψM

(
x1 + (tan θ0)x2 − ρ1(t0) +

1

2
(t0 − t)− y0

)
dx .

Then,

Iy0,t0,θ0(t0)− Iy0,t0,θ0(t) . e−y0/M ,

for every y0 > 0, t0 ∈ R and t ≤ t0, and

(3.8) lim sup
t→+∞

∫
u2(x+ ρ(t), t)ψM (x1 + (tan θ0)x2 − y0)dx . e−y0/M ,

for every y0 > 0.

No monotonicity property seems to hold in the x2-direction alone, mainly because
the conjectured existence of small solitons moving to the right in x1, but without
restriction on the x2 coordinate.

Lemma 3.2 is reminiscent of the geometrical properties of the ZK equation:
namely, ZK behaves as a KdV equation in the x1-direction and as a Schrödinger
equation in the x2-direction. This property is also linked to Remark 1.4.

4) Strong convergence in L2 on the right. Let A > 0. Then, thanks to (3.8), for
any ε > 0, there exists Rπ

4
> 0 such that

lim sup
n→+∞

(
‖u(·+ ρ(tn), tn)‖L2(x1+x2>Rπ

4
) + ‖u(·+ ρ(tn), tn)‖L2(x1−x2>Rπ

4
)

)
≤ ε .

Let us denote by R the compact region of R2 (see Fig. 2) defined by

R =
{

(x1, x2) ∈ R2 : x1 ≥ −A, x1 + x2 ≤ Rπ
4
, x1 − x2 ≤ Rπ

4

}
.

Since the embedding H1(R) ↪→ L2(R) is compact, we conclude from (3.2) that

u(·+ ρ(tn), tn) −→
n→+∞

ũ0 in L2(x1 > −A) .

5) Finally, we also need to derive monotonicity properties for a part of the energy in

order to get the Ḣ1 part of the convergence in (3.5). The rest of the proof (and in
particular the exponential decay on the left in (3.4)) follows the lines of the paper
of Martel, Merle [21].
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Figure 2. R is a compact set of R2.

x1

x2

L
L L

Figure 3. A schematic example of admissible initial data. Soli-
tons are represented by the disk where their mass is concentrated.

4. Stability of multi-solitons

As a consequence of the monotonicity properties, we are also able to prove the
stability of the sum of N essentially non-colliding solitons.

Let N ≥ 2 be an integer and L > 0. We say that

Qc01(x− ρ1,0), Qc02(x− ρ2,0), . . . , Qc0N (x− ρN,0)

are N L-decoupled solitons, if

• |ρj,02 − ρk,02 | ≥ L, or

• c0k > c0j and ρk,01 − ρj,01 ≥ L.

See Figure 3 for an example of N L-decoupled solitons.

Theorem 4.1 (Côte, Muñoz, P., Simpson [4]. Stability of the sum of N decoupled
solitons). Assume d = 2. Consider a set of N solitons of the form

Qc01(x− ρ1,0), Qc02(x− ρ2,0), . . . , Qc0N (x− ρN,0),

Didier Pilod
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where each c0j is a fixed positive scaling, c0j 6= c0k for all j 6= k, and ρj,0 =

(ρj,01 , ρj,02 ) ∈ R2. Assume that the N solitons are L-decoupled.
Then there are ε0 > 0, C0 > 0 and L0 > 0 depending on the previous parameters

such that, for all ε ∈ (0, ε0), and for every L > L0, the following holds. Suppose
that u0 ∈ H1(R2) satisfies

(4.1)
∥∥∥u0 −

N∑

j=1

Qc0j (x− ρ
j,0)
∥∥∥
H1

< ε.

Then there are γ1 > 0 fixed and ρj(t) ∈ R2 defined for all t ≥ 0 such that u(t),
solution of (1.1) with initial data u(0) = u0 satisfies

(4.2) sup
t≥0

∥∥∥u(t)−
N∑

j=1

Qc0j (x− ρ
j(t))

∥∥∥
H1

< C0(ε+ e−γ1L) .

Note that we do not need strictly well-prepared initial data as in [22]. Instead,
by using the continuity of the flow, the hypothesis on the N L-decoupled solitons
ensures that after some positive time T the solitons are well-prepared, i.e. decoupled
in the x1 variable and arranged by increasing speed as x1 grows.

The rest of the proof is obtained by adapting the ideas by Martel, Merle and
Tsai [22] for the generalized, one dimensional KdV case.
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