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Anomalous diffusion phenomena:
A kinetic approach

Antoine Mellet∗

Abstract

In this talk, we review some aspects of the derivation of fractional diffusion
equations from kinetic equations and in particular some applications to the de-
scription of anomalous energy transport in FPU chains. This is based on joint
works with N. Ben Abdallah, L. Cesbron, S. Merino, S. Mischler, C. Mouhot and
M. Puel
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1 Introduction

1.1 Particles transport and diffusion equations
The issue at the center of this talk is the approximation of particles transport by dif-
fusion type equations. Consider for example a cloud of particles interacting with a
background such as a gas of (light) electrons in a plasma, interacting with the (heavier)
ions and atoms.

• At the microscopic level, the gas is constituted of N particles with positions
Xi(t) and velocity Vi(t) satisfying an ODE system of the form:

{
Ẋi = Vi

V̇i = F + collisions + noise + · · ·
∗Department of Mathematics, University of Maryland, College Park MD 20742.
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We note immediately that the electrons in a plasma may collide with themselves
or with other atoms and ions. In this talk however, we will not consider collisions
of the particles with each others, but only their interactions with the background.
As a consequence, the equations considered here will be linear.

• In the kinetic description of particle transport, the particles distribution function
f(t, x, v) (interpreted as the probability of finding a particle at position x with
velocity v) solves a Vlasov type equation:

∂tf + v · ∇xf + divv(Ff) = 1
ε
Q(f)

where F models body forces (e.g. electro-magnetic field), and Q(f) takes into
account all other interactions with the background (typically collisions or noise).

The parameter ε is the Knudsen number (ratio of the mean free path of the
particles and the macroscopic length scale) which measures the importance of
the term Q(f) compared to the transport terms. It plays an essential role in the
derivation of a macroscopic model.

• The goal is now to derive a macroscopic model describing the motion of the
electrons. More precisely, we look for an equation describing the evolution of
macroscopic quantities such as the density ρ(x, t) =

∫
RN f(x, v, t) dv and the

momentum j(x, t) =
∫
RN v f(x, v, t) dv. This derivation is the main goal of

the study of hydrodynamic limits of Kinetic equations, and is the main topic
of this talk. It is classically done by assuming that the Knudsen number ε is
small and by rescaling the equation appropriately to observe the behavior of the
particles over a long time.

The study of hydrodynamic limits for Boltzmann equation (derivation of the
equations of fluid dynamics) goes back to the early work of Maxwell and Boltzmann
(see also Hilbert’s 6th problem) and will not be discussed in this talk. Instead, we are
concerned with the diffusion approximation of linear transport equations. Classical
references for this are Conwell [11], Rode [32], Bensoussan-Lions-Papanicolaou
[7], Bardos-Santos-Sentis [2] among others. The papers of Golse-Poupaud [16] and
Degond-Goudon-Poupaud [13] are also particularly relevant to this talk.

1.2 Example 1: the Vlasov-Fokker-Planck equation
We now give a first simple and classical example of diffusion approximation for kinetic
equations by considering the the Vlasov-Fokker-Planck equation.

The Fokker-Planck operator is often use to model the interactions of the electrons
with the background in Plasma physic. It is given by

L(f) := ∆vf + div(vf)

and it corresponds to the following microscopic equation for the velocity of the parti-
cles

V̇i = −Vi + Brownian noise

(this equation is usually referred to as Langevin equation). We immediately make the
following classical observations:
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• The thermodynamical equilibriums are given by Maxwell’s distribution:

kerL = Span{M}, M(v) = 1
(2π)N/2 e

−|v|2/2

• L has a spectral gap:

−〈L(f), f〉M−1 ≥ λ||f ||2L2
M−1

if
∫
f dv = 0

We now consider the VFP equation in the small Knudsen number regime and at
time scale of the order of ε−1:

ε ∂tf
ε + v · ∇xfε = 1

ε
L(fε). (1)

Then it can be proved that fε converges weakly to a function ρ(x, t)M(v) where the
density ρ solves a diffusion equation:

∂tρ− divx(D∇xρ) = 0, D = −
∫
v ⊗ L∗−1(v)M(v) dv

Remarks:

• The scaling in (1) corresponds to a time scale ε−1 which is "just right" in order
to observe the diffusion process: Longer time scale would lead to ρ being a
stationary solution of the diffusion equation, while under smaller time scale, ρ
would still be equal to the initial density function.

• Note that L∗−1(v) exists (andD <∞) because of the spectral gap property of L
and the fact that v ∈ L2

M . One of the goal of this talk will be to discuss situations
were one of these facts fails.

1.3 Example 2: transport between two parallel plates
We now discuss a second example in which classical diffusion typically fails to take
place: Consider a rarefied gas confined between two parallel plates separated by a thin
gap of size ε� 1.

Trajectory of a particle

ε

z

x, y

x

y

Neglecting the interactions of the particles with each other (rarefied gas assumption),
we write the following kinetic equation:

∂tf + v · ∇x,yf + w∂zf = 0, z ∈ (0, ε)

which we supplement with Maxwell boundary conditions along the plates z = 0 and
z = 1. For instance, we can take

f(x, y, 1, v, w) = M(v, w)
�

w>0
f(x, y, 1, v�, w�)|w�|dv� dw� for w < 0.

Before studying the limit as ε goes to zero, we rescale the z variable (so that
z ∈ (0, 1)) and the time variable (as in the previous example, we choose a time scale
corresponding to time of order ε−1). We thus obtain:

ε∂tf + v · ∇x,yf + 1
ε

w∂zf = 0, z ∈ (0, 1).

With this standard diffusion scaling, one can show that fε → ρ(t, x)M(v, w)
where ρ solves

∂tρ − divx,y

�
D∇x,yρ

�
= 0.

with
D =

�
v ⊗ v

w
M(v, w) dv dw.

But we immediately notice that if M(v, 0) �= 0, then this integral has a non-integrable
singularity at w = 0 and thus D = ∞. This was observed for instance by Babovsky,
Bardos and Platkowsky [1] who justified rigorously the asymptotic above in the case
where D < ∞ (for instance by truncating M near w = 0). In general, though, this
standard diffusion limit fails because of the grazing collision with the plates: particles
traveling nearly tangentially to the plates can travel in straight lines for a very long time
before hitting the opposite plate and changing direction.

In order to obtain an equation for the limiting density, we thus need to use a different
time scale. A result in the general case (M(v, 0) �= 0) was first obtained by Börgers-
Greengard-Thomann [9] using a probabilistic approach and then recovered by F. Golse
[15] using a purely analytic approach. The main result is that if M is the Maxwellian
distribution function, then the appropriate time scale is given by

ε| ln ε|∂tf + εv · ∇x,yf + 1
ε

w∂zf = 0.

4

Neglecting the interactions of the particles with each other (rarefied gas assumption),
we write the following kinetic equation:

∂tf + v · ∇x,yf + w∂zf = 0, z ∈ (0, ε)
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which we supplement with Maxwell boundary conditions along the plates z = 0 and
z = 1. For instance, we can take

f(x, y, 1, v, w) = M(v, w)
∫

w>0
f(x, y, 1, v′, w′)|w′|dv′ dw′ for w < 0.

Before studying the limit as ε goes to zero, we rescale the z variable (so that
z ∈ (0, 1)) and the time variable (as in the previous example, we choose a time scale
corresponding to time of order ε−1). We thus obtain:

ε∂tf + v · ∇x,yf + 1
ε
w∂zf = 0, z ∈ (0, 1).

With this standard diffusion scaling, one can show that fε → ρ(t, x)M(v, w)
where ρ solves

∂tρ− divx,y
(
D∇x,yρ

)
= 0.

with
D =

∫
v ⊗ v
w

M(v, w) dv dw.

But we immediately notice that if M(v, 0) 6= 0, then this integral has a non-integrable
singularity at w = 0 and thus D = ∞. This was observed for instance by Babovsky,
Bardos and Platkowsky [1] who justified rigorously the asymptotic above in the case
where D < ∞ (for instance by truncating M near w = 0). In general, though, this
standard diffusion limit fails because of the grazing collision with the plates: particles
traveling nearly tangentially to the plates can travel in straight lines for a very long time
before hitting the opposite plate and changing direction.

In order to obtain an equation for the limiting density, we thus need to use a different
time scale. A result in the general case (M(v, 0) 6= 0) was first obtained by Börgers-
Greengard-Thomann [9] using a probabilistic approach and then recovered by F. Golse
[15] using a purely analytic approach. The main result is that if M is the Maxwellian
distribution function, then the appropriate time scale is given by

ε| ln ε|∂tf + εv · ∇x,yf + 1
ε
w∂zf = 0.

and the limiting density satisfies a diffusion equation:

∂tρ− κ∆x,yρ = 0

with κ < ∞. In this example we thus obtain a regular diffusion equation, but with an
anomalous time scale.

More recently, we proved with Benjamin Texier that if we increase the distribution
of grazing particles, for instance by taking

M(v, w) = |w|−σχB1(v, w) σ ∈ (0, 1)

then the appropriate scaling is

ε2−σ∂tf + εv · ∇x,yf + w∂zf = 0

and the density ρ solves
∂tρ+ κ(−∆)1−σ/2ρ = 0.

Antoine Mellet
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where the fractional laplacian (−∆)s can be defined, for instance, by

F((−∆)sf)(ξ) = |ξ|2sF(f)(ξ).

This is a first simple example in which the standard diffusion fails and a fractional
diffusion equation is obtained instead. We can interpret the difference between standard
diffusion and anomalous diffusion in terms of the trajectories of the particles. When
a particle is re-emitted by the plate with near tangential velocity, it will travel for a
long distance in a straight line before hitting the opposite plate and change direction
again. Because of these long jumps, the trajectories approach a Lévy flight rather than
a Brownian motion.

2 Anomalous diffusion limit for the linear Boltzmann
equation

In this second part of the talk, we consider the linear Boltzmann equation

∂tf + v · ∇xf = Q(f)

where Q is a linear integral operator of the form:

Q(f) =
∫

RN

[
σ(v, v′)f(v′)− σ(v′, v)f(v)

]
dv′

= K(f)− ν(v)f

with ν(v) =
∫

RN

σ(v′, v) dv′ (called the collision frequency).

The properties of such an operator Q are classical. In particular,

• Q is conservative: ∫

RN

Q(f) dv = 0 for all f

• Under reasonable assumptions on σ, it can be shown that there exists an equilib-

rium distribution function F (v) > 0 such that
∫

RN

F (v) dv = 1 and

ker(Q) = Span {F (v)}.

It is often assumed that F (v) = M(v), but we will be mostly interested
in situation where this is not the case. We will however always assume that∫
RN v F (v) dv = 0 (or, in cases where this integral is not well defined, that F is

an even function).

• −Q is a non-negative operator in L2
F−1 :

−
∫
Q(f) f 1

F
dv ≥ 0.

Furthermore, Q satisfies important spectral gap properties:

Exp. no XII— Anomalous diffusion phenomena: A kinetic approach
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• If 0 < ν1 ≤ ν(v) ≤ ν2 for all v, then

−
∫
Q(f) f dv

F
≥ c0

∫
|f − ρF |2 1

F (v)dv.

• For more general ν, under some assumptions on σ, we have

−
∫
Q(f) f dv

F
≥ c0

∫
|f −Πf |2 ν(v)

F
dv

where Π(f) =

∫
νf dv

∫
νF dv

F.

The second inequality is of course weaker than the first one when the collision fre-
quency ν is degenerate. It implies in particular, that the operator Q?−1 is well defined
on L2(Fν dv).

We now, once again, consider the small Knudsen number/long time asymptotic:

ε ∂tf
ε + v · ∇xfε = 1

ε
Q(fε).

Then we have the following classical result (see for instance Degond-Goudon-
Poupaud ’00):

Theorem 2.1. Under appropriate assumptions on σ and F , the solution fε(x, v, t)
converges weakly to ρ(x, t)F (v) where ρ solves

∂tρ−∇x · (D∇xρ) = 0

with
D = −

∫
Q?−1(v)⊗ v F (v) dv.

The proof of such a result requires in particular that Q?−1(v) exists, that is v ∈
L2(ν−1F dv): ∫

RN

|v|2F (v)
ν(v) dv <∞

So this diffusion limit breaks down (D = ∞), for instance, in the following situa-
tions:

• If
F (v)
ν(v) ∼

1
|v|N+α as |v| → ∞

with α < 2 (in this case the integral above diverges for the large |v|).

• If F (v) = M(v) is a Maxwellian distribution (or another nice function) and

ν(v) ∼ |v|N+β as |v| → 0

with β > 2 (in this case the integral above diverges because of the small |v|).
In the next sections, we explore those two situations

Antoine Mellet
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2.1 Heavy-tail distribution functions
First, we assume that the operator Q is such that

• the thermodynamical equilibrium F (v) satisfies

F (v) ∼ κ0
|v|α+N as |v| → ∞

for some α > 0.

• the collision frequency satisfies

ν(v) ∼ ν0|v|β as |v| → ∞
for some β < α.

We recall that if β > 2− α, then
∫
|v|2F (v)

ν(v) dv <∞

and the usual diffusion limit of Theorem 2.1 holds with the scaling

ε2 ∂tf
ε + ε v · ∇xfε = Q(fε)

When this fails, we have instead the following result:

Theorem 2.2 (Mellet-Mischler-Mouhot [29]). Assume α > 0 and β < min{α; 2−α}
and define

γ := α− β
1− β ∈ (0, 2).

Then the solution fε of

εγ ∂tf
ε + ε v · ∇xfε = Q(fε)

converges weakly to ρ(t, x)F (v) with

∂tρ+ κ (−∆x)γ/2ρ = 0 in (0,∞)× RN ,

ρ(0, .) = ρ0 in RN ,

This result was proved in [29] using Laplace-Fourier Transform. The dif-
fusion coefficient κ can be computed explicitly. It only depends on N , α, and
lim|v|→∞ |v|N+α+βF (v)/ν(v). This is very different from the usual case where the
diffusion coefficient involves an integral of some moments of F .

This theorem was later extended using a different method to handle space depen-
dent coefficients in the collision operator:

Theorem 2.3 (Mellet [27]). Under similar assumptions, but if ν = ν(x, v), then a
similar result holds, but (−∆x)γ/2 is replaced byL, elliptic operator of order γ defined
by the singular integral:

L(ρ) = P.V.
∫

RN

g(x, y)ρ(x)− ρ(y)
|x− y|N+γ dy

with

g(x, y) = ν0(x)ν0(y)
∫ ∞

0
zγe
−z
∫ 1

0
ν0((1− s)x+ sy) ds

dz.

This theorem was proved in [27] using appropriate test functions.

Exp. no XII— Anomalous diffusion phenomena: A kinetic approach
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2.2 Degenerate collision frequency
Next, we consider the case where

• F (v) = M(v)

• there exists β > 2 such that

ν(v) ∼ |v|N+β as |v| → 0

In that case also, the standard diffusion limit leads to D =∞. We can then prove:

Theorem 2.4 (Ben Abdallah-Mellet-Puel [6]). Let

γ = β + 2N
β +N − 1 .

The solution of
εγ∂tf

ε + εv · ∇xfε = Q(fε)
converges weakly to ρ(x, t)M(v) where ρ solves

∂tρ+ κ (−∆x)γ/2ρ = 0 in (0,∞)× RN ,

ρ(0, .) = ρ0 in RN

We note that in this case, the range of power γ is limited to (1, 2). As before, κ
only depends on β, N and lim|v|→0 |v|N+βM(v)/ν(v).

3 Applications
In this section, we will present two applications of these results.

3.1 Application 1: The Vlasov-Lévy-Fokker-Planck equation
The first application comes from Plasma physic. First, we recall that the classical
Fokker-Planck operator

L(f) := ∆vf + div(vf)
corresponds to Langevin equation

V̇i = −Vi + Brownian white noise

If we consider instead the microscopic equation

V̇i = −Vi + Lévy white noise

then we get the Lévy-Fokker-Planck operator

Ls(f) := −(−∆v)sf + div(vf)

This operator is sometime introduced in plasma physic, because one can check that the
thermodynamical equilibrium function, solution of Ls(F ) = 0, is given by

F (v) = F−1(e−|ξ|
2s

)

Antoine Mellet
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and satisfies in particular

F (v) ∼ 1
|v|N+2s as |v| → ∞.

As the classical Fokker-Planck operator, this operator is positive:

−
∫

RN

Ls(f) f
F
dv ≥ 0

and its spectral gap properties have been studied in particular by Gentil-Imbert [14].
Because of the heavy-tail equilibrium function, we are in the framework discussed

previously, where the usual diffusion limit fails due to the large velocity particles. We
can however prove:

Theorem 3.1 (Cesbron-Mellet-Trivisa [10]). The solution of

ε2s∂tf
ε + εv · ∇xfε = Ls(fε), x ∈ RN , v ∈ RN , t > 0

converges weakly in L∞(0, T, L2
F−1(R2N )) to ρ(x, t)F (v) with ρ solution of

∂tρ+ (−∆x)sρ = 0 in RN × (0,∞)

This result is proved using test functions of the form φε(x, v, t) = ϕ(x− εv, t).

3.2 Application 2: Heat transport in FPU-β chains
We now turn to the last part of this talk in which we discuss an application of this
anomalous diffusion phenomena to the modeling of heat transport in chains of oscilla-
tors.

At the microscopic level, a solid crystal is described as a set of atoms that oscillate
around given equilibrium positions (Zn for simplicity). The interactions between these
atoms are described by a Hamiltonian that typically takes into account nearest neighbor
interactions and a confining potential:

H(p, q) =
∑

i∈Zn

1
2p

2
i +

∑

|i−j|=1

V (qi − qj) +
∑

i∈Zn

U(qi)

where (qi, pi) are the displacement and momentum of atom i ∈ Zn. This model leads
to a very large system of ODE for (qi, pi)i∈Zn . Importantly, in insulating crystals, heat
is transported by the vibrations of the lattice thanks to the coupling potential V .

At the macroscopic level, Fourier’s law claims that the heat flux is proportional to
the gradient of the temperature:

J = −κ(T )∇xT

The question is thus wether it is possible to derive such a law from the microscopic
model via some hydrodynamic scaling limit (r = εq, t = εατ ).

This is a very difficult and largely open problem. In this talk, we address a re-
lated question, by using kinetic theory as an intermediary step. The idea behind this
analysis goes back to Debye [12] and Peierls [31]. One possible motivation for the
introduction of a kinetic equation in this context is to describe the vibrations of the lat-
tice, responsible for heat transport, as a gas of interacting phonons whose distribution
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function solves the Boltzmann Phonon Equation. Spohn [34] made the derivation of
this kinetic equation from the hamiltonian dynamic more precise by using the Wigner
transform of the displacement field. This equation is reminiscent of the classical Boltz-
mann equation for gas dynamic, but the velocity variable is replaced by a wave vector
k ∈ R/Z and the kinetic energy is replaced by the dispersion relation ω(k).

Our goal in this final part of this talk will be to derive some kind of Fourier’s law
from the Boltzmann Phonon Equation in the particular framework of the FPU-β chain.
This model got its name from Fermi, Pasta and Ulam who investigated (numerically)
the approach to thermal equilibrium for chains of coupled atoms whose dynamic can
be described by the simple Hamiltonian:

H(p, q) =
∑

i∈Z

1
2p

2
i +

∑

i∈Z
V (qi+1 − qi).

When V is quadratic (V (r) = γr2/2), we get a linear model which leads to infinite
conductivity. So Fermi, Pasta and Ulam considered two cases:

V (r) = γ
r2

2 + α
r3

3 (FPU-α chain)

and

V (r) = γ
r2

2 + β
r4

4 (FPU-β chain)

After the numerical experiments of Fermi-Pasta-Ulam (1955), there were a con-
siderable amount of work devoted to the further study of these chain (see in particular
Lepri-Livi-Politi [20], [21], [22], [23], [24], [25]. All these studies points to the diver-
gence of the heat conductivity and anomalous scaling of heat transport.

More recently, these problems have been approached using probabilistic tools (by
considering a harmonic potential perturbed by a stochastic noise preserving momentum
and energy). See in particular Basile-Bernardin-Olla [3, 4], Basile-Olla-Spohn [5],
Jara-Komorowski-Olla [18, 19], Olla [30], Bernardin-Gonçalves-Jara [8].

The kinetic approach, which is at the core of our analysis was first developed by
Peierls (1929) and made more precise by Spohn [34] and (in the context of the FPU-β
chain) by Lukkarinen-Spohn [26].

The Boltzmann phonon equation [34] reads:

∂tW (t, x, k) + ω′(k)∂xW (t, x, k) = C(W ) (t, x, k) ∈ (0,∞)× R× T

where k is the wave-number in T = R/Z, ω(k) is the dispersion relation (determined
by the harmonic part of the potential) and C(W ) is the collision operator (determined
by the anharmonic perturbation)

The function W is the limit of the rescaled Wigner transform of the displacement
field q (it can also be interpreted as a density distribution function of phonons). It is
worth mentioning that the total energy of the crystal, which in the microscopic model
is given by

E =
∑

i∈Z

1
2p

2
i + Vh(q)

can be expressed, with the Wigner transform as

E =
∫

R

∫

T
ω(k)W (x, k, t) dk dx.

Antoine Mellet
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As noted above, the dispersion relation is determined by the harmonic part of the
potential. When we have

Vh(q) = 1
2
∑

i∈Z
(qi+1 − qi)2

then we get
ω(k) = | sin(πk)|.

Note in particular that ω(0) = 0.
The collision operator is determined by the anharmnonic potential. For the Quartic

potential (FPU-β chain) we have (see Spohn [34]):

C(W ) =
∑

σ1,σ2,σ3=±1

∫
dk1

∫
dk2

∫
dk3F (k, k1, k2, k3)2

× δ(k + σ1k1 + σ2k2 + σ3k3)δ(ω + σ1ω1 + σ2ω2 + σ3ω3)
× [W1W2W3 +W (σ1W2W3 +W1σ2W3 +W1W2σ3)]

Borrowing to our usual understanding of the Boltzmann operator for gas dynamics, we
can think of the various terms in the operator as describing different type of interactions
between phonons:

k1

k2

k3

k

k1

k

k2

k3

Figure 2: Four phonons interactions

In order to understand the collision rule, we note that for pair collisions
(k, k1) → (k2, k3) (which correspond to the terms such that

�3
j=1 σj = −1

in the integral), we need to solve

ω(k) + ω(k1) = ω(k2) + ω(k + k1 − k2) (16)

while for three phonons mergers (or splitting) (k, k1, k2) → k3 we have

ω(k) + ω(k1) + ω(k2) = ω(k + k1 + k2). (17)

Again, in general, it is not possible to solve these equations explicitly,
and it is not obvious that either of these equations should be satisfied on a
set of positive measure

In fact, when ω is given by (6) (nearest neighbor couplings), it can
be shown that (17) has no solution (so collision processes in which three
phonons are merged into one, or one phonon splits into three are impos-
sible). As a consequence, the only interactions that are allowed are pair
collisions, which, in particular, preserve the total number of phonons. This
preservation of the number of phonons, reminiscent of the preservation of
the number of particles in gas dynamics, does not follow here from a fun-
damental physical principle, but is instead of mathematical artifact. This
property is however stable under small perturbation of ω, and it also holds
for the nonlinear wave equation for which ω(k) = |k| (k ∈ 3).

As a consequence, the operator C can be rewritten as

C(W ) = 36π

� � �
F (k, k1, k2, k3)

2δ(k + k1 − k2 − k3)δ(ω + ω1 − ω2 − ω3)

[W1W2W3 + WW2W3 − WW1W3 − WW1W2] dk1 dk2 dk3. (18)

with
F (k, k1, k2, k3)

2 = (16ωω1ω2ω3)
−1

what is going on with the constants

10

However, we note that the number of phonon is not a priori preserved during these
interactions (splitting and merging of the phonons is possible). As in the Boltzmann
operator, The Dirac masses account for the preservation of momentum (mod Z) and
energy. For the first type of interaction (two phonons → two phonons), we must have
k3 = k + k1 − k2 and

ω(k) + ω(k1) = ω(k2) + ω(k + k1 − k2)

while for the second type of interactions (three phonons → one phonons), we must
have k3 = k + k1 + k2 and

ω(k) + ω(k1) + ω(k2) = ω(k + k1 + k2).

However, this second equation has only trivial solutions, so there are no contributions
of three phonons merger/split in the operator C. This fact will have very important
consequences below. In particular, we note that

• this simplification implies that the "number" of phonons is conserved. This is
not however a physical quantity.

• For the cubic potential (FPU-α chain), the corresponding (quadratic) operator
vanishes completely (no three phonons interactions).
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In view of this simplification, we see that we can rewrite the collision operator as

C(W ) =
∫
dk1

∫
dk2

∫
dk3F (k, k1, k2, k3)2

× δ(k + k1 − k2 − k3)δ(ω + ω1 − ω2 − ω3)
× [W1W2W3 +WW2W3 −WW1W3 −WW1W2].

Finally, we note that the collision kernel is given by (for nearest neighbors cou-
pling)

F (k, k1, k2, k3)2 = C0

3∏

i=0

sin2(πki)
ω(ki)

= C0

3∏

i=0
| sin(πki)|.

The properties of the operator C are discussed in [34] and [26]. In particular,
we have:

• Conserved quantities:
∫

T
ω(k)C(W ) dk = 0,

∫

T
C(W ) dk = 0

The equation conserves the energy and the "number of phonons" (not physical -
due to the lack of three phonons merger/split). Note that the momentum is only
conserved modulo integers (umklapp process).

• Entropy inequality ∫

T1
W−1C(W ) dk ≥ 0

• Using this entropy inequality, Lukkarinen and Spohn [26] prove that the station-
ary solutions form a two parameters family of functions:

Wα,β(k) = 1
βω(k) + α

,

where the parameter α is due to the symmetry of the operator (lack of three
phonons merger/split).

Our main result will be the derivation of a fractional diffusion equation from the lin-
earized Boltzmann phonon equation. More precisely, we will be studying the behavior
of small perturbation of a thermodynamical equilibrium

W0(k) = T

ω(k) .

We must thus introduce the linearized operator

L(f) := W−1
0 DC(W0)(W0f)

= T
2
ω(k)

∫ ∫ ∫
δ(k + k1 − k2 − k3)δ(ω + ω1 − ω2 − ω3)

[ω3f3 + ω2f2 − ω1f1 − ωf ] dk1 dk2 dk3

which we can write in the form

L(f) = K(f)− V f
whereK is an integral operator and V a positive multiplicative constant. The properties
of this operator, which we recall below, are investigated in [26]:
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• The kernel of L is given by Ker L = span {1, ω−1}.

• The operator L satisfies
∫
L(f) dk = 0, and

∫
ω−1L(f) dk = 0.

• L : L2(T, V (k) dk)→ L2(T, V (k)−1 dk) is a bounded self-adjoint operator.

L(f) = K(f)− V f

with K compact operator and V (k) > 0.

• We have
−
∫

T
L(f)f dk ≥ 0 (the L2 norm is decreasing).

and
−
∫

T
L(f)f dk ≥ c0

∫

T
V (k)|f −Π(f)|2 dk

where Π(f) is the orthogonal projection of f onto ker(L).

• and finally (this is perhaps the most important result of [26]), V (k) is degenerate
when k → 0:

V (k) ∼ V0|k|5/3 as k → 0.

So, this is similar to the situation described in the first part of this talk (linear Boltz-
mann operator with degenerate collision frequency). In particular one can check that
the standard diffusion limit for linearized Boltzmann equation would fail. However, L
is not a linear Boltzmann equation, but a linearized Boltzmann operator. In particular
the operator K does not have a sign (no maximum principle). Furthermore, the kernel
of L is too big because it contains the mode ω−1. Formally we thus expect

fε(x, k, t) ∼ T (x, t) + S(x, t)ω−1(k).

But we also have
∫ ∫
|fε|2 dk dx < ∞ (provided the corresponding norm is finite at

time t = 0) so we expect to find that S = 0 since ω(k)−1 is not square integrable
(recall that ω(k) ∼ |k|). This fact, however, is not easy to establish rigorously (and we
will need to get a rate of convergence to zero for this term).

The main theorem of [28] is then:

Theorem 3.2 (Mellet-Merino [28]). Let fε be a solution of

ε8/5∂tf
ε + εω′(k)∂xfε = L(fε)

with initial data f0 ∈ L2(R× T). Then, up to a subsequence,

fε(t, x, k) ⇀ T (t, x) L∞((0,∞);L2(x, k))-weak

where T solves the fractional diffusion equation

∂tT + κ

T
6/5 (−∆x)4/5T = 0 in (0,∞)× R

κ ∈ (0,∞) with initial condition

T (0, x) = 1
〈V 〉

∫ 1

0
V f0(t, x, k) dk.
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This equation corresponds to an anomalous Fourier’s law of order 3/5:

j = −κ(T )∇(−∆)− 1
5T

which is consistent with some (but not all) numerical findings (see below for more
discussion about this).

Sketch of the proof. We briefly describe the proof:

• It relies on the Laplace-Fourier Transform Method introduced in [29].

• A crucial point is to show that the projection of fε onto the singular part of
the kernel of L goes to zero fast enough. In fact, we can obtain the following
expansion:

fε(t, x, k) = T ε(t, x) + ε
3
5Sε(t, x)ω(k)−1 + ε

4
5hε(t, x, k)

where T ε, Sε and hε are bounded in appropriate functional spaces.

• Projecting onto the constant mode of the kernel, we then get the following equa-
tion

∂tT + κ1(−∆)4/5T + κ2(−∆)1/2S = 0.
We see that the competition between the smallness (ε3/5) of the S term and its
singularity at k = 0 leads to a term of order 1 in the T equation.

• In order to get an equation for S, we now project onto the singular mode of the
kernel, and we get:

κ2(−∆)1/2T + κ3(−∆)1/5S = 0.

Note that there is no ∂tS in this equation. This can be explained by the fact
that the quantity S diffuses faster than T , and so at the time scale that we are
considering here, it has already reached equilibrium. A similar phenomenon was
first observed by S. Hittmeir and S. Merino [17] in the context of hydrodynamic
limits for a Linear BGK equation with degenerate collision frequency.

• We can now eliminate S from the first equation using the second one and get the
equation for T :

∂tT + κ(−∆)4/5T = 0 with κ = κ1 −
κ2

2
κ3

> 0

We note in particular that the S term disappeared in the limit but nevertheless
had an effect at the macroscopic scale, by reducing the value of the diffusion
coefficient.

In conclusion, we have derived an anomalous Fourier’s law from the linearized
BPE for the FPU-β chain. But it is important to remember that the BPE itself is for-
mally derived as a weak perturbation limit of the Hamiltonian dynamics (for small
quartic perturbation of the quadratic potential). There is no reason to believe that the
two limits should commute, and it is thus not clear that the scaling of this Fourier
law is consistent with the scaling of the microscopic Hamiltonian dynamics. In par-
ticular other approaches, that do not rely on the kinetic description, lead to different
powers (see Spohn [35], Bernardin-Gonçalves-Jara [8], Jara-Komorowski-Olla [18]).
We also point out that in higher dimensions numerical simulations as well as theoret-
ical arguments point to anomalous behavior in dimension 2 and normal diffusion in
dimension 3.
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