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ON THE GROWTH OF SOBOLEV NORMS FOR THE
CUBIC SZEGŐ EQUATION

PATRICK GÉRARD AND SANDRINE GRELLIER

Abstract. We report on a recent result establishing that trajectories of
the cubic Szegő equation in Sobolev spaces with high regularity are gener-
ically unbounded, and moreover that, on solutions generated by suitable
bounded subsets of initial data, every polynomial bound in time fails for
high Sobolev norms. The proof relies on an instability phenomenon for
a new nonlinear Fourier transform describing explicitly the solutions to
the initial value problem, which is inherited from the Lax pair structure
enjoyed by the equation.

1. Introduction

The large time behavior of solutions to Hamiltonian partial differential
equations is an important problem in mathematical physics. In the case of
finite dimensional Hamiltonian systems, many features of the large time be-
havior of trajectories are described using the topology of the phase space. For
a given infinite dimensional system, several natural phase spaces, with dif-
ferent topologies, can be chosen, and the large time properties may strongly
depend on the choice of such topologies. For instance, it is known that the
cubic defocusing Schrödinger equation

i∂tu+ ∆u = |u|2u

posed on a Riemannian manifold M of dimension d = 1, 2, 3 with sufficiently
uniform properties at infinity, defines a global flow on the Sobolev spaces
Hs(M) for every s ≥ 1 (see e.g. [4]). In this case, a typical large time
behavior of interest is the boundedness of trajectories. On the energy space
H1(M), the conservation of energy trivially implies that all the trajectories
are bounded. On the other hand, the existence of unbounded trajectories in
Hs(M) for s > 1 is a long standing open problem [2], naturally connected
to weak turbulence. In [3], [28], it was proved that dispersion properties
imply a polynomial bound in time on Hs norms as time goes to infinity,
but so far the optimality of this kind of bound has not been established or
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disproved.1 Let us mention however that, for some special solutions of cubic
NLS on R×T2, Hani–Pausader–Tzvetkov–Visciglia [17] succeeded in proving
that Hs norms may not be bounded for s big enough, with a minoration of
the type

ec(log log t)
1/2

,

on a sequence of times going to infinity. Natural model problems for studying
the unboundedness of Sobolev norms seem to be those for which the calcu-
lation of solutions is the most explicit, namely integrable systems. Typical
examples are the Korteweg de Vries equation [21], [19] and the one dimen-
sional cubic nonlinear Schrödinger defocusing equation [31], [15]. However,
in these cases, the set of conservation laws is known to control the whole
regularity of the solution, so that all the trajectories of elements of Hs(M)
are bounded in Hs(M) for every nonnegative integer s [29].

In order to investigate direct and inverse cascades between spacial scales
in one space dimension, Majda, Mc Laughlin, Tabak and their collaborators
introduced, in a series of papers starting with [22], — see also Zakharov,
Guyenne, Pushkarev, Dias [32] — a class of Hamiltonian equations on T
including

(1) i∂tu− |D|αu = |u|2u , D :=
1

i
∂x , α > 0 ,

making numerical simulations suggesting weak turbulence effects for some
values of α. For α > 1, it is easy to prove that this equation is globally well–
posed on Hs(T) for s ≥ α

2
, and that the Hα/2 norm is uniformly bounded

along the trajectories. Moreover, polynomial bounds on the Hs norms for
big s can also be obtained in that case [29].

In the limit case α = 1, Equation (1) is a nonlinear (half–) wave equation
in one space dimension, which can be proved to be globally well-posed on Hs

for s ≥ 1
2

(see [11]). However, compared to the case α 6= 1, this equation is no
more dispersive, which suggests that large time transition to high frequencies
may be facilitated. In [11] — see also Pocovnicu [26]—, we proved that a
Birkhoff normal form of this equation near the origin is given at first order
by the following cubic Szegő equation,

(2) i∂tu = Π(|u|2u) ,

where Π denotes the Szegő projector on L2(T),

Π̂u(k) = 1k≥0û(k) .

1Except in the case M = Rd, d = 2, 3, 4, where global finiteness of Strichartz norms has
been established , leading to scattering theory [13], [27], [20], [6]. In this case, boundedness
of high Hs norms follows. We are grateful to N. Tzvetkov for drawing our attention to
this fact.
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Notice that the range of Π is the closed subspace L2
+(T) consisting of L2

functions on the unit circle which admit a holomorphic extension to the unit
disc. Equation (2) has been introduced in [7], where global wellposedness
was established on Hs

+(T) := Hs(T) ∩ L2
+(T) for every s ≥ 1

2
, as well as

boundedness of the H1/2 norm along every trajectory. Moreover, we proved
that this equation enjoys a Lax pair structure, giving rise to integrability
properties studied in [7] and [8], as well as the following a priori estimate on
Hs norms of solutions,

(3) ‖u(t)‖Hs ≤ Cse
Cst , s > 1 ,

where Cs is a uniform constant depending only on a bound of the Hs norm of
the initial data. It turns out that this estimate is almost optimal, as shown
by the following result.

Theorem 1.

(1) For every s > 1
2
, the set of initial data in Hs

+(T) leading to an un-
bounded trajectory in Hs

+(T) is a dense Gδ–subset of Hs
+(T).

(2) For every positive integer M , for every s > 1
2
, there exists a bounded

subset B of C∞+ (T) := ∩sHs
+(T) such that

sup
u0∈B

‖u(t)‖Hs

(1 + |t|)M →∞ as |t| → ∞,

where u denotes the solution of (2) with u(0) = u0.

The above theorem calls for several comments.

• It is in fact possible to find the same dense Gδ–subset of initial data
leading to unbounded trajectories in Hs for every s > 1

2
. However, at

this stage we cannot display yet an explicit example of such an initial
datum. For example, we know that every rational function with no
pole in the closed unit disc gives rise to a bounded trajectory in
every Hs (see [10]). This fact is in contrast with the case of the cubic
Szegő equation on the line, where special examples of unbounded
trajectories in Hs, for every s > 1

2
, are displayed in [25].

• In the above result, the superpolynomial growth of Sobolev norms is
stated for families of solutions. In fact, we expect that this super-
polynomial growth also holds for generic initial data, and that this
growth is indeed exponential, making estimate (3) optimal. An ex-
plicit example of such a behaviour was recently displayed by H. Xu
in [30], for the special perturbation

i∂tu = Π(|u|2u) + α

(∫

T
u

)
, α > 0 .
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• A very natural open question is of course whether Theorem 1 holds
for the half-wave equation (1) for α = 1.

The proof of Theorem 1 relies on explicit formulae for solutions of Equa-
tion (2), which are non trivial consequences of the Lax pair structure and
will be presented without proof in section 2. Then we sketch the proof of
part 1) of the theorem in section 3, and finally give a complete proof of
part 2) in section 4.

2. Explicit formulae

In this section, we list the main formulae solving the Cauchy problem for
the cubic Szegő equation (2). The detailed proofs will appear in a forthcom-
ing paper.

First we introduce some additional notation. Given a positive integer n,
we set

Ωn := {s1 > s2 > · · · > sn > 0} ⊂ Rn .

Given a nonnegative integer d ≥ 0, we recall that a Blaschke product of
degree d is a rational function on C of the form

Ψ(z) = e−iψ
d∏

j=1

z − pj
1− pjz

, ψ ∈ T , pj ∈ D .

Alternatively, Ψ can be written as

Ψ(z) = e−iψ
P (z)

zdP
(
1
z

) ,

where ψ ∈ T is called the angle of Ψ and P is a monic polynomial of degree d
with all its roots in D. Such polynomials are called Schur polynomials. We
denote by Bd the set of Blaschke products of degree d. It is a classical result
— see e.g. [18] — that Bd is diffeomorphic to T× R2d.

Given a n-tuple (d1, . . . , dn) of nonnegative integers, we set

Sd1,...,dn := Ωn ×
n∏

r=1

Bdr ,

endowed with the natural product topology. Given a sequence (dr)r≥1 of

nonnegative integers, we denote by S(2)
(dr)

the set of pairs

((sr)r≥1, (Ψr)r≥1) ∈ R∞ ×
∞∏

r=1

Bdr
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such that

s1 > · · · > sn > · · · > 0 ,
∞∑

r=1

(dr + 1)s2r <∞ .

We also endow S(2)
(dr)

with the natural topology.

Finally, we denote by Sn the union of all Sd1,...,dn over all the n-tuples

(d1, . . . , dn), and by S(2)
∞ the union of all S(2)

(dr)
over all the sequences (dr)r≥1.

Given (s,Ψ) ∈ Sn and z ∈ C, we define the matrix C(z) := C(s,Ψ)(z) as
follows. If n = 2q, the coefficients of C(s,Ψ)(z) are given by

(4) cjk(z) :=
s2j−1 − s2kzΨ2k(z)Ψ2j−1(z)

s22j−1 − s22k
, j, k = 1, . . . , q .

If n = 2q − 1, we use the same formula as above, with s2q = 0.

Theorem 2. For every n ≥ 1, for every (s,Ψ) ∈ Sn, for every z ∈ D, the
matrix C(s,Ψ)(z) is invertible. We set

(5) u(s,Ψ)(z) = 〈C(z)−1(Ψ2j−1(z))1≤j≤q,1〉,

where

1 :=




1
.
.
.
1




, and 〈X, Y 〉 :=

q∑

k=1

XkYk.

For every (s,Ψ) ∈ S(2)
∞ , the sequence (uq)q≥1 with

uq := u((s1, . . . , s2q), (Ψ1, . . . ,Ψ2q)),

is strongly convergent in H
1/2
+ (S1). We denote its limit by u(s,Ψ).

The mapping

(s,Ψ) ∈
∞⋃

n=1

Sn ∪ S(2)
∞ 7−→ u(s,Ψ) ∈ H1/2

+ \ {0}

is bijective. Furthermore, its restriction to every S(d1,...,dn) and to S(2)
(dr)

is a

homeomorphism onto its range.
Finally, the solution at time t of equation (2) with initial data u0 = u(s,Ψ)

is u(s,Ψ(t)), where

Ψr(t) = ei(−1)
rs2rt Ψr .
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Let us briefly explain how the above nonlinear Fourier transform is related

to spectral analysis. If u ∈ H1/2
+ (S1), recall (see [23], [24]) that the Hankel

operator of symbol u is the operator Hu : L2
+(S1)→ L2

+(S1) defined by

Hu(h) = Π(uh) .

It can be shown that H2
u is a positive selfadjoint trace class operator. If S is

the shift operator defined by

Sh(z) = zh(z) ,

Hu satisfies

S∗Hu = HuS = HS∗u .

We denote by Ku this new Hankel operator. Let us say that a positive real
number s is a singular value associated to u if s2 is an eigenvalue of H2

u or K2
u.

The main point in Theorem 2 is that the list s1 > · · · > sr > . . . is the list
of singular values associated to u = u(s,Ψ), and that the corresponding
list Ψ1, . . . ,Ψr, . . . describes the action of Hu and of Ku on the eigenspaces
of H2

u, K2
u respectively, making more precise a theorem of Adamyan-Arov-

Krein about the structure of Schmidt pairs of Hankel operators [1]. In fact,
denoting by uj the orthogonal projection of u onto ker(H2

u − s22j−1I) and

by u′k the orthogonal projection of u onto ker(K2
u− s22kI), one can show that

uj 6= 0, u′k 6= 0, and

dim ker(H2
u − s22j−1I) = degΨ2j−1 + 1, Ψ2j−1(z)Hu(uj)(z) = s2j−1uj(z),

dim ker(K2
u − s22kI) = degΨ2k + 1, Ku(u

′
k)(z) = s2kΨ2k(z)u′k(z) .

Remark 1. These formulae have an interesting consequence in the special
case where the Blaschke products Ψr are all equal to 1. Indeed, from for-
mula (5), the Fourier coefficients of u are real, so that Hu and Ku act as self
adjoint operators on the real subspace of L2

+ corresponding to real Fourier
coefficients. Furthermore, from the above formulae, these operators are pos-
itive.

As a consequence of Theorem 2, we get inverse spectral theorems on Hankel
operators, which generalize to singular values with arbitrary multiplicity the
ones we had proved in [8] and [9] for simple singular values. Finally, the last
assertion of Theorem 2 is a consequence of the following Lax pair identities,

dHu

dt
= [Bu, Hu] , Bu(h) :=

i

2
H2
uh− iΠ(|u|2h) ,

dKu

dt
= [Cu, Ku] , Cu(h) :=

i

2
K2
uh− iΠ(|u|2h) .
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3. Large time instability

Using Theorem 2, the proof of part 1) of Theorem 1 heavily relies on a new
phenomenon, which is the loss of continuity of the map (s,Ψ) 7→ u(s,Ψ) as
three consecutive sr’s are collapsing. More precisely, an inspection of formula
(5) yields the following elementary lemma.

Lemma 1. Given (s1, . . . , sn, δ) ∈ Ωn+1, (Ψ1, . . . ,Ψn) ∈ Bd1×· · ·×Bdn, and
ε > 0 small enough, the family

uε := u((s1, . . . , sn, δ + ε, δ, δ − ε), (Ψ1, . . . ,Ψn, e
iϕ+ , eiθ, eiϕ−))

converge as ε tends to 0, in every Hs space, to

u = u((s1, . . . , sn, δ), (Ψ1, . . . ,Ψn,Ψ))

for some Ψ ∈ B1, except if ϕ+ = ϕ− mod 2π. If ϕ+ = ϕ− mod 2π, then uε

is unbounded in Hs for every s > 1
2
.

The mechanism of unboundedness of Hs norms for s > 1
2

in the case
ϕ+ = ϕ− mod 2π is the convergence, as ε tends to 0, of a pole of the rational
function uε to the unit circle. Using this lemma, we get the following long
time instability result.

Proposition 1. For every u0 ∈ C∞+ (T), there exists a sequence (un0 ) con-
verging to u0 in C∞+ (T) and a sequence (tn) of times such that the solution un

of (2) with un(0) = un0 satisfies

∀s > 1

2
, ‖un(tn)‖Hs −→

n→∞
∞ .

Proposition 1 is a generalization to every smooth datum u0 of an instability
phenomenon already displayed in [7], section 6, corollary 5, and revisited
in [10], section 4, in the special case

u0(z) = z .

This instability phenomenon was also discovered in [5] for the cubic NLS
equation on T2, and made more precise, with polynomial estimates, in [14].
Indeed, we observed that, for every ε > 0, the solution uε of the cubic Szegő
equation with the initial datum uε0(z) = z + ε satisfies, at time tε ∼ π

2ε
,

∀s > 1

2
, ‖uε(tε)‖Hs ' (tε)2s−1 .

This divergence is due to the existence of a pole of the rational function
z 7→ uε(tε, z) at distance d ' ε2 of the unit circle.
Let us sketch the proof of Proposition 1, which combines Lemma 1 with the
last part of Theorem 2. By Theorem 2 and a standard density argument, we
may assume that u0 has the form

u0 = u((s1, . . . , sn), (Ψ1, . . . ,Ψn))
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for some ((s1, . . . , sn), (Ψ1, . . . ,Ψn)) ∈ Sn. Given δ > 0, Lemma 1 implies
that

uδ,ε0 := u((s1, . . . , sn, δ + ε, δ, δ − ε), (Ψ1, . . . ,Ψn, 1, 1,−1))

converges in every Hs, as ε tends to 0, to u((s1, . . . , sn, δ), (Ψ1, . . . ,Ψn,Ψ))
for some Ψ ∈ B1. Furthermore, it is easy to check that

u((s1, . . . , sn, δ), (Ψ1, . . . ,Ψn,Ψ)) −→ u0

in every Hs as δ tends to 0. On the other hand, applying the last assertion
of Theorem 2, the solution uδ,ε with the initial datum uδ,ε0 is given at time t
by

uδ,ε(t) = u(((sr)r≤n, δ + ε, δ, δ − ε), ((ei(−1)rts2rΨr)r≤n, e
iϕ+(t), eiθ(t), eiϕ−(t))) ,

with

ϕ+(t) = (−1)n+1t(δ+ ε)2 , θ(t) = (−1)ntδ2 , ϕ−(t) = π+ (−1)n+1t(δ− ε)2 .
Choosing

tδ,ε =
π

4δε
,

we observe that the angles ϕ+(tδ,ε) and ϕ−(tδ,ε) are the same modulo 2π,
therefore, by Lemma 1, uδ,ε(tδ,ε) is unbounded in Hs for every s > 1

2
as ε

tends to 0. The proof of Proposition 1 then follows by choosing

un0 := uδn,εn0 , tn := tδn,εn ,

with appropriate sequences (δn), (εn) satisfying εn << δn << 1 .

The first assertion of Theorem 1 is a consequence of Proposition 1 and of a
Baire category argument. This argument comes back to Hani [16], who used
it first for finding solutions with unbounded Sobolev norms for the totally
resonant form of cubic NLS on T2, as investigated by [5] and [14]. Notice
that the previously quoted result in [17] relies on [5] and [14], and on a
remarkable modified scattering argument.

4. The failure of polynomial estimates for high Sobolev norms

In this section, we prove the super polynomial instability of the Sobolev
norms for families of solutions of the Szegő cubic equation stated in the
introduction. We recall this statement.

Theorem 3. For every positive integer M , every s > 1
2
, there exists a

bounded subset B of C∞+ (S1) such that

sup
u0∈B

‖u(t)‖Hs

(1 + |t|)M →∞ as |t| → ∞

where u(t) is the solution of (2) with u(0) = u0.
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Proof. This result is a consequence of the following proposition.

Proposition 2. For every N ≥ 2, every ε > 0, every ξ := (ξj)1≤j≤N ∈ RN ,
η := (ηk)1≤k≤N−1 ∈ RN−1, such that

ξ1 > η1 > ξ2 > η2 > . . . ηN−1 > ξN ,

we consider
uε(z) = 〈C−1ε (z)(1),1〉

where Cε(z) = (cε,jk(z))1≤j,k≤N , with

cε,jk(z) :=
1 + εξj − z(1 + εηk)

(1 + εξj)2 − (1 + εηk)2
, 1 ≤ k ≤ N − 1 ;

cε,jN(z) :=
1

1 + εξj
, 1 ≤ j ≤ N .

Then, there exists (ξ, η) such that

(1) ‖uε‖Hs ≥ C

ε(N−1)(2s−1)
;

(2) The family
(
uε
(

1
2ε
, ·
))

is bounded in C∞+ (S1) as ε→ 0. Here (uε(t), ·)
denotes the solution of (2) with uε(0) = uε.

Theorem 3 is a direct consequence of this proposition by considering M =
[(N − 1)(2s− 1)] and the family of initial data

B :=

{
uε

( 1

2ε
, ·
)
, ε > 0

}
. �

The proof of proposition 2 requires several step. The first step consists

in establishing that ‖uε‖Hs ≥ C

ε(N−1)(2s−1)
for a dense open set of choices of

(ξ, η). This is based on the following lemma.

Lemma 2. For a dense open set of (ξ, η), we have (uε)
′(1) ≥ C

ε2(N−1)
. More-

over, the poles of uε are simple,

(6) uε(z) = αε0 +
N−1∑

j=1

αεj
1− pεjz

with αε0, α
ε
j > 0, 0 < pεj < 1, and pεj → 1 as ε → 0. Furthermore,

min1≤j≤N−1(1− pεj) is equivalent to ε2(N−1).

Let us first prove that the lemma implies that ‖uε‖Hs ≥ C

ε(N−1)(2s−1)
. First,

from (6) and the estimate on (uε)
′(1),

(uε)
′(1) =

N−1∑

j=1

αεjp
ε
j

(1− pεj)2
≥ C

ε2(N−1)
.
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Hence, applying Cauchy-Schwarz, one gets

C

ε2(N−1)
≤

N−1∑

j=1

αεjp
ε
j

(1− pεj)2

≤
(N−1∑

j=1

(αεj)
2

(1− pεj)2s+1

)1/2

×
(N−1∑

j=1

(pεj)
2

(1− pεj)3−2s
)1/2

≤
(N−1∑

j=1

(αεj)
2

(1− pεj)2s+1

)1/2

× C

ε(3−2s)(N−1)
.

Eventually,
(N−1∑

j=1

(αεj)
2

(1− pεj)2s+1

)1/2

≥ C

ε(2s−1)(N−1)
.

It remains to observe that

‖uε‖2Hs ≥ C
∑

n≥0
n2s

(N−1∑

j=1

αεj(p
ε
j)
n

)2

≥ C
N−1∑

j=1

(αεj)
2

(1− pεj)2s+1
.

Proof. Let us turn to the proof of the lemma. We first estimate the derivative
of uε at z = 1. From the explicit formula of uε, we obtain

(7) (uε)
′(1) = 〈Cε(1)−1ĊεCε(1)−1(1),1〉 = 〈ĊεCε(1)−1(1),t Cε(1)−1(1)〉

where Ċε = (ċε,jk)1≤j,k≤N , with

ċε,jk :=
1 + εηk

(1 + εξj)2 − (1 + εηk)2
, 1 ≤ k ≤ N − 1 , ċε,jN := 0 , 1 ≤ j ≤ N .

From the formula giving Cε, we have

Cε(1) =

((
1

2 + ε(ξj + ηk)

)

1≤j≤N ;1≤k≤N−1
,

(
1

1 + εξj

)

1≤j≤N

)

which is a Cauchy matrix. Let us recall that a Cauchy matrix is a matrix of

the form
( 1

aj + bk

)
. Its determinant is given by

(8) det

(
1

aj + bk

)
=

∏
i<j(ai − aj)

∏
k<l(bk − bl)∏

j,k(aj + bk)
.

It allows to obtain
((

1

aj + bk

)−1)

kj

=

(
(−1)j+k

λjµk
aj + bk

)

kj
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with

λj =

∏
l(aj + bl)∏

i<j(ai − aj)
∏

r>j(aj − ar)
and

µk =

∏
l(al + bk)∏

i<k(bi − bk)
∏

r>k(bk − br)
.

In the case of the matrix Cε(1), we have

λj =
2N−1

εN−1
(1 + εξj)

∏
l(1 + ε(ξj + ηl)/2)

ξ′j
, 1 ≤ j ≤ N ,

and

µk =
2N

εN−2

∏
l(1 + ε(ξl + ηk)/2)

η′k(1 + εηk)
, k ≤ N − 1, µN =

∏
i(1 + εξi)∏
k(1 + εηk)

where we have set

ξ′j :=
∏

i<j

(ξi − ξj)
∏

r>j

(ξj − ξr), η′k :=
∏

i<k

(ηi − ηk)
∏

r>k

(ηk − ηr).

Eventually, if k ≤ N − 1,

(
(Cε(1)−1(1)

)

k

= (−1)kµk

N∑

j=1

(−1)jλj
2 + ε(ξj + ηk)

= (−1)kµk
2N−2

εN−1

N∑

j=1

(−1)j
(1 + εξj)

ξ′j

∏

l 6=k

(
1 + ε

ξj + ηl
2

)
;

and
(

(Cε(1)−1(1)

)

N

= (−1)NµN

N∑

j=1

(−1)jλj
1 + εξj

= (−1)NµN
2N−1

εN−1

N∑

j=1

(−1)j

ξ′j

∏

l

(
1 + ε

ξj + ηl
2

)
.

In order to simplify these quantities, we use the following identities.

Lemma 3. For any 0 ≤ p ≤ N − 1,

N∑

j=1

(−1)j
ξpj
ξ′j

=

{
0 if p < N − 1
−1 if p = N − 1.
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Proof. We view
∑N

j=1(−1)j
ξpj
ξ′j

as a rational function of ξN denoted by Qp(ξN).

Its poles are simple and equal to ξ1, . . . , ξN−1. Identifying the residue at each
of these poles, we get

Res(Qp; ξN = ξr) =
(−1)r+1ξpr∏

i<r(ξi − ξr)
∏

N−1≥j>r(ξr − ξj)
+

(−1)N+1ξpr∏
i<N,i6=r(ξi − ξr)

= 0 .

Hence Qp(ξN) is in fact a polynomial. If p < N −1, it tends to 0 as ξN tends
to ∞, therefore it is identically 0. If p = N − 1, it is a constant, equal to its
limit at infinity,

Qp(ξN) =
(−1)NξN−1N

(−1)N−1ξN−1N

= −1 .

This completes the proof. �

Expanding in powers of ε the above formula giving

(
Cε(1)−1(1)

)

k

, and

using Lemma 3, we infer

(9)

(
Cε(1)−1(1)

)

k

= (−1)k+1µk , k ≤ N .

Let us compute tC−1ε (1)(1) in a similar way. From the formula, we have

(t
Cε(1)−1(1)

)

j

= (−1)jλj

(N−1∑

k=1

(−1)kµk
2 + ε(ξj + ηk)

+
(−1)NµN
1 + εξj

)

=: (−1)jλjS̃j(ε).

We expand in powers of ε and use again Lemma 3, changing N into N − 1.
We get

S̃j(ε) =
2N−1

εN−2

N−1∑

k=1

(−1)k
∏

i 6=j
(
1 + ε ξi+ηk

2

)

η′k(1 + εηk)
+ (−1)N +O(ε)

= (−1)N +O(ε)

+
2N−1

εN−2

N−1∑

k=1

(−1)k
(
εN−2

∑

p+q=N−2
(−1)qCp

N−1
ηp+qk

2pη′k
+O(εN−1)

)

= −1 +O(ε).

As a consequence, we infer

(10)
(
tCε(1)−1(1)

)
j

= (−1)j+1λj(1 +O(ε)) .
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Eventually, inserting (9) and (10) into the formula (7) of (uε)
′(1), it gives

(uε)
′(1) =

∑

1≤j≤N

∑

1≤k≤N−1

1 + εηk
(1 + εξj)2 − (1 + εηk)2

(−1)j+kλjµk(1 +O(ε))

=
22(N−1)

ε2(N−1)

( ∑

1≤j≤N

∑

1≤k≤N−1

(−1)j+k

(ξj − ηk)ξ′jη′k
+O(ε)

)
.

Considering
∑

1≤j,k≤N−1

(−1)j+k

(ξj − ηk)ξ′jη′k
as a function of ξN , the pole ηN−1 appears only once. Hence, this meromor-
phic function does not vanish on an open dense set of (ξ, η). This proves
that

|(uε)′(1)| ≥ C

ε2(N−1)

for an open dense set of choices of (ξ, η).
Next we prove the second statement of Lemma 2. Thanks to remark 1,
operators Huε and Kuε act as positive self adjoint operators on the subspace
of L2

+ corresponding to real Fourier coefficients. As a consequence — see e.g.
[12], Prop. 2.1 —, there exists a bounded positive measure µ on [0, 1[ such
that

∀k ≥ 0 , ûε(k) =

∫

[0,1[

tk dµ(t) .

On the other hand, Huε has exactly N positive singular values, hence is
an operator of finite rank N . By the identity S∗Huε = HuεS, S∗ acts on
the range of Huε , therefore there exits a non trivial linear relation between
the vectors (S∗)puε , p = 0, . . . , N . Equivalently, there exists non trivial
coefficients cp such that

∀k ≥ 0 ,
N∑

p=0

cpû(k + p) = 0 .

This precisely means that there exists a non trivial polynomial P of degree N
such that

∀k ≥ 0 ,

∫

[0,1[

tkP (t) dµ(t) = 0 .

By the Weierstrass theorem, µ is therefore a positive linear combination of
Dirac measures. This implies that the poles of uε are simple and that

uε(z) = αε0 +
N−1∑

j=1

αεj
1− pεjz
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with αεj > 0, 0 < pεj < 1. In particular (uε)
′(1) > 0 so that

(uε)
′(1) ≥ C

ε2(N−1)
.

Let us show that pεj→1 as ε→0. We know that the denominator of uε(z) is

Pε(z) :=
det Cε(z)

det Cε(0)
=

N−1∏

j=1

(1− pεjz),

therefore it suffices to prove that Pε(z) ' (1− z)N−1 as ε tends to 0. From
the formula of Cε(z),

(2ε)N−1 det Cε(z)→ (1− z)N−1 det

((
1

ξj − ηk

)

1≤j≤N ;1≤k≤N−1
,1

)

and

(2ε)N−1 det Cε(0)→ det

((
1

ξj − ηk

)

1≤j≤N ;1≤k≤N−1
,1

)
,

so the claim is proved.
Finally, we establish that

min
1≤j≤N−1

(1− pεj) ' ε2(N−1).

Let us first prove that min1≤j≤N−1(1− pεj) ≤ Cε2(N−1). From the estimate of
(uε)

′(1),

C

ε2N−1
≤ (uε)

′(1) =
∑ αεjp

ε
j

(1− pεj)2

≤ 1

min1≤j≤N−1(1− pεj)
∑ αεjp

ε
j

(1− pεj)

≤ uε(1)

min1≤j≤N−1(1− pεj)
≤ tr(Huε) + tr(Kuε)

min1≤j≤N−1(1− pεj)

≤ 2N − 1 +O(ε)

min1≤j≤N−1(1− pεj)
.

It gives the bound from above for min1≤j≤N−1(1− pεj). For the bound from
below, we use formula (8) to obtain

∏

j

(1− pεj) =
det Cε(1)

det Cε(0)
' εN−1 det Cε(1)

' εN−1 det

((
1

2 + ε(ξj + ηk)

)

1≤j≤N ;1≤k≤N−1
,

(
1

1 + εξj

)

1≤j≤N

)

' εN(N−1).
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On the other hand, as

−P ′ε(1) =
∑

j

pεj
∏

i 6=j
(1− pεi ) '

∏
(1− pεi )

min1≤j≤N(1− pεj)
' εN(N−1)

min1≤j≤N(1− pεj)
,

it suffices to bound −P ′ε(1) from above. Using formula (8) again,

− d

dz
(det Cε(z))|z=1 =

N−1∑

k=1

N∑

l=1

(−1)k+l(1 + εηk)

(1 + εξj)2 − (1 + εηk)2

· det

((
1

2 + ε(ξj + ηm)

)

j 6=l,m6=k
,

(
1

1 + εξj

)

j 6=l

)

≤ ε(N−2)
2−1

Eventually,

−P ′ε(1) ' −εN−1 d
dz

(det Cε(z))|z=1 ≤ Cε(N−1)(N−2)

so that

min
1≤j≤N−1

(1− pεj) ≥ Cε2(N−1).

This completes the proof of part 1 of Proposition 2. �

We are left with proving the second part of Proposition 2. From Theo-
rem 2, at time t = 1

2ε

uε

(( 1

2ε

)
, z
)

= 〈C̃ε(z)−1(Ψε
odd),1〉

where Ψε
odd := (e−iψ

ε
j (1/2ε))1≤j≤N with ψεj (t) := (1 + εξj)

2t. Hence

Ψε
odd = e−i/2ε(1 +O(ε))

(
e−iξj

)
1≤j≤N ,

and, for 1 ≤ j ≤ N ,

C̃ε(z)jk =
1 + εξj − z(1 + εηk)e

−i(ξj−ηk)(1 +O(ε))

(1 + εξj)2 − (1 + εηk)2
, 1 ≤ k ≤ N − 1,

C̃ε(z)jN =
1

1 + εξj
.

Let P̃ε(z) = det C̃ε(z)
det C̃ε(0) . From Theorem 2, P̃ε(z) has (N−1) roots outside the

closed unit disc D. Our aim is to prove that, for a suitable choice of (ξ, η),
the distance of these roots to the boundary of D is bounded from below.
Define

P (ξ, η)(z) := lim
ε→0

P̃ε(z) .
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Observe that

P (ξ, η)(z) = c(ξ, η) lim
ε→0

εN−1 det C̃ε(z)

= c̃(ξ, η) det

((
1− ze−i(ξj−ηk)

ξj − ηk

)

1≤j≤N ;1≤k≤N−1
,1

)
.

Notice that the determinant in the right hand side is a polynomial in z of
degree N − 1 whose coefficient of zN−1 equals

(−1)N−1
(∏

k

eiηk
)

det

((
e−iξj

ξj − ηk

)

1≤j≤N ;1≤k≤N−1
,1

)
.

With the choice ξ = ξ∗ = (2π(N − j + 1))1≤j≤N , this determinant is

(−1)N−1
(∏

k

eiηk
)

det

((
1

ξj − ηk

)

1≤j≤N ;1≤k≤N−1
,1

)
6= 0 .

The non vanishing of this determinant follows from developing with respect
to the last column, and in view of the explicit formula for the Cauchy deter-
minants. By continuity, this determinant remains non zero in a neighborhood
of ξ = ξ∗. Furthermore, Theorem 2 tells us that the roots of P̃ε(z) are located
outside the unit disc. Hence all the roots of P (ξ, η) belong to {z, |z| ≥ 1}.
Furthermore,

P (ξ∗, η)(z) = c̃(ξ∗, η) det

((
1

ξj − ηk

)

1≤j≤N ;1≤k≤N−1
,1

)N−1∏

k=1

(1− zeiηk).

Hence, for a suitable choice of η so that ηk 6= ηl (2π) for k 6= l , P (ξ∗, η) has
only simple zeroes which belong to the unit circle.

Lemma 4. For any η such that P (ξ∗, η) has only simple zeroes on the unit
circle, there exists an open neighborhood of ξ∗ such that, for every ξ 6= ξ∗ in
this neighborhood, the zeroes of P (ξ, η) are all outside D.

Proof. Denote by
{zk(ξ, η); 1 ≤ k ≤ N − 1}

the simple zeroes of P (ξ, η), with zk(ξ
∗, η) = e−iηk . The functions ξ 7→

zk(ξ, η) are analytic and satisfy |zk(ξ, η)|2 ≥ 1 and |zk(ξ∗, η)|2 = 1. In
particular the quadratic form ξ 7→ Qk(ξ) associated to the Hessian of the
function ξ 7→ |zk(ξ, η)|2 is positive at any ξ∗. We want to prove that, for
any k, Qk is not identically 0 for η in a dense open set. It suffices to prove
that the Laplacian of ξ 7→ |zk(ξ, η)|2, which coincides with the trace of Qk,
is not identically zero. Let us compute this Laplacian.

N∑

j=1

∂2

∂ξ2j

( |zk|2
2

)

|ξ=ξ∗
=

N∑

j=1

(
Re

(
zk
∂2zk
∂ξ2j

)

|ξ=ξ∗
+

∣∣∣∣
∂zk
∂ξj

∣∣∣∣
2

|ξ=ξ∗

)
.
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Differentiating the equation P (ξ, η)(zk(ξ)) = 0, we obtain

∂zk
∂ξj

= −
∂P
∂ξj

∂P
∂z

∂2zk
∂ξ2j

=
−∂2P

∂ξ2j

∂P
∂z

+ 2

∂2P
∂ξj∂z

∂P
∂ξj(

∂P
∂z

)2 −
(
∂P
∂ξj

)2 ∂2P
∂z2(

∂P
∂z

)3and

Introduce the following quantities.

Djk :=
1

ξj − ηk
det

((
1

ξr − ηl

)

r 6=j,l 6=k
,1

)
,

D :=
∑

j

(−1)j+kDjk, ζk :=
∏

l 6=k
(1− ei(ηl−ηk))

alk := − ei(ηl−ηk)

1− ei(ηl−ηk)
=

ei(ηl−ηk)/2

2i sin(ηl − ηk)/2
.

Notice that Re(alk) = 1
2
. Differentiating

P (ξ, η)(z) = det

((
1− ze−i(ξj−ηk)

ξj − ηk

)

1≤j≤N ;1≤k≤N−1
,1

)
,

one gets, after some computations,

∂P

∂ξj |ξ=ξ∗,z=zk
= i(−1)j+kDjkζk,

∂P

∂z |ξ=ξ∗,z=zk
= −eiηkζkD

∂2P

∂ξ2j |ξ=ξ∗,z=zk
= (−1)j+kζkDjk

(
1− 2i

ξj − ηk

)

∂2P

∂z2 |ξ=ξ∗,z=zk
= 2

∑

l 6=k

ζke
i(ηl+ηk)

1− ei(ηl−ηk)
D = −2ζke

2iηk
∑

l 6=k
alkD ,

and

∂2P

∂ξj∂z |ξ=ξ∗,z=zk
= (−1)j+kζkDjke

iηk

(
i+

1

ξj − ηk
− i
∑

l 6=k

ei(ηl−ηk)

1− ei(ηl−ηk)

)

+ ζke
iηk
∑

l 6=k
(−1)j+lDjl

(
1

ξj − ηl
− i ei(ηl−ηk)

1− ei(ηl−ηk)

)

= ζke
iηk

(
(−1)j+kDjk

(
i+

1

ξj − ηk
+ i
∑

l 6=k
alk

)

+
∑

l 6=k
(−1)j+lDjl

(
1

ξj − ηl
+ ialk

))
.
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Hence, inserting these formulae to compute the Laplacian, we obtain

Re

(
zk
∂2zk
∂ξ2j

)

|ξ=ξ∗
= Re

(
eiηk

∂2zk
∂ξ2j

)

|ξ=ξ∗

= Ij + IIj + IIIj

with

Ij = Re

(
eiηk
−∂2P

∂ξ2j

∂P
∂z

)
= (−1)j+k

Djk

D
,

IIj = 2Re

(
eiηk

∂2P
∂ξj∂z

∂P
∂ξj(

∂P
∂z

)2

)

= 2Re

(i
(
D2
jk

(
i+ 1

ξj−ηk + i
∑

l 6=k alk
)

+
∑

l 6=k(−1)k+lDjkDjl

(
1

ξj−ηl + ialk
))

D2

)

=
D2
jk

(
−2− (N − 2)

)
−∑l 6=k(−1)k+lDjkDjl

D2
,

IIIj = −Re

(
eiηk

(
∂P
∂ξj

)2 ∂2P
∂z2(

∂P
∂z

)3
)

= Re

(
2
∑

l 6=k alkD
2
jk

D2

)
= (N − 2)

D2
jk

D2
.

Remark that
∑

l 6=k
(−1)j+lDjl = D − (−1)j+N det

(
1

ξr − ηl

)

r 6=j
.

Hence, it gives

N∑

j=1

∂2

∂ξ2j

( |zk|2
2

)

|ξ=ξ∗
=

N∑

j=1

(∑

l

(−1)k+l+1DjkDjl

D2
+ (−1)j+k

Djk

D

)

= (−1)k+N
1

D2

∑

j

Djk det

(
1

ξr − ηl

)

r 6=j

It remains to check that

(−1)k+N
∑

j

Djk det

(
1

ξr − ηl

)

r 6=j

is not identically zero. This follows from the fact that the limit as ηk tends
to infinity of

(−1)k+Nη2k
∑

j

Djk det

(
1

ξr − ηl

)

r 6=j
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equals

∑

j

det

((
1

ξr − ηl

)

r 6=j,l 6=k
,1

)2

which is clearly not identically zero for a dense choice of (η, ξ). �
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