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THE RESOLUTION OF THE BOUNDED L2 CURVATURE CONJECTURE

IN GENERAL RELATIVITY

SERGIU KLAINERMAN, IGOR RODNIANSKI, AND JÉRÉMIE SZEFTEL

Abstract. This paper reports on the recent proof of the bounded L2 curvature conjecture.
More precisely we show that the time of existence of a classical solution to the Einstein-vacuum
equations depends only on the L2-norm of the curvature and a lower bound of the volume radius
of the corresponding initial data set.

1. Introduction

This paper reports on the recent proof of the bounded L2 curvature conjecture. More precisely
we show that the time of existence of a classical solution to the Einstein-vacuum equations
depends only on the L2-norm of the curvature and a lower bound of the volume radius of the
corresponding initial data set.

The entire proof of the conjecture is contained in the sequence of papers [20] [33] [34] [35] [36]
[37].

1.1. Initial value problem for the Einstein vacuum equations. We consider the Einstein
vacuum equations (EVE),

(1) Ricαβ = 0

where Ricαβ denotes the Ricci curvature tensor of a four dimensional Lorentzian space time
(M, g). (1) corresponds to an evolution problem. An initial data set consists of a three dimen-
sional manifold Σ0 together with a Riemannian metric g and a symmetric 2-tensor k on Σ0. For
a given initial data set (Σ0, g, k), the Cauchy problem consists in finding a metric g satisfying
(1) and an embedding of Σ0 in M such that the metric induced by g on Σ0 coincides with g
and the 2-tensor k is the second fundamental form of the embedding.

Remark 1.1. Since physically one should not be able to distinguished between different coordi-
nates systems, a solution of the Cauchy problem can be unique only modulo a diffeomorphism.

The equations (1) are overdetermined and the initial data set (Σ0, g, k) has to satisfy the
following compatibility conditions known as the constraint equations

(2)

{
∇jkij −∇itrk = 0,
Rscal − |k|2 + (trk)2 = 0,

where the covariant derivative ∇ is defined with respect to the metric g, Rscal is the scalar
curvature of g, and trk is the trace of k with respect to the metric g.
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In this paper we restrict ourselves to asymptotically flat initial data sets with one end. More
precisely, (Σ0, g, k) is such that Σ0 minus a compact set is diffeomorphic to R3 minus a ball,
with gij − δij and kij satisfying a suitable rate of fall off at infinity in this coordinates system.

The first local existence and uniqueness result for (EVE) was established by Y.C. Bruhat,
see [3], with the help of wave coordinates which allowed her to cast the Einstein vacuum equations
in the form of a system of nonlinear wave equations to which one can apply1 the standard theory
of nonlinear hyperbolic systems. The optimal, classical2 result states the following.

Theorem 1.2 (Classical local existence [7] [8]). Let (Σ0, g, k) be an initial data set for the Ein-
stein vacuum equations (1). Assume that Σ0 can be covered by a locally finite system of coordi-
nate charts, related to each other by C1 diffeomorphisms, such that (g, k) ∈ Hs

loc(Σ0)×Hs−1
loc (Σ0)

with s > 5/2. Then there exists a unique3 (up to an isometry) globally hyperbolic development
(M,g), verifying (1), for which Σ0 is a Cauchy hypersurface4.

Our goal will be to lower the assumptions of the previous theorem on the regularity of the
initial data set. To motivate our result, let us first emphasize in the next section why pushing
for rough solutions is a main theme in nonlinear evolution PDEs.

1.2. The quest for rough solutions in nonlinear evolution PDEs.

1.2.1. First examples. To illustrate the role played by rough solutions in nonlinear evolution
PDEs, let us consider a nonlinear evolution equation possessing a conserved quantity which is
positive definite and in particular controls a norm in a certain functional space. We refer to the
conserved quantity as the energy, its associated functional space as the energy space, and its
associated norm as the energy norm. One can then classify such evolution equations into three
categories5

(1) One can prove a local existence result with a time of existence which depends only on
the energy norm of the initial data. This case is referred as energy subcritical.

(2) One can prove a local existence result for initial data in the energy space, but with a
time of existence which does not only depend on the energy norm of the initial data (i.e.
there is no uniform lower bound on the size of the time interval of existence for initial
data with a given energy norm). This case is referred as energy critical.

(3) One can not prove a local existence result for initial data in the energy space. This case
is referred as energy supercritical.

As the energy supercritical case as it is still vastly open, we will focus on the two other cases.
In the energy subcritical case, one can pile up time intervals of existence provided by the local
existence result which are all of the same size since they only depend on the energy norm of the
data which is conserved. One infers global existence for any initial data. A nice illustration of

1The original proof in [3] relied on representation formulas, following an approach pioneered by Sobolev, see
[29].

2Based only on energy estimates and classical Sobolev inequalities.
3The original proof in [7], [8] actually requires one more derivative for the uniqueness. The fact that uniqueness

holds at the same level of regularity than the existence has been obtained in [25].
4That is any past directed, in-extendable causal curve in M intersects Σ0.
5One usually defines the criticality relative to the behavior of the energy under some notion of scaling. Here, we

instead classify the equation with respect to an ability to prove local existence results. These two classifications
agree in most cases and our choice only aims at simplifying the exposition.
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this procedure is provided by [11] in the case of the classical Yang-Mills equations in dimension
1+3, where the energy space is the Sobolev space H1.

In the energy critical case, the conjecture is that global existence holds for any data below
the energy of the first nontrivial stationary solution or solitary wave. This conjecture has been
proved in a large number of cases over the last thirty years. A spectacular achievement of this
method is the recent proof of the conjecture in the case of the 2+1 wave map problem in [38],
[31], [32] and [21].

A key step in the large data results mentioned above, both for the energy subcritical and
energy critical cases, is a local well-posedness result at the level of the energy space, which is
typically a low regularity well-posedness result. In the next section, we discuss another example
of a nonlinear evolution partial differential equation for which making sense of rough solutions
plays a fundamental role.

1.2.2. The proof of the weak cosmic censorship in spherical symmetry. In this section, we briefly
discuss the influential proof by Christodoulou [6] of the weak cosmic censorship conjecture for
the Einstein equations coupled to a scalar field in spherical symmetry6.

Let us first recall the weak cosmic censorship conjecture of Penrose. The starting point of
this conjecture is the existence of space times containing singularities, the most famous example
being the Schwarzschild space-time which is spherically symmetric and contains a singularity
at r = 0. Now, the existence of space-times containing a singularity could be considered as an
undesirable feature from the point of view of physics. To come to term with such space-times,
Penrose formulated the celebrated weak cosmic censorship conjecture7.

Conjecture 1.3 (Weak cosmic censorship). For generic asymptotically flat initial data set,
singularities are hidden by a black hole.

In view of this conjecture, singularities are acceptable as they not visible by an observer at
infinity. At the moment, it is still an open problem in general, but the conjecture has been
proved in the case of spherical symmetry in [6] for the Einstein equations coupled to a scalar
field. This seminal work relies on the rough well posedness result of [5]. This well posedness
result - which involves regularity assumptions at the level of a weighted bounded variation (BV)
norm - allows in particular to make sense of solutions with a jump along the backward null
cone from the singularity. This jump turns out to be essential in generating arbitrarily small
perturbations of a given solution containing a singularity which are still strong enough to cover
the singularity with a black hole8.

The result in [6] provides thus yet another example of the importance of making sense of
rough solutions for nonlinear evolution PDEs. It motivates our main result, which concerns
well-posedness of rough solutions for the Einstein equations in the absence of symmetry. Now,
BV norms are only adapted to hyperbolic problems in 1+1 dimension (and hence to spherical
symmetry). This will force us to abandon BV norms and to instead measure the regularity

6Due to Birkhoff’s theorem, the Einstein vacuum equations are non dynamical in spherical symmetry. To
obtain a dynamical problem and yet retain the advantage of working in spherical symmetry, one adds a matter
field to the right-hand side of the Einstein equations, a scalar field being the simplest possibility. For the sake of
simplicity, we do not explicitly write down the equations in this case.

7He also introduced the strong cosmic censorship conjecture which despite its name is independent of the weak
cosmic censorship conjecture.

8In the proof, the singularity is actually covered by a trapped region which, as it turns out, is enough.

Exp. no I— The resolution of the bounded L2 curvature conjecture in general relativity

I–3



of our solution using L2 based norms which are the only norms which are propagated by the
evolution in higher dimensions.

1.3. The resolution of the bounded L2 curvature conjecture.

1.3.1. The bounded L2 curvature conjecture. In this section, we consider the problem of going
beyond the classical local existence result stated in Theorem 1.2. To make the discussion more
tangible it is worthwhile to recall the form of the Einstein vacuum equations in the wave gauge.
Assuming given coordinates xα, verifying9

(3) �gx
α = 0, α = 0, . . . , 3,

the metric coefficients gαβ = g(∂α, ∂β), with respect to these coordinates, satisfy the system of

quasilinear wave equations10,

(4) �ggαβ = Fαβ(g, ∂g)

where Fαβ are quadratic functions of ∂g, i.e. the first order derivatives of g with respect to the
coordinates xα. In the harmonic coordinates, the wave operator on the curved background g is
given by �g = gµν∂µ∂ν . Equation (4) is obtained by expressing the Ricci tensor Ricαβ in terms
of the components of g and its first and second order derivatives. Conversely, to verify that
the solution of (4) yields a solution to the Einstein vacuum equations (1), one has additionally
to show that the coordinates conditions (3) propagate. This holds for solutions of (4), as was
observed by Choquet-Bruhat, provided these coordinates conditions are satisfied initially on Σ0

and (Σ0, g, k) satisfies the constraint equations (2).
In a first approximation we may compare (4) with the semilinear wave equation,

(5) �φ = F (φ, ∂φ)

with F quadratic in ∂φ. Using standard energy estimates - i.e. differentiating (5) s − 1 times,
multiplying it with ∂t∂

s−1φ, integrating by parts and using Gronwall’s lemma - one obtains the
following control for the Sobolev norm Hs of φ

(6) ‖φ(t)‖s . ‖φ(0)‖s exp

(
Cs

∫ t

0
‖∂φ(τ)‖L∞dτ

)
.

The classical exponent s > 3/2 + 1 arises simply from the Sobolev embedding of Hr, r > 3/2
into L∞.

To go beyond the classical exponent, see [26], one has to replace Sobolev inequalities with
Strichartz estimates of, roughly, the following type,

(∫ t

0
‖∂φ(τ)‖2L∞dτ

)1/2

. C
(
‖∂φ(0)‖H1+ε +

∫ t

0
‖�φ(τ)‖H1+ε

)

where ε > 0 can be chosen arbitrarily small. This leads to a gain of 1/2 derivatives, i.e. we can
prove well-posedness for equations of type (5) for any exponent s > 2.

9�g is the covariant wave operator gαβDαDβ .
10Nonlinear wave equations are either semilinear or quasilinear according to whether the higher order terms -

here the terms containing second order derivatives - are linear or nonlinear.
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The same type of improvement in the case of quasilinear wave equations requires a highly
non-trivial extension of such estimates for wave operators with non-smooth coefficients. The
first improved regularity results for quasilinear wave equations of the type,

(7) gµν(φ)∂µ∂νφ = F (φ, ∂φ)

with gµν(φ) a non-linear perturbation of the Minkowski metric mµν , are due to [1], [2], and [40],
[41] and [13]. The best known results for equations of type (4) were obtained in [14] and [28].
According to them one can lower the Sobolev exponent s > 5/2 in Theorem 1.2 to s > 2. It
turns out, see [22], that these results are sharp in the general class of quasilinear wave equations
of type (4). However, the Einstein equations enjoy a special structure, and it was conjectured
in [12] that one can obtain a well-posedness result at the level of s = 211.

Conjecture 1.4 (Bounded L2 curvature conjecture). The Einstein- vacuum equations admit
local Cauchy developments for initial data sets (Σ0, g, k) with locally finite L2 curvature and
locally finite L2 norm of the first covariant derivatives of k12.

1.3.2. The bounded L2 curvature theorem. In this section, we state our main result which gives
a positive answer to the above conjecture. We assume the space-time (M,g) to be foliated by
the level surfaces Σt of a time function t. Let T denote the unit normal to Σt, and let k the
the second fundamental form of Σt, i.e. kab = −g(DaT, eb), where ea, a = 1, 2, 3 denotes an
arbitrary frame on Σt and DaT = DeaT . We assume that the Σt foliation is maximal, i.e. we
have

(8) gabkab = 0

where g is the induced metric on Σt.
We also recall below the definition of the volume radius on a general Riemannian manifold M .

Definition 1.5. Let Br(p) denote the geodesic ball of center p and radius r. The volume radius
rvol(p, r) at a point p ∈M and scales ≤ r is defined by

rvol(p, r) = inf
r′≤r
|Br′(p)|
r3

,

with |Br| the volume of Br relative to the metric on M . The volume radius rvol(M, r) of M on
scales ≤ r is the infimum of rvol(p, r) over all points p ∈M .

Our main result is the following.

Theorem 1.6 (Main theorem). Let (M,g) an asymptotically flat solution to the Einstein vac-
uum equations (1) together with a maximal foliation by space-like hypersurfaces Σt defined as
level hypersurfaces of a time function t. Assume that the initial slice (Σ0, g, k) is such that the
Ricci curvature Ric ∈ L2(Σ0), ∇k ∈ L2(Σ0), and Σ0 has a strictly positive volume radius on
scales ≤ 1, i.e. rvol(Σ0, 1) > 0.

11The curvature tensor of g and the first order derivatives of the second fundamental form k are both at the
level of two derivatives of g. Thus, Conjecture 1.4 is at the level of two derivatives of g in L2 which indeed
corresponds to the case s = 2.

12As we shall see, from the precise theorem stated below, other weaker conditions, such as a lower bound on
the volume radius, are needed.
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(1) L2 regularity. There exists a time

T = T (‖Ric‖L2(Σ0), ‖∇k‖L2(Σ0), rvol(Σ0, 1)) > 0

and a constant

C = C(‖Ric‖L2(Σ0), ‖∇k‖L2(Σ0), rvol(Σ0, 1)) > 0

such that the following control holds on 0 ≤ t ≤ T :

‖R‖L∞
[0,T ]

L2(Σt) ≤ C, ‖∇k‖L∞[0,T ]
L2(Σt) ≤ C and inf

0≤t≤T
rvol(Σt, 1) ≥ 1

C
.

(2) Higher regularity. Within the same time interval as in part (1) we also have the higher
derivative estimates13,

(9)
∑

|α|≤m
‖D(α)R‖L∞

[0,T ]
L2(Σt) ≤ Cm

∑

|i|≤m

[
‖∇(i)Ric‖L2(Σ0) + ‖∇(i)∇k‖L2(Σ0)

]
,

where Cm depends only on the previous C and m.

Let us comment on Theorem 1.6.

(1) As mentioned in the previous section, the well posedness result of [28] in Hs with s > 2
is sharp for general quasilinear wave equations of type (4). To do better, one needs to
take into account the so called null structure, i.e. the special nonlinear structure of the
Einstein equations. In particular, Theorem 1.6 is the first well posedness result in which
the full structure of the quasilinear hyperbolic system, not just its principal part, plays
a crucial role.

(2) The assumptions of Theorem 1.6 concern the L2 norm of the curvature tensor of g and of
the first covariant derivatives of the second fundamental form k which are all invariant in
the sense that these objects can be defined without reference to any coordinates system14.
This allows, when working in the framework of the solutions constructed in Theorem
1.6, to retain an essential property of the Einstein equations, namely the freedom to pick
a coordinates system (see Remark 1.1).

(3) The part of Theorem 1.6 dealing with the propagation of higher order regularity provides
a continuation argument for the Einstein equations; that is the space-time constructed by
evolution from smooth data can be smoothly continued, together with a time foliation,
as long as the curvature of the foliation and the first covariant derivatives of its second
fundamental form remain L2- bounded along the leaves of the foliation. In fact, Theorem
1.6 implies the break-down criterion previously obtained in [19] and improved in [24],
[42]. Furthermore, this break-down criterion involves only invariant assumptions, and
hence provides information on true singularities (as opposed to coordinates singularities).

(4) One may wonder whether the solutions constructed in Theorem 1.6 are as rough as
possible. To discuss this issue, observe that the light cones of a Lorentzian space-time
(M,g) can be obtained as the level hypersurfaces of a solution u to the Eikonal equation

gαβ∂αu∂βu = 0.

13Assuming that the initial has more regularity so that the right-hand side of (9) makes sense.
14Note that this is not the case for instance of the result in [14] where one has to choose a fixed coordinates

system with respect to which the metric coefficients are in Hs for s > 2.
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Now, a byproduct of the proof of Theorem 1.6 is the fact that L2 bounds on the curvature
is the minimum requirement to control solutions u to the Eikonal equation (see Remark
4.1), and hence to make sense of light cones. As far as light cones are fundamental
objects in Lorentzian space-times, it is reasonable to expect their control to be necessary
to make sense of solutions to the Einstein equations. For this reason, we conjecture that
Theorem 1.6 is optimal.

The entire proof of Theorem 1.6 is contained in the sequence of papers [20] [33] [34] [35] [36]
[37]. In the rest of this paper, we discuss the general strategy of the proof as well as the main
steps.

2. Sketch of the proof of the main theorem

2.1. Strategy of the proof. As mentioned earlier, the well posedness result of [28] in Hs for
s > 2 is sharp for general quasilinear wave equations of type (4). To do better one needs to
take into account the special structure of the Einstein equations and rely on a class of estimates
which go beyond Strichartz estimates, namely the so called bilinear estimates. In the case of
semilinear wave equations, such as Wave Maps, Maxwell-Klein-Gordon and Yang-Mills, the first
results which make use of bilinear estimates go back to [9], [10], [11]. In the particular case
of the Yang-Mills equation the main observation was that, after the choice of a special gauge
(Coulomb gauge), the most dangerous nonlinear terms exhibit a special, null structure so that
the system reduces to the following schematic form

(10) �φ = Qij(φ,∇−1φ) +∇−1(Qij(φ, φ)) + l.o.t,

where φ is vector valued15 and Qij is the null form given by

(11) Qij(φ, ψ) = ∂iφ∂jψ − ∂iψ∂jφ, i, j = 1, 2, 3,

for which one can apply the bilinear estimates derived in [9]. With the help of these estimates
one was able to derive a well posedness result, in the flat 1 + 3 dimensional Minkowski space,
for the exponent s = 116.

To carry out a similar program in the case of the Einstein equations one would need, at the
very least to

(1) Exhibit the null structure, i.e. provide a coordinate condition, relative to which the
Einstein vacuum equations verify an appropriate version of the null condition.

(2) Exploit the null structure, i.e. prove bilinear estimates for the null quadratic terms
appearing in the previous step.

Concerning the coordinate condition, let us first mention that it is a priori not at all clear
what it should be, or even if there is one for that matter.

Remark 2.1. The only known structural condition related to the classical null condition, called
the weak null condition [23], tied to wave coordinates, fails the test. Indeed, the following simple
system in Minkowski space

�φ = 0, �ψ = φ ·∆φ
15Note that (10) is a system. In particular, the schematic notation Qij(φ, φ) should be understood as being

a linear combination of terms of the type Qij(φ
m, φl) where φl and φm denote components of the vector valued

function φ.
16This corresponds precisely to the s = 2 exponent in the case of the Einstein-vacuum equations.

Exp. no I— The resolution of the bounded L2 curvature conjecture in general relativity

I–7



verifies the weak null condition and yet, according to [22], it is ill posed for s = 2. Coordinate
conditions, such as spatial harmonic17, also do not seem to work.

We rely instead on a Coulomb type condition, for orthonormal frames, adapted to a maximal
foliation. Such a gauge condition appears naturally if we adopt a Yang-Mills description of the
Einstein field equations using Cartan’s formalism of moving frames, see [4]. It is important
to note nevertheless that it is not at all a priori clear that such a choice would do the job.
Indeed, the null form nature of the Yang-Mills equations in the Coulomb gauge is only revealed
once we commute the resulting equations with the projection operator P on the divergence
free vectorfields. Such an operation is natural in that case, since P commutes with the flat
d’Alembertian. In the case of the Einstein equations, however, the corresponding commutator
term [�g,P] generates18 a whole host of new terms and it is quite a miracle that they can all
be treated by an extended version of bilinear estimates.

Concerning bilinear estimates, let us mention that these types of estimates where only avail-
able for the wave operator on the Minkowski space-time. This forces us to find an appropriate
geometric framework to extend these estimates to the wave operator on a curved space-time.
To this end, we need to rely on a plane wave representation - a parametrix - for solutions of
the wave equation on a curved background. Moreover, this parametrix, unlike in the flat case,
is only an approximate solution of the wave equation. In other words, when applying the wave
operator to the parametrix, we obtain an error term which needs to be controlled.

Furthermore, there is another ingredient needed to establish bilinear estimates on a curved
space-time. Numerous bilinear estimates need to be derived, and it turns out that the proof of
several of these estimates reduces to sharp L4(M) Strichartz estimates for a localized version of
the parametrix.

Finally, the above discussion leads to the following four steps which constitute the basic
strategy of our main theorem

A. Exhibit the null structure by recasting the Einstein vacuum equations as a quasilinear
Yang-Mills theory19.

B. Prove appropriate bilinear estimates for solutions φ to the scalar wave equation on a
curved space-time �gφ = 0.

C. Construct an effective progressive wave representation ΦF (parametrix) for solutions
to the scalar linear wave equation �gφ = F , derive appropriate bounds for both the
parametrix and the corresponding error term E = F − �gΦF and use them to derive
the desired bilinear estimates.

D. Prove sharp L4(M) Strichartz estimates for a localized version of the parametrix of step
C.

17Maximal foliation together with spatial harmonic coordinates on the leaves of the foliation would be the
coordinate condition closest in spirit to the Coulomb gauge.

18Note also that additional error terms are generated by projecting the equations on the components of the
frame.

19The classical Yang-Mills equations are semilinear, i.e. they are defined on a given (Lorentzian) background.
Here, we recast the Einstein vacuum equations as a Yang-Mills theory on the background (M,g) solution to (1).
As the background is not given but instead the unknown of the problem itself, we obtain a quasilinear analog of
the Yang-Mills equations.
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While Step A is purely algebraic, Steps B, C and D all require to establish estimates. The
main difficulty is to implement these steps using only hypothetical L2 bounds for the space-
time curvature tensor, consistent with the statement of our main theorem. To achieve this, we
crucially need to exploit the null structure of the equations at every stage in the proof.

In the rest of the paper, we comment on each of these steps. We start with Step A in the next
section. We then show how to conclude the proof of the main theorem when assuming Steps B,
C and D. Finally, we discuss Steps B, C and D.

2.2. The Yang-Mills formalism (Step A). We cast the Einstein-vacuum equations in a
Yang-Mills form which corresponds to step A in the strategy outlined above. This relies on
the Cartan formalism of moving frames. The idea is to give up on a choice of coordinates and
instead express the Einstein vacuum equations in terms of the connection 1-forms associated to
moving orthonormal frames, i.e. vectorfields eα, which verify,

g(eα, eβ) = mαβ = diag(−1, 1, 1, 1).

The connection 1-forms (they are to be interpreted as 1-forms with respect to the external
index µ with values in the Lie algebra of so(3, 1)), defined by the formulas,

(12) (Aµ)αβ = g(Dµeβ, eα)

verify the equations,

(13) DµFµν + [Aµ,Fµν ] = 0

where, denoting (Fµν)αβ := Rαβµν ,

(14) (Fµν)αβ =
(
DµAν −DνAµ − [Aµ,Aν ]

)
αβ
.

In other words we can interpret the curvature tensor as the curvature of the so(3, 1)-valued
connection 1-form A. Note also that the covariant derivatives are taken only with respect to
the external indices µ, ν and do not affect the internal indices α, β. We can rewrite (13) in the
form,

(15) �gAν −Dν(DµAµ) = Jν(A,DA)

where,

Jν = Dµ([Aµ,Aν ])− [Aµ,Fµν ].

Observe that the equations (13)-(14) look just like the Yang-Mills equations on a fixed Lorentzian
manifold (M,g) except, of course, that in our case A and g are not independent but rather
connected by (12), reflecting the quasilinear structure of the Einstein equations. Just as in the
case of [9], which establishes the well-posedness of the Yang-Mills equation in Minkowski space
in the energy norm (i.e. s = 1), we rely in an essential manner on a Coulomb type gauge
condition. More precisely, we take e0 to be the future unit normal to the Σt foliation and choose
e1, e2, e3 an orthonormal basis to Σt, in such a way that we have, essentially div A = ∇iAi = 0,
where A is the spatial component of A. It turns out that A0 satisfies an elliptic equation while
each component Ai = g(A, ei), i = 1, 2, 3 verifies an equation of the form,

(16) �gAi = −∂i(∂0A0) +Aj∂jAi +Aj∂iAj + l.o.t.

with l.o.t. denoting nonlinear terms which can be treated by more elementary techniques (in-
cluding non sharp Strichartz estimates).
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2.3. The proof of the bounded L2 curvature Theorem. In this section, assuming that
step B holds - which corresponds to having appropriate bilinear estimates at our disposal - we
conclude the proof Theorem 1.6. Now, to be in position to use these bilinear estimates, we first
need to reduce the problem to a wave equation. In view of (16), we thus need to eliminate
∂i(∂0A0). To this end, we need to project (16) onto divergence free vectorfields with the help of
a non-local operator which we denote by P. In the case of the flat Yang-Mills equations, treated
in [9], this leads to an equation of the form,

�Ai = P(Aj∂jAi) + P(Aj∂iAj) + l.o.t.

where both terms on the right exhibit the null structure20. In our case however, the operator P
does not commute with �g. It turns out, fortunately, that the terms generated by commutation
can still be estimated by an extended class of bilinear estimates which includes contractions with
the curvature tensor. Thus, we obtain in the end schematically for Ai

(17) �gAi = null forms + l.o.t.,

where up to (cubic) lower order terms, the quadratic terms exhibit the null structure.
We are now in position to conclude the proof of our main theorem. Recall that the Ai are

connection coefficients, and hence the curvature is a the level of one derivative of the Ai (see
(14)). In particular, controlling the curvature tensor in L2 corresponds to the control of first
order derivatives of Ai in L2. In other words, we need to run the energy estimate for the wave
equation (17). In the case of the standard wave equation on the Minkowski space-time, the energy
estimate is based on the usual timelike Killing vectorfield ∂t. In our case, the corresponding
vectorfield e0 = T ( the future unit normal to Σt) is not Killing. This leads to another class
of trilinear error terms. That is to say, to control the energy estimates for the wave equation
(17) we need trilinear estimates, while to control the null forms in the right-hand side we need
bilinear estimates. Assuming these bilinear and trilinear estimates hold, we finally control first
order derivatives of Ai in L2 and hence the curvature tensor in L2. This concludes the proof of
Theorem 1.6.

The rest of the paper is organized as follows. In section 3, we discuss the derivation of the
bilinear estimates21 which corresponds to Step B. This derivation relies on Step C and Step D
which we discuss respectively in section 4 and 5.

3. Bilinear estimates (Step B)

3.1. The plane wave representation on a curved space-time. In order to establish bilinear
estimates on a curved space-time, we need to rely on a plane wave representation formula22 for
solutions of scalar wave equations,

�gφ = 0.

To build such a plane wave representation, consider a plane wave

eiλ
ωu(t,x), λ ∈ [0,+∞), ω ∈ S2,

20This corresponds to (10) where the null structure manifests itself in the presence of the null form Qij in the
right-hand side.

21As we have seen, trilinear estimates have to be derived as well, but we skip this part for the sake of simplicity.
22We follow the proof of the bilinear estimates outlined in [15] which differs substantially from that of [9] and

is reminiscent of the null frame space strategy used by Tataru in his fundamental paper [39].
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with λ and ω parameters corresponding to Fourier variables in R3 in spherical coordinates. We
compute

�g(eiλ
ωu) = (−λ2gαβ∂α( ωu)∂β( ωu) + iλ�g( ωu))eiλ

ωu.

The first term turns out to be the most dangerous one23. This motivates to choose ωu solution
to the Eikonal equation

gαβ∂α( ωu)∂β( ωu) = 0,

in which case we obtain
�g(eiλ

ωu) = iλ�g( ωu)eiλ
ωu.

This yields in general an approximate solution to �g(φ) = 0. We then superpose these plane
waves to obtain a full plane wave representation.

In the particular case of the standard wave equation on the Minkowski space-time, we recover
the well-known plane wave representation which is an exact solution24. We have

(18) φ =
∑

±

∫

S2

∫ +∞

0
eiλ

ωu±(t,x)f±(λω)λ2dλdω,

where ωu±(t, x) = ±t+x·ω and f± can be explicitly computed in terms of the Fourier transform
of the initial data set (φ(0, .), ∂tφ(0, .)) of φ. In the general case, we superpose the basic plane
waves as in the right-hand side of (18), and choose ωu± solution of the Eikonal equation with
the following asymptotic behavior on Σ0

ωu±(0, x) ∼ x · ω when |x| → +∞.
This asymptotic behavior is necessary to be able to generate any initial data of the wave equation.

In view of the previous paragraph, we consider the following representation formula25

(19) φf (t, x) =

∫

S2

∫ ∞

0
eiλ

ωu(t,x) f(λω)λ2dλdω

where f represents schematically the initial data26, and where ωu is a solution of the eikonal
equation27,

(20) gαβ∂α( ωu) ∂β( ωu) = 0,

with the following asymptotic behavior on Σ0

ωu(0, x) ∼ x · ω when |x| → +∞.
Remark 3.1. (20) is a nonlinear transport equation. Hence, ωu needs to be prescribed not only
at infinity on Σ0 as explained above, but everywhere on Σ0. This choice of ωu on Σ0 turns out
to be delicate and is discussed in section 4 (see Step C1 and related subsequent comments).

23λ should be understood as a Fourier variable corresponding to a derivative in physical space. The λ2 term
hence costs 2 derivatives while the wave equation only recovers one. Thus, this term is problematic as it induces
a derivative loss.

24This is special to the flat case. In the general case, we only obtain an approximate solution.
25(19) actually corresponds to the representation formula for a half-wave. The full representation formula

corresponds to the sum of two half-waves as in (18). Since the bilinear estimates are identical for both half waves,
we only consider one of them for simplicity.

26Here f is in fact at the level of the Fourier transform of the initial data and the norm ‖λf‖L2(R3) corresponds,

roughly, to the H1 norm of the data .
27As we have seen above, we have ωu(t, x) = ±t+ x · ω in the flat Minkowski space.
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Remark 3.2. Note that (19) is a parametrix for a scalar wave equation. The lack of a good
parametrix for a tensorial wave equation forces us to develop a strategy based on writing the
main equation in components relative to a frame, i.e. instead of dealing with the tensorial wave
equation (15) directly, we consider the system of scalar wave equations (16). Unlike the flat case,
this “scalarization” procedure produces several terms which are potentially dangerous, and it is
fortunate, as in yet another manifestation of a hidden null structure of the Einstein equations,
that they can still be controlled by the use of an extended28 class of bilinear estimates.

3.2. Bilinear estimates on a curved space-time. The bilinear estimates all involve after
some reductions the null form Qij introduced in (11). Let us briefly explain how the structure
of Qij is exploited to derive these estimates. For simplicity, we focus on two specific bilinear
estimates29.

The first example of a bilinear estimate on a curved space-time aims at controlling the L2(M)
norm of the null form Qij(φf , ψ), where φf is given by (19). We compute

Qij(φf , ψ) = Qij

(∫

S2

∫ +∞

0
eiλ

ωu(t,x)f(λω)λ2dλdω, ψ

)

=

∫

S2

∫ +∞

0
Qij(e

iλ ωu(t,x), ψ)f(λω)λ2dλdω

= i

∫

S2

∫ +∞

0
eiλ

ωu(t,x)Qij(
ωu, ψ)f(λω)λ3dλdω.

Now we have

(21) Qij(
ωu, ψ) = ∂i(

ωu)∂jψ − ∂j( ωu)∂iψ.

The fundamental observation which ultimately allows us to derive a bilinear estimate in this
case is the fact that the structure of Qij is such that

(22) Qij(
ωu, ψ) is tangent to the level hypersurfaces of ωu,

as can be seen from (21).
The second example of a bilinear estimate on a curved space-time aims at controlling the

following expression

‖∇−1(Qij(φf1 , φf2))‖L2(M).

First, we decompose φf1 and φf2 in dyadic frequencies according to

φf =
∑

φf,p, φf,p =

∫

S2

∫ +∞

0
eiλ

ωu(t,x)ψ(2−pλ)f(λω)λ2dλdω

where λ ∼ 2p on the support of ψ(2−pλ). We infer

‖∇−1(Qij(φf1 , φf2))‖L2(M) .
∑

p≥q
‖∇−1(Qij(φf1,p, φf2,q))‖L2(M).

28involving contractions between the Riemann curvature tensor and derivatives of solutions of scalar wave
equations.

29The two examples of bilinear estimates discussed here have both an analog in the semilinear case. Indeed,
they correspond to estimating the L2

t,x norm of each of the term in the right-hand side of (10).
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It is at this stage that we use the null structure of Qij by noticing that

(23) Qij(φ, ψ) = ∂i(φ∂jψ)− ∂j(φ∂iψ) = ∂j(ψ∂iφ)− ∂i(ψ∂jφ)

so that we may choose which derivative we factorize. We choose to factorize the derivative
corresponding to the highest frequency which yields

‖∇−1(Qij(φf1 , φf2))‖L2(M) .
∑

p≥q
‖∇−1∂(φf1,p∂φf2,q)‖L2(M)

.
∑

p≥q
‖φf1,p‖L4(M)‖∂φf2,q‖L4(M).

The last ingredient is the sharp L4(M) Strichartz of Step D (see section 5) which finally yields

‖∇−1(Qij(φf1 , φf2))‖L2(M) .
∑

p≥q
2−
|p−q|

2 ‖λf1,p‖L2(R3)‖λf2,q‖L2(R3)

. ‖λf1‖L2(R3)‖λf2‖L2(R3)

and concludes the proof of the second example of bilinear estimate.

Remark 3.3. The null structure of Qij is exploited differently in the two examples of bilinear
estimates presented above as can be seen by comparing (22) and (23).

4. Control of the parametrix (step C)

To prove the bilinear and trilinear estimates of Step B, we need in particular to control the
parametrix given by (19). To this end, it turns out that it suffices to control the parametrix at
initial time (i.e. restricted to the initial slice Σ0)

(24) φf (0, x) =

∫

S2

∫ ∞

0
eiλ

ωu(0,x) f(λω)λ2dλdω

as well as the error term30 corresponding to (19)

(25) Ef(t, x) = �gφf (t, x) = i

∫

S2

∫ ∞

0
eiλ

ωu(t,x)�g( ωu)f(λω)λ3dλdω.

This requires the following four sub steps

C1 Make an appropriate choice for the equation satisfied by ωu(0, x) on Σ0, and control the
geometry of the foliation of Σ0 by the level surfaces of ωu(0, x).

C2 Prove that the parametrix at t = 0 given by (24)31 is bounded in L(L2(R3), L2(Σ0)) using
the estimates for ωu(0, x) obtained in C1.

C3 Control the geometry of the foliation of M given by the level hypersurfaces of ωu.
C4 Prove that the error term (25) satisfies the estimate ‖Ef‖L2(M) . ‖λf‖L2(R3) using the

estimates for ωu and �g( ωu) proved in C3.

30Note that φf is an exact solution of �gφ = 0 only if �g( ωu) = 0. Hence, φf is an exact solution only in flat
space.

31(24) only corresponds to the value at t = 0 of a half wave parametrix. The full parametrix at initial data
is the sum of two half waves as in (18). Step C2 actually corresponds to proving that the parametrix at t = 0
generates any initial data to the wave equation �gφ = 0 with a suitable control of the corresponding f±. We
have chosen to provide a more restricted statement of Step C2 to simplify the exposition.
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To achieve Step C3 and Step C4, we need, at the very least, to control �g( ωu) in L∞. This
issue was first addressed in the sequence of papers [16] [17] [18] where an L∞ bound for �g( ωu)
was established, depending only on the L2 norm of the curvature flux along null hypersurfaces.
The proof required an interplay between both geometric and analytic techniques and had all
the appearances of being sharp, i.e. we don’t expect an L∞ bound for �g( ωu) which requires
bounds on less than two derivatives in L2 for the metric32.

Remark 4.1. It turns out, as a byproduct of the proof of Step C3, that the radius of injectivity of
the level hypersurfaces of ωu is controlled by the L∞ norm of �g( ωu). Furthermore, this control
appears to be sharp. In other words, we expect to loose control over the radius of injectivity in
the absence of this bound. Hence, in view of the discussion above, L2 bounds on the curvature
tensor appear to be minimal for the control of the Eikonal equation.

To obtain the L2 bound for the Fourier integral operator E defined in (25), we need, of
course, to go beyond uniform estimates for �g( ωu). The classical L2 bounds for Fourier integral
operators of the form (25) are not at all economical in terms of the number of integration by
parts which are needed. In our case the total number of such integration by parts is limited by
the regularity properties of the function �g( ωu). To get an L2 bound for the parametrix at
initial time (24) and the error term (25) within such restrictive regularity properties we need,
in particular:

• In Step C1 and Step C3, a precise control of derivatives of ωu and �g( ωu) with respect
to both ω as well as with respect to various directional derivatives33. To get optimal
control we need, in particular, a very careful construction of the initial condition for ωu
on Σ0 and then sharp space-time estimates of Ricci coefficients, and their derivatives,
associated to the foliation induced by ωu.
• In Step C2 and Step C4, a careful decompositions of the Fourier integral operators

(24) and (25) in both λ and ω, similar to the first and second dyadic decomposition in
harmonic analysis, see [30], as well as a third decomposition, which in the case of (25) is
done with respect to the space-time variables relying on the geometric Littlewood-Paley
theory developed in [18].

Below, we make further comments on Steps C1-C4:

(1) The choice of ωu(0, x) on Σ0 in Step C1. Let us note that the typical choice ωu(0, x) =
x · ω in a given coordinate system would not work for us, since we don’t have enough
control on the regularity of a given coordinate system within our framework. Instead, we
need to find a geometric definition of ωu(0, x). A natural choice would be that u = ωu
verifies

�gu = 0 on Σ0

which by a simple computation turns out to be the following simple variant of the
minimal surface equation34

div

( ∇u
|∇u|

)
= k

( ∇u
|∇u| ,

∇u
|∇u|

)
on Σ0.

32classically, this requires, at the very least, the control of R in L∞.
33Taking into account the different behavior in tangential and transversal directions with respect to the level

surfaces of ωu.
34In the time symmetric case k = 0, this is exactly the minimal surface equation.
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Unfortunately, this choice does not allow us to have enough control of the derivatives of
u in the normal direction to the level surfaces of u. This forces us to look for an alternate
equation for u:

div

( ∇u
|∇u|

)
= 1− 1

|∇u| + k

( ∇u
|∇u| ,

∇u
|∇u|

)
on Σ0.

This equation turns out to be parabolic in the normal direction to the level surfaces of
u, and allows us to obtain the desired regularity in Step C1. A closer inspection reveals
its relation to the mean curvature flow on Σ0.

(2) How to achieve Step C3. The regularity obtained in Step C1, together with null trans-
port equations tied to the eikonal equation, elliptic systems of Hodge type, the geomet-
ric Littlewood-Paley theory of [18], sharp trace theorems, and an extensive use of the
structure of the Einstein equations, allows us to propagate the regularity on Σ0 to the
space-time, thus achieving Step C3.

(3) The regularity with respect to ω in Steps C1 and C3. The regularity with respect to
x for u is clearly limited as a consequence of the fact that we only assume L2 bounds
on R. On the other hand, R is independent of the parameter ω, and one might infer
that u is smooth with respect to ω. Surprisingly, this is not at all the case. Indeed,
the regularity in x obtained for u in Steps C1 and C3 is better in directions tangent to
the level hypersurfaces of u. Now, the ω derivatives of the tangential directions have
non zero normal components. Thus, when differentiating the structure equations with
respect to ω, tangential derivatives to the level surfaces of u are transformed to non
tangential derivatives which in turn severely limits the regularity in ω obtained in Steps
C1 and C3.

(4) How to achieve Steps C2 and C4. The classical arguments for proving L2 bounds for
Fourier operators are based either on a TT ∗ argument, or a T ∗T argument, which requires
several integration by parts either with respect to x for T ∗T , of with respect to (λ, ω)
for TT ∗. Both methods would fail by far within the regularity for u obtained in Step C1
and Step C3. This forces us to design a method which allows to take advantage both of
the regularity in x and ω. This is achieved using in particular the following ingredients
• Geometric integrations by parts taking full advantage of the better regularity prop-

erties in directions tangent to the level hypersurfaces of u.
• The standard first and second dyadic decomposition in frequency space, with respect

to both size and angle (see [30]), an additional decomposition in physical space
relying on the geometric Littlewood-Paley projections of [18] for Step C4, as well
as another decomposition involving frequency and angle for Step C2.

Even with these precautions, at several places in the proof, one encounters log-
divergences which have to be tackled by ad-hoc techniques, taking full advantage of the
null structure of the Einstein equations.

5. Sharp L4(M) Strichartz estimates (Step D)

Recall that the parametrix constructed in Step C is also used to prove sharp L4(M) Strichartz
estimates. Indeed the proof of several bilinear estimates of Step B reduces to the proof of sharp
L4(M) Strichartz estimates for the parametrix (19) with λ localized in a dyadic shell (see section
3.2).
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More precisely, let j ≥ 0, and let ψ a smooth function on R3 supported in

1

2
≤ |ξ| ≤ 2.

Let φf,j the parametrix (19) with a additional frequency localization λ ∼ 2j

(26) φf,j(t, x) =

∫

S2

∫ ∞

0
eiλ

ωu(t,x)ψ(2−jλ)f(λω)λ2dλdω.

We will need the sharp35 L4(M) Strichartz estimate

(27) ‖φf,j‖L4(M) . 2
j
2 ‖ψ(2−jλ)f‖L2(R3).

The standard procedure for proving36 (27) is based on a TT ∗ argument which reduces it to an
L∞ estimate for an oscillatory integral with a phase involving ωu. This is then achieved by
the method of stationary phase which requires quite a few integrations by parts. In fact the
standard argument would require, at the very least37, that the phase function u = ωu verifies,

(28) ∂t,xu ∈ L∞, ∂t,x∂2
ωu ∈ L∞.

This level of regularity is, unfortunately, incompatible with the regularity properties of solutions
to our eikonal equation (20). In fact, based on the estimates for ωu derived in step C3, we are
only allowed to assume

(29) ∂t,xu ∈ L∞, ∂t,x∂ωu ∈ L∞.
We are thus forced to follow an alternative approach38 to the stationary phase method inspired
by [27] and [28] .
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121, 1337–1777, 1999.
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