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Moving boundary problems in kinetic theory
of gases: Spatially one-dimensional problems

Kazuo Aoki1 and Tetsuro Tsuji2

1Department of Mechanical Engineering and Science, Kyoto University
2Department of Mechanical Science and Bioengineering, Osaka University

Abstract Unsteady flows of a rarefied gas in a full space caused by an oscillatory
motion of an infinitely wide plate in its normal direction is investigated numerically
on the basis of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equa-
tion. The present notes aim at showing the properties and difficulties inherent to
moving boundary problems in kinetic theory of gases using a simple one-dimensional
setting.

1 Introduction

Gases in low-pressure circumstances and in microscales, in which the mean free path
of the molecules is not negligibly small compared with the characteristic length
of the system, are in general not in local thermal equilibrium. Therefore, their
behavior cannot be described by ordinary macroscopic fluid dynamics that assumes
the local thermodynamic equilibrium. For such gases, molecular gas dynamics,
the gas dynamics based on kinetic theory, has to be used. The basic equation of
molecular gas dynamics is the celebrated Boltzmann equation for the molecular
velocity distribution function, which is a complicated nonlinear integro-differential
equation (e.g., [1, 2, 3]).

Numerical analysis of moving-boundary problems for the Boltzmann equation
is one of the hot topics in molecular gas dynamics in connection with MEMS (mi-
cro electro mechanical systems) applications. The most prevailing numerical solu-
tion method for the Boltzmann equation is the DSMC (direct simulation Monte
Carlo) method [4], which is a particle and stochastic method. However, as is well
known, this method has a difficulty in solving time-dependent problems because
of the statistical noise inherent to it. Since moving-boundary problems are essen-
tially time dependent, this method is not suitable for moving-boundary problems.
For this reason, deterministic solution methods, such as finite-difference and finite-
volume methods, combined with CFD (computational fluid dynamics) techniques,
such as moving-lattice techniques and the immersed boundary method, have been
attempted. However, some care should be exercised because of the difference in
structure between the Boltzmann and fluid-dynamic equations.

In time-independent boundary-value problems, when the boundary is convex to-
ward the domain of the gas, the velocity distribution function is discontinuous on
the boundary, and the discontinuity propagates into the gas along the characteris-
tic line of the Boltzmann equation [5, 2, 3]. In the case of a planar boundary, the
discontinuity does not propagate into the gas as long as no external force is acting
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on the gas molecules. However, if the planar boundary is moving with accelera-
tion/deceleration in its normal direction (for example, an oscillatory motion), the
discontinuity on the boundary in general propagates into the gas. To the best of the
authors’ knowledge, there is no study focusing attention on this point.

In the present notes, we restrict ourselves to the spatially one-dimensional case
in which a plane boundary makes an oscillatory motion in its normal direction. We
describe the singularities in the velocity distribution function caused by the motion
of the boundary and give an outline of the numerical method that captures the
singularity. The notes are based on the authors’ recent works [6, 7].

2 Boltzmann equation and discontinuity in veloc-

ity distribution function

2.1 Spatially one-dimensional problems

The velocity distribution function of gas molecules, which is in general a function of
the space variable xi, the molecular velocity ζi, and the time variable t, expresses the
mass density of the gas molecules in the six-dimensional phase space (xi, ζi) at time
t. It is denoted by f(xi, ζi, t). All the macroscopic quantities are expressed as its
moments. For example, the density ρ(xi, t), the flow velocity vi(xi, t), temperature
T (xi, t), and pressure p(xi, t) of the gas are given as follows:

ρ =

∫

R3

fdζ, (1a)

vi =
1

ρ

∫

R3

ζifdζ, (1b)

T =
p

Rρ
=

1

3Rρ

∫

R3

(ζi − vi)2fdζ, (1c)

where R is the gas constant per unit mass and dζ = dζ1dζ2dζ3.
Let us consider spatially one-dimensional problems, such as the case in which an

infinitely wide plate makes an arbitrary motion in its normal direction. Then, if we
take the x1 axis perpendicular to the plate, f depends neither on x2 nor on x3, i.e.,
f(x1, ζi, t), and the Boltzmann equation can be written in the following form:

∂f

∂t
+ ζ1

∂f

∂x1

= J(f, f), (2)

where J(f, f) is the Boltzmann collision operator, which is quadratically nonlinear
in f and contains five-fold integral. Its explicit form is omitted here (see, e.g.,
[1, 2, 3]).

As the initial condition for Eq. (2), we specify the velocity distribution function
at t = 0, i.e.,

f(x1, ζi, 0) = fin(x1, ζi). (3)
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Fig. 1: The (x′1, t
′) plane and the trajectory of the plate [7]. (a) The case where

the characteristic line meets the trajectory, (b) the case where the characteristic line
does not meet the trajectory.

On the other hand, as the boundary condition for Eq. (2), we specify the velocity
distribution function for the gas molecules reflected on the plate according to the
model of the interaction between the gas molecules and the boundary. Here, we
assume the conventional diffuse reflection condition. That is, the velocity of the
reflected molecules is distributed according to the (half-range) Maxwellian distribu-
tion based on the temperature and velocity of the boundary, and there is no net
mass flux across the boundary (cf. [1, 2, 3]). Let the infinitely wide plate be located
at x1 = xw(t), and let the velocity of the plate be vw(t) = dxw(t)/dt. When the gas
is on the right side of the plate [i.e., the side for x1 > xw(t)], the diffuse reflection
condition can be written as

f =
σw

(2πRTw)3/2
exp

(
− [ζ1 − vw(t)]2 + ζ2

2 + ζ2
3

2RTw

)

[ ζ1 − vw(t) > 0, x1 = xw(t) ], (4a)

σw = −
√

2π

RTw

∫

ζ1−vw(t)<0

[ζ1 − vw(t)]fdζ, (4b)

where Tw is the temperature of the plate. When the gas is on the left side [i.e., the
side for x1 < xw(t)], ζ1 − vw(t) should be replaced with vw(t)− ζ1 in Eqs. (4a) and
(4b).

2.2 Formation of discontinuities

In this subsection, we consider the (x1, t) plane. But, for convenience for explana-
tion, we call this plane the (x′1, t

′) plane using the current coordinates x′1 and t′ and
express a point fixed in the plane by (x1, t) (Fig. 1). Therefore, the trajectory of the
plate is expressed as x′1 = xw(t′) (Fig. 1). The derivative terms of the Boltzmann
equation (2) are contained only on the left-hand side, so that its solution f is deter-
mined along the characteristic line of the left-hand side, that is, along the trajectory
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Fig. 2: The characteristic line tangent to the trajectory of the plate and the discon-
tinuity [7]. (a) The case where the characteristic line meets the trajectory, (b) the
case where the characteristic line does not meet the trajectory.

of gas molecules. The characteristic line passing the point (x1, t) in the (x′1, t
′)

plane is given by x′1 = x1 − ζ1(t − t′). If we trace back in time the characteristic
line form the point (x1, t), either we meet the trajectory of the plate at time t′ = tb

[Fig. 1(a)] or we reach the initial time t′ = 0 without meeting it [Fig. 1(b); we set
tb = 0 in this case], depending on the value of ζ1. Since the unknown function f is
contained both in the right-hand side of Eq. (2) and in σwmEq. (4b)] in the bound-
ary condition (4a), it is not so simple. But, in the case of Fig. 1(a), the value of f
at the point (x1, t) is conceptually determined along the characteristic line in the
direction of the arrow staring from the boundary condition (4a) at the time t′ = tb

in the past. In the case of Fig. 1(b), the starting point is the initial condition. In
the operation of tracing back in time, the other components ζ2 and ζ3 only play the
role of parameters. Therefore, in the following, we discuss on the basis of (x1, ζ1, t)
supposing that ζ2 and ζ3 are fixed appropriately.

Let us suppose that the characteristic line at a molecular velocity component
ζ1 = ζd is tangent to the trajectory of the plate (Fig. 2). In the situation shown in
Fig. 2(a), the characteristic line corresponding to ζ1 slightly larger than ζd originates
from the plate at the time slightly after (or, in the figure, slightly above) s+, whereas
the characteristic line corresponding to ζ1 slightly smaller than ζd originates from
the plate at the time slightly before (or, in the figure, slightly below) s−. The
values of f at the point (x1, t) determined along these two characteristic lines are
in general different because the situation at the starting point as well as the length
of the characteristic line reaching the point (x1, t) is different. In other words, if f
at (x1, t) is regarded as a function of ζ1, then it is discontinuous at ζ1 = ζd. This
discontinuity, which decays because of the collisions between the gas molecules, is
not visible when the time interval t − s+ is sufficiently larger than the mean free
time of the gas molecules. It would be obvious that the discontinuity is formed also
in the situation shown in Fig. 2(b). This mechanism forming the discontinuity is
similar to that known for a steady gas around a convex boundary (convex toward
the gas domain) [5, 2, 3].
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2.3 Numerical method

As can be understood from the explanation given above, in problems in which the
plate starts oscillation at the initial time, the velocity distribution function at a point
just outside the maximum amplitude of the plate exhibits a complex shape as time
proceeds because of the localized discontinuities. In order to capture the complex
shape accurately, we have to obtain all the characteristic lines that are tangent to the
trajectory of the plate in the past and integrate the equation numerically along both
sides of each of such characteristic lines. In addition, it is known that the variation
of f is steep for the molecular velocities in the vicinity of the discontinuities, so that
we have to use a grid system for ζ1 that concentrates in the neighborhood of the
discontinuities. The reader is referred to [7] for the details of the numerical method,
including the treatment of singularities weaker than the discontinuities.

The complexity of the collision operator of the Boltzmann equation makes ac-
curate numerical solution for delicate problems by deterministic methods extremely
hard. For this reason, model Boltzmann equations with simplified collision opera-
tors are often used. In the following, we will show some results based on one of such
models, the so-called BGK model [8, 9], in which the collision operator J(f, f) in
Eq. (2) is replaced by the following JBGK(f):

JBGK(f) = Acρ (fe − f) (5)

where

fe =
ρ

(2πRT )3/2
exp

(
−(ζi − vi)2

2RT

)
, (6)

and ρ, vi, and T are the moments of the unknown f given by Eq. (1). However,
the discussions in 2.2 are valid irrespective of the models of the collision operator
(as long as an appropriate cut-off is assumed for the intermolecular potential for the
Boltzmann collision operator).

3 Some results of numerical analysis

In this section, we consider two problems, the propagation of disturbances in the
gas induced by a plate with a forced oscillation (propagation of nonlinear acoustic
waves) and the decay of a motion of freely oscillating plate caused by the drag force
exerted by the surrounding gas, and show some examples of the numerical results.

3.1 Problems

[Problem 1] (forced oscillation): The plate starts a harmonic oscillation at t = 0
according to xw(t) = a cosωt. Here, a is the amplitude, and ω is the angular
frequency. We investigate the unsteady motion in the semi-infinite expanse of the
gas [x1 > xw(t)] in contact to the plate.
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[Problem 2] (free oscillation): An infinitely wide plate without thickness is placed in
an infinite expanse of the gas (−∞ < x1 <∞). The plate is subject to a restoring
force in the x1 direction obeying Hooke’s law, i.e., Fh = −ω2Mxw(t) per unit area,
where M is the mass of the plate per unit area, ω is a constant, and x1 = 0
indicates the equilibrium position of the plate. If the plate is displaced until x1 = a
and released at time t = 0 without the initial velocity, the plate in general starts an
oscillatory motion, which decays as time proceeds because of the drag exerted by
the surrounding gas. We investigate the decay process.

In both problems, we assume that the temperature of the plate is T0, and the
gas is initially in the equilibrium state at rest at temperature T0 and density ρ0.
Problem 2 is a coupling problem in which the motion of the gas and that of the
plate interact each other.

3.2 Numerical results for forced oscillation

We first show some results for Problem 1. For convenience in the following, we
define the marginal velocity distribution function g(x1, ζ1, t) by

g(x1, ζ1, t) =

∫ ∞

−∞

∫ ∞

−∞
f(x1, ζi, t) dζ2dζ3. (7)

In addition, we introduce suitable dimensionless variables based on the reference
time 1/ω and the reference length c0/ω, where c0 =

√
2RT0. More specifically, we

denote the dimensionless quantities corresponding to (t, xi, ζi, xw, ρ, u1, T, p, a, g)
by putting a bar above and define them as follows:

t̄ = t/(1/ω), x̄i = xi/(c0/ω), ζ̄i = ζi/c0,
x̄w = xw/(c0/ω), ρ̄ = ρ/ρ0, ū1 = u1/c0,
T̄ = T/T0, p̄ = p/Rρ0T0,
ā = a/(c0/ω), ḡ = g/ρ0c0.

(8)

Further, l0 denotes the mean free path of the gas molecules in the equilibrium state
at rest at temperature T0 and density ρ0 [for the BGK model, l0 = (2/

√
π)(c0/Acρ0),

where Ac is the constant such that Acρ0 indicates the collision frequency of the gas
molecules at the same equilibrium state], and Kn = l0/(c0/ω) the Knudsen number.
In what follows, we use the following K as the measure of gas rarefaction in place
of Kn:

K = (
√
π/2)Kn, (9)

We note that Eqs. (7)–(9) are common to Problem 2.

3.2.1 Velocity distribution function

In Fig. 3, we show the marginal velocity distribution function ḡ(x̄1, ζ̄1, t̄) as a func-
tion of ζ̄1 for K = 10 and ā = 1. The upper figures are at t̄ = 15π and the lower
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Fig. 3: ḡ(x̄1, ζ̄1, t̄) (K = 10Cā = 1) [7]D (a) x̄1 = x̄w + 0.2243, (b) x̄1 = x̄w + 2.3052,
(c) x̄1 = x̄w + 10.05. The upper figures are at t̄ = 15π, and the lower figures at
t̄ = 16π.

figures at t̄ = 16π, and panel (a) shows the result near the plate: x̄1 = x̄w + 0.2243,
panel (b) that slightly apart from the plate: x̄1 = x̄w + 2.3052, and panel (c) that
further away from the plate: x̄1 = x̄w + 10.05. Since the gas is relatively rarefied
(K = 10), the effect of collisions between gas molecules is small, so that the discon-
tinuities explained in Sec. 2.2 do not decay rapidly. Therefore, many discontinuities
as well as the sharp peaks around them can be observed clearly. The shape of the
velocity distribution function near the plate [Fig. 3(a)] changes significantly during
a half period (t̄ = 15π → 16π), and in the lower figure, it is seen that the discontinu-
ities accumulate and are localized in the vicinity of ζ̄1 = 0. As the distance from the
plate increases [Fig. 3(b) → Fig. 3(c)], the peaks separate, and the discontinuities
closer to ζ̄1 = 0 decay more rapidly.

For a free-molecular gas in which there are no collisions between the gas molecules
(K = ∞), infinitely many peaks accumulate without decay. In contrast, for K = 1,
where the effect of collisions is larger, the decay of the discontinuities is fast. In fact,
almost no peak is seen in the far field corresponding to Fig. 3(c), and only a few
discontinuities are observed even near the plate corresponding to Fig. 3(a). These
results are omitted in this article. The reader is referred to [7].

The complex and steep shape as shown in Fig. 3 is not expected to be captured
accurately by the conventional solution methods, such as the finite-difference and
finite-volume methods.

3.2.2 Macroscopic quantities

In Problem 1, the oscillation of the plate propagates into the gas in the form of
a wave. When the gas is rarefied, as in the case of Fig. 3, the oscillation in the
macroscopic quantities attenuates quickly as the distance from the plate increases
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(see [6]). Therefore, we show the results for less rarefied cases. Figure 4 shows
the profiles of the macroscopic quantities ρ̄, ū1, T̄ , and p̄ during the 20th period
(t̄/2π = 19 → 20) [panel (a)] or 80th period (t̄/2π = 79 → 80) [panel (b)], panel
(a) being for the slightly rarefied regime (K = 0.05) and panel (b) for the transition
regime (K = 2). In Fig. 4(a), the formation of waves of saw-tooth shape, whereas
Fig. 4(b) it is not seen because the waves attenuate quickly with the distance from
the plate.

Fig. 4: Profiles of ρ̄, ū1, T̄ , and p̄ (ā = 0.2) [6]D (a) K = 0.05, (b) K = 2. In (a), the
profiles at t̄/2π = 19.25 (dashed line), 19.5 (long dashed line), 19.75, (dot-dashed
line), and 20 (solid line) are shown, and in (b), those at t̄/2π = 79.25 (dashed line),
79.5 (long dashed line), 79.75 (dot-dashed line), 80 (solid line) are shown.

Now, let h(x̄1, t̄) be an arbitrary (dimensionless) macroscopic quantity
(h = ρ̄, ū1, T̄ , etc.) and let hav(x̄1, t̄) denote its average over a period of os-
cillation of the plate from t̄− 2π to t̄, i.e.,

hav(x̄1, t̄) =
1

2π

∫ t̄

t̄−2π

h(x̄1, s) ds. (10)
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Fig. 5: Time evolution of the one-period averages, ρ̄av, ū1av, and T̄av (K = 2, ā = 0.2)
[6]D (a), (d) ρ̄avC(b), (e) ū1av, (c), (f) T̄av. The profiles at t̄/2π = 20 (dashed
line), 30, 40, ..., 70 (solid line for all these t̄/2π), and 80 (bold solid line) are shown.
The upper figures [(a), (b), and (c)] show the range 0 ≤ x̄1 ≤ 100, and the lower
figures [(d), (e), and (f)] the range 0 ≤ x̄1 ≤ 600. The circles ◦ indicate the profile
of (ρ̄ū1)av at t̄/2π = 80.

In Fig. 5, we show the time evolution of the one-period average of the density,
flow velocity, and temperature, i.e., ρ̄av, ū1av, and T̄av, for K = 2 and ā = 0.2.
Panels (a) and (d) are for ρ̄av, panels (b) and (e) for ū1av, and panels (c) and (f)
for T̄av; the profiles at t̄/2π = 20 (dashed line), 30, 40, ..., 70 (solid line for all
these t̄/2π), and 80 (bold solid line) are shown; the upper figures [panels (a), (b),
and (c)] show the region relatively close to the plate, whereas the lower figures
[panels (d), (e), and (f)] the whole range including the wave front of the disturbance
with the vertical axis magnified. The circles ◦ in Fig. 5(e) indicate the profile of the
one-period average of ρ̄ū1, i.e., (ρ̄ū1)av, at t̄/2π = 80. A weak compression wave,
which decays very slowly, proceeds as the wave front, and a high temperature (low
density) region is formed slowly near the plate. Since the one-period average of the
mass flow just behind the wave front is positive, there appears a gas flow toward
infinity (acoustic stream). The behavior shown in Fig. 5 resembles the motion of
the gas in a half space bounded by a stationary wall caused by a sudden increase of
the wall temperature [10].

The wave propagation and the formation of the steady oscillation in a gas in a
finite domain between an oscillating and a resting wall are investigated in [11].

3.3 Numerical results for free oscillation

Next, we present some results for Problem 2. We first show some preliminary results
using the present method of characteristics (Sec. 3.3.1) and then give a brief remark
on the more detailed results obtained more recently (Sec. 3.3.2). Our main interest

Exp. no VI— Moving boundary problems in kinetic theory of gases: Spatially one-dimensional problems

VI–9



Present method

ENO scheme

Present method

ENO scheme

Present method

ENO scheme

Fig. 6: Decay of the displacement x̄w(t̄) of the plate (K = 1) [7]D (a) ā = 1, (b)
ā = 0.1, (c) ā = 0.01. The solid line indicates the result by the present method of
characteristics, and the dashed line that by the a finite-difference method with ENO
scheme.

is to know how fast the displacement xw(t) of the plate decays.

3.3.1 Results by the method of characteristics

If we assume that the drag force exerted on the plate by the surrounding gas is
proportional to the velocity of the plate vw(t), then the displacement decays ex-
ponentially in time. However, if the surrounding gas is a free-molecular gas (or
Knudsen gas) in which the collisions between the gas molecules are negligible, it is
shown numerically that the decay is slow and is described as |x̄w(t̄)| ≈ const × t̄−2

[12, 13]. More precisely, the decay rate depends on the dimension d of the plate
[in [13], d = 1 indicates the present one-dimensional problem with an infinitely wide
plate, d = 2 the two-dimensional problem with an infinitely long plate with a finite
width, and d = 3 the three-dimensional (axisymmetric) problem with a circular
disk] and is given as |x̄w(t̄)| ≈ const × t̄−d−1. Incidentally, under the specular re-
flection boundary condition on the plate, the decay rate is rigorously proved to be
|x̄w(t̄)| ≈ const × t̄−d−2 in the case of a monotonic decay without oscillation [14].
This slow decay in the free-molecular gas is attributed to the long-memory effect
caused by the molecules that are reflected by the plate at early times and hit the
plate again, with keeping their velocity, at later times (direct recollisions of the gas
molecules) [14]. In fact, if we devise an artificial gas (a special Lorentz gas) in
which the possibility of the direct recollisions is negligibly small, the decay is almost
exponential in time and is much faster than the inverse power of time [13].

Our next question is: In the case where there are collisions between the gas
molecules, i.e., in the case of a usual rarefied gas, since the possibility of the direct
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recollisions with the plate is also small, does the displacement of the plate decay
fast? To answer this question, we started the study of Problem 2. Figure 6 shows a
preliminary result (in the sense that the computation is not made until long times)
forM = 2(ρ0c0/ω) and K = 1: Panel (a) is for a relatively large initial displacement
ā = 1, and Panels (b) and (c) for smaller initial displacements. In Panel (a), the
oscillation has not ceased yet, whereas in panels (b) and (c) it is likely to have
ceased. The panels (b) and (c) suggest that the decay of the displacement of the
plate may follow

|x̄w(t̄)| ≈ const× t̄−3/2, (11)

which is, unexpectedly, even slower than in the case of the free-molecular gas.
In Fig. 6, the results using a finite-different method with the essentially non

oscillatory (ENO) scheme are also shown. In the level of the velocity distribution
function, the ENO scheme cannot capture discontinuities and steep changes as ac-
curately as the present method of characteristics, in particular, for large Knudsen
numbers. However, as seen from Fig. 6, the decay rate based on the ENO scheme
agrees very well with that obtained by the present method. Since the present method
of characteristics is computationally expensive, it is not suitable to pursue a very
long-time behavior, which is necessary to clarify the decay rate of the plate. The
good agreement with the ENO scheme gives some hope to obtain an accurate long-
time behavior by methods other than the method of characteristics. A remark on
this point will be given in the following subsection.

3.3.2 Remarks on more recent results

More recently, motivated by the good performance of the ENO scheme as shown
in Fig. 6, we searched other methods which are appropriate for an accurate long-
time computation. As the result, we adopted the semi-Lagrangian method proposed
in [15] and carried out computation until long limes [16]. Figure 7 shows an example
of the results. The mass density of the plate M is fixed as M = ρ0c0/ω in the
figure. The upper figures show log10 x̄w versus log10 t̄ for ā = 0.2 [(a)], 0.01 [(b)],
and 0.001 [(c)], and the lower figures the gradient α(x̄w) of log10|x̄w(t̄)| with respect
to log10t̄ corresponding to the upper figures, i.e.,

α(x̄w) =
dlog10|x̄w|
d log10 t̄

. (12)

The results of computation until much longer time in Fig. 7 support the decay
rate (11) more convincingly. However, the curve for K = 0.4 in Fig. 7(d) tends
to deviate from the value −1.5. The curves for K = 0.4 in Figs. 7(d)–7(f) exhibit
strong oscillation after log10t̄ & 3.2. As one can see from Figs. 7(d)–7(f), at a given
large time, the displacement |x̄w(t̄)| is smaller for smaller Knudsen number K, and
for K = 0.4, it had become less than O(10−7) at log10t̄ = 3.2. The oscillation may
be attributed to the fact that the computation had reached the limit of accuracy
resolving such a small amplitude. We could say that, within the accuracy of the
computation using the semi-Lagrangian method, we were able to provide some pieces
of numerical evidence for the decay rate (11).
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Fig. 7: log10|x̄w| versus log10t̄ for long times at several K (M = ρ0c0/ω). (a) ā = 0.2,
(b) ā = 0.01, (c) ā = 0.001. Panels (d), (e), and (f) show, respectively, the gradient
of the curves in panels (a), (b), and (c) [cf. Eq. (12)].
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