
Séminaire Laurent Schwartz
EDP et applications

Année 2012-2013

Gunther Uhlmann
30 Years of Calderón’s Problem
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no XIII, 25 p.

<http://slsedp.cedram.org/item?id=SLSEDP_2012-2013____A13_0>

© Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz,
École polytechnique, 2012-2013.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

Institut des hautes études scientifiques
Le Bois-Marie • Route de Chartres
F-91440 BURES-SUR-YVETTE
http://www.ihes.fr/

Centre de mathématiques Laurent Schwartz
UMR 7640 CNRS/École polytechnique
F-91128 PALAISEAU CEDEX
http://www.math.polytechnique.fr/

cedram
Exposé mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://slsedp.cedram.org/item?id=SLSEDP_2012-2013____A13_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://www.ihes.fr/
http://www.math.polytechnique.fr/
http://www.cedram.org/
http://www.cedram.org/


30 Years of Calderón’s Problem

Gunther Uhlmann∗

Abstract

In this article we survey some of the most important developments since the 1980 paper
of A.P. Calderón in which he proposed the problem of determining the conductivity of a
medium by making voltage and current measurements at the boundary.

1 Introduction

In 1980 A. P. Calderón published a short paper entitled “On an inverse boundary value problem”
[21]. This pioneer contribution motivated many developments in inverse problems, in particular
in the construction of “complex geometrical optics” solutions of partial differential equations to
solve several inverse problems. We survey some of these developments in this paper.

The problem that Calderón considered was whether one can determine the electrical con-
ductivity of a medium by making voltage and current measurements at the boundary of the
medium. This inverse method is known as Electrical Impedance Tomography (EIT). Calderón
was motivated by oil prospection. In the 40’s he worked as an engineer for Yacimientos Petro-
liferos Fiscales (YPF), the state oil company of Argentina, and he thought about this problem
then although he did not publish his results until many years later. For use of electrical methods
in geophysical prospection see [121]. EIT also arises in medical imaging given that human organs
and tissues have quite different conductivities [63]. One potential application is the early diag-
nosis of breast cancer [123]. The conductivity of a malignant breast tumor is typically 0.2 mho
which is significantly higher than normal tissue which has been typically measured at 0.03 mho.
Another application is to monitor pulmonary functions [57]. We now describe more precisely
the mathematical problem. Let Ω ⊆ Rn be a bounded domain with smooth boundary (many
of the results we will describe are valid for domains with Lipschitz boundaries). The electrical
conductivity of Ω is represented by a bounded and positive function γ(x). In the absence of
sinks or sources of current the equation for the potential is given by

∇ · (γ∇u) = 0 in Ω (1)
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since, by Ohm’s law, γ∇u represents the current flux. Given a potential f ∈ H1/2(∂Ω) on the
boundary the induced potential u ∈ H1(Ω) solves the Dirichlet problem

∇ · (γ∇u) = 0 in Ω,
u
∣∣
∂Ω

= f.
(2)

The Dirichlet to Neumann map, or voltage to current map, is given by

Λγ(f) =

(
γ
∂u

∂ν

) ∣∣∣
∂Ω

(3)

where ν denotes the unit outer normal to ∂Ω. The inverse problem is to determine γ knowing Λγ .
It is difficult to find a systematic way of prescribing voltage measurements at the boundary to
be able to find the conductivity. Calderón took instead a different route. Using the divergence
theorem we have

Qγ(f) :=

∫

Ω
γ|∇u|2dx =

∫

∂Ω
Λγ(f)f dS (4)

where dS denotes surface measure and u is the solution of (2). In other words Qγ(f) is the
quadratic form associated to the linear map Λγ(f), and to know Λγ(f) or Qγ(f) for all f ∈
H1/2(∂Ω) is equivalent. Qγ(f) measures the energy needed to maintain the potential f at the
boundary. Calderón’s point of view is that if one looks at Qγ(f) the problem is changed to
finding enough solutions u ∈ H1(Ω) of the equation (1) in order to find γ in the interior. These
are the complex geometrical optics (CGO) solutions considered in this paper.

Because of limitations of space we cannot give a complete list of references. See [116], [117],
[65] for other recent survey papers and references therein.

2 Boundary Determination

Kohn and Vogelius proved the following identifiability result at the boundary [73].

Theorem 2.1. Let γi ∈ C∞(Ω) be strictly positive. Assume Λγ1 = Λγ2. Then

∂αγ1

∣∣∣
∂Ω

= ∂αγ2

∣∣∣
∂Ω
, ∀|α|.

This settled the identifiability question for the non-linear problem in the real-analytic cate-
gory. They extended the identifiability result to piecewise real-analytic conductivities in [74].

Sketch of proof of Theorem 2.1. We outline an alternative proof to the one given by Kohn and
Vogelius of Theorem 2.1. In the case γ ∈ C∞(Ω) we know, by another result of Calderón [22],
that Λγ is a classical pseudodifferential operator of order 1. Let (x′, xn) be coordinates near a
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point x0 ∈ ∂Ω so that the boundary is given by xn = 0. The function λγ(x′, ξ′) denotes the full
symbol of Λγ in these coordinates. It was proved in [111] that

λγ(x′, ξ′) = γ(x′, 0)|ξ′|+ a0(x′, ξ′) + r(x′, ξ′) (5)

where a0(x′, ξ′) is homogeneous of degree 0 in ξ′ and is determined by the normal derivative of γ
at the boundary and tangential derivatives of γ at the boundary. The term r(x′, ξ′) is a classical

symbol of order −1. Then γ
∣∣∣
∂Ω

is determined by the principal symbol of Λγ and ∂γ
∂xn

∣∣∣
∂Ω

by the

principal symbol and the term homogeneous of degree 0 in the expansion of the full symbol of
Λγ . More generally the higher order normal derivatives of the conductivity at the boundary can
be determined recursively. In [82] one can find a general approach to the calculation of the full
symbol of the Dirichlet to Neumann map that applies to more general situations. We note that
this gives also a reconstruction procedure. We first can reconstruct γ at the boundary since
γ
∣∣
∂Ω
|ξ′| is the principal symbol of Λγ (see (5)). In other words in coordinates (x′, xn) so that

∂Ω is locally given by xn = 0 we have

γ(x′, 0)a(x′) = lim
s→∞

e−is〈x
′,ω′〉 1

s
Λγ(eis〈x

′,ω′〉a(x′))

with ω′ ∈ Rn−1 and |ω′| = 1 and a a smooth and compactly supported function. In a similar

fashion, using (5), one can find ∂γ
∂ν

∣∣∣
∂Ω

by computing the principal symbol of (Λγ − γ
∣∣
∂Ω

Λ1)

where Λ1 denotes the Dirichlet to Neumann map associated to the conductivity 1. The other
terms can be reconstructed recursively in a similar fashion. We also observe, by taking an
appropriate cut-off function a above, that this procedure is local, that is we only need to know
the DN map in an open set of the boundary to determine the Taylor series of the conductivity
in that open set. This method also leads to stability estimates at the boundary [111].

Theorem 2.2. Suppose that γ1 and γ2 are C∞ functions on Ω ⊆ Rn satisfying

i) 0 < 1/E ≤ γi ≤ E

ii) ‖γi‖C2(Ω) ≤ E

Given any 0 < σ < 1
n+1 , there exists C = C(Ω, E, n, σ) such that

‖γ1 − γ2‖L∞(∂Ω) ≤ C‖Λγ1 − Λγ2‖1/2,−1/2 (6)

and ∥∥∥∥
∂γ1

∂ν
− ∂γ2

∂ν

∥∥∥∥
L∞(∂Ω)

≤ C‖Λγ1 − Λγ2‖σ1/2,−1/2. (7)
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This result implies that we don’t need the conductivity to be smooth to determine the
conductivity and its normal derivative at the boundary. In the case γ is continuous on Ω we can
determine γ at the boundary by using the stability estimate (6) and an approximation argument
since for (6) we only need condition i). In the case that γ ∈ C2(Ω) we can determine, knowing
the DN map, γ and its normal derivative at the boundary using the estimate (7) above and an
approximation argument. For other results and approaches to boundary determination of the
conductivity see [3], [16], [86], [91]. In one way or another the boundary determination involves
testing the DN map against highly oscillatory functions at the boundary.

2.1 Complex geometrical optics solutions with a linear phase

Calderón considered in [21] harmonic functions of the form ex·ρ, ρ ∈ Cn, ρ · ρ = 0 in the study of
the linearized problem at a constant conductivity, Sylvester and Uhlmann [109, 110] constructed
in dimension n ≥ 2 complex geometrical optics (CGO) solutions of the conductivity equation
for C2 conductivities that behave like Calderón exponential solutions for large frequencies. This
can be reduced to constructing solutions in the whole space (by extending γ = 1 outside a
large ball containing Ω) for the Schrödinger equation with potential. We describe this more
precisely below. Let γ ∈ C2(Rn), γ strictly positive in Rn and γ = 1 for |x| ≥ R, R > 0. Let
Lγu = ∇ · γ∇u. Then we have

γ−1/2Lγ(γ−1/2) = ∆− q (8)

where

q =
∆
√
γ

√
γ
. (9)

Therefore, to construct solutions of Lγu = 0 in Rn it is enough to construct solutions of the
Schrödinger equation (∆ − q)u = 0 with q of the form (9). The next result proven in [109,
110] states the existence of complex geometrical optics solutions for the Schrödinger equation
associated to any bounded and compactly supported potential.

Theorem 2.3. Let q ∈ L∞(Rn), n ≥ 2, with q(x) = 0 for |x| ≥ R > 0. Let −1 < δ < 0. There
exists ε(δ) and such that for every ρ ∈ Cn satisfying

ρ · ρ = 0

and
‖(1 + |x|2)1/2q‖L∞(Rn) + 1

|ρ| ≤ ε

there exists a unique solution to
(∆− q)u = 0

of the form
u = ex·ρ(1 + ψq(x, ρ)) (10)

Gunther Uhlmann
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with ψq(·, ρ) ∈ L2
δ(Rn). Moreover ψq(·, ρ) ∈ H2

δ (Rn) and for 0 ≤ s ≤ 2 there exists C =
C(n, s, δ) > 0 such that

‖ψq(·, ρ)‖Hs
δ
≤ C

|ρ|1−s . (11)

Here

L2
δ(Rn) = {f ;

∫
(1 + |x|2)δ|f(x)|2dx <∞}

with the norm given by ‖f‖2
L2
δ

=
∫

(1 + |x|2)δ|f(x)|2dx and Hm
δ (Rn) denotes the correspond-

ing Sobolev space. Note that for large |ρ| these solutions behave like Calderón’s exponential
solutions ex·ρ. The equation for ψq is given by

(∆ + 2ρ · ∇)ψq = q(1 + ψq). (12)

The equation (12) is solved by constructing an inverse for (∆ + 2ρ · ∇) and solving the integral
equation

ψq = (∆ + 2ρ · ∇)−1(q(1 + ψq)) (13)

in the appropriate spaces. If 0 is not a Dirichlet eigenvalue for the Schrödinger equation we can
also define the DN map

Λq(f) =
∂u

∂ν

∣∣∣
∂Ω

where u solves
(∆− q)u = 0; u|∂Ω = f.

More generally we can define the set of Cauchy data for the Schrödinger equation. Let q ∈
L∞(Ω). We define the Cauchy data as the set

Cq =

{(
u
∣∣
∂Ω
,
∂u

∂ν

∣∣∣
∂Ω

)}
, (14)

where u ∈ H1(Ω) is a solution of
(∆− q)u = 0 in Ω. (15)

We have Cq ⊆ H1/2(∂Ω)×H−1/2(∂Ω). If 0 is not a Dirichlet eigenvalue of ∆− q, then in fact Cq
is a graph, namely

Cq = {(f,Λq(f)) ∈ H1/2(∂Ω)×H−1/2(∂Ω)}.
Complex geometrical optics for first order equations and systems under different regularity
assumptions of the coefficients have been constructed in [92], [93], [32], [101], [100], [79]. For the
case of the magnetic Schrödinger operator unique identifiability of the magnetic field and the
electrical potential was shown in [79] assuming that both the electrical potential and magnetic
potential are both just bounded. Applications of CGO solutions to hybrid problems are in [20],
[10], [28], [60].
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2.2 The Calderón problem in dimension n ≥ 3

In this section we summarize some of the basic theoretical results for Calderón’s problem in
dimension three or higher. The identifiability question was resolved in [109] for smooth enough
conductivities. The result is

Theorem 2.4. Let γi ∈ C2(Ω), γi strictly positive, i = 1, 2. If Λγ1 = Λγ2 then γ1 = γ2 in Ω.

In dimension n ≥ 3 this result is a consequence of a more general result.

Theorem 2.5. Let qi ∈ L∞(Ω), i = 1, 2. Assume Cq1 = Cq2, then q1 = q2.

We now show that Theorem 2.5 implies Theorem 2.4. Using (8) we have

Cqi =

{(
f,

(
1

2
γ
−1/2
i

∣∣∣
∂Ω

∂γi
∂ν

∣∣∣
∂Ω

)
f + γ

−1/2
i

∣∣∣
∂Ω

Λγi

(
γ−1/2

∣∣∣
∂Ω
f
))

, f ∈ H1/2(∂Ω)

}
.

Then we conclude Cq1 = Cq2 using the the boundary identifiability result of Kohn and Vogelius
[73] and its extension [111].

Proof of Theorem 2.5. Let ui ∈ H1(Ω) be a solution of

(∆− qi)ui = 0 in Ω, i = 1, 2.

Then using the divergence theorem we have

∫

Ω
(q1 − q2)u1u2dx =

∫

∂Ω

(
∂u1

∂ν
u2 − u1

∂u2

∂ν

)
dS. (16)

Now it is easy to prove that if Cq1 = Cq2 then the LHS of (16) is zero

∫

Ω
(q1 − q2)u1u2dx = 0. (17)

Now we extend qi = 0 in Ωc. We take solutions of (∆− qi)ui = 0 in Rn of the form

ui = ex·ρi(1 + ψqi(x, ρi)), i = 1, 2 (18)

with |ρi| large, i = 1, 2, with

ρ1 =
η

2
+ i

(
k + l

2

)
(19)

ρ2 = −η
2

+ i

(
k − l

2

)
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and η, k, l ∈ Rn such that

η · k = k · l = η · l = 0 (20)

|η|2 = |k|2 + |l|2.

Condition (21) guarantees that ρi · ρi = 0, i = 1, 2. Substituting (18) into (17) we conclude

̂(q1 − q2)(−k) = −
∫

Ω
eix·k(q1 − q2)(ψq1 + ψq2 + ψq1ψq2)dx. (21)

Now ‖ψqi‖L2(Ω) ≤ C
|ρi| . Therefore by taking |l| → ∞ we obtain

̂χΩ(q1 − q2)(k) = 0 ∀ k ∈ Rn

concluding the proof. Theorem 2.4 has been extended to conductivities having 3/2 derivatives
in some sense in [97], [17]. Uniqueness for conormal conductivies in C1+ε was shown in [35].
Recently Haberman and Tataru in a very nice article [44] have extended the uniqueness result
to C1 conductivities or small in the W 1,∞ norm. It is an open problem whether uniqueness
holds in dimension n ≥ 3 for Lipschitz or less regular conductivities. Theorem 2.5 was extended
to potentials in Ln/2 and small potentials in the Fefferman-Phong class in [27]. For conormal
potentials with strong singularities so that the potential is not in Ln/2, for instance almost a
delta function of an hypersurface, uniqueness was shown in [35].

For the case of the magnetic Schrödinger operator unique identifiability of the magnetic field
and the electrical potential was shown in [79] assuming that both the electrical potential and
magnetic potential are both just bounded improving the regularity assumed in [93] and [108].
The important case of Maxwell’s equations was considered in [95], [96] for C2 electromagnetic
parameters and in [26] for C1 coefficients.

Using the CGO solutions the following stability estimates were proven in [2].

Theorem 2.6. Let n ≥ 3. Suppose that s > n
2 and that γ1 and γ2 are C∞ conductivities on

Ω ⊆ Rn satisfying

i) 0 < 1/E ≤ γj ≤ E, j = 1, 2.

ii) ‖γj‖Hs+2(Ω) ≤ E, j = 1, 2.

Then there exists C = C(Ω, E, n, s) and 0 < σ < 1 (σ = σ(n, s)) such that

‖γ1 − γ2‖L∞(Ω) ≤ C
(
| log ‖Λγ1 − Λγ2‖1/2,−1/2|−σ + ‖Λγ1 − Λγ2‖1/2,−1/2

)
(22)

where ‖ ‖1/2,−1/2 denotes the operator norm as operators from H1/2(∂Ω) to H−1/2(∂Ω).
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Stability estimates using the method of [44] were proven in [24] for C1,ε, ε > 0 conductivities.
Notice that this is logarithmic type stability estimates indicates that the problem is severely
ill-posed. Mandache [84] has shown that this estimate is optimal up to to the value of the
exponent. There is the question of whether under some additional a-priori condition one can
improve this logarithmic type stability estimate. Alessandrini and Vessella [4] have shown that
this is indeed the case and one has a Lipschitz type stability estimate if the conductivity is
piecewise constant with jumps on a finite number of domains. Rondi [99] has subsequently
shown that the constant in the estimate grows exponentially with the number of domains. It is
conjectured, and this is supported by numerical experiments, that the stability estimate should
be “better” near the boundary and gets increasingly worse as one penetrated deeper into the
domain (Theorem 2.2 shows that at the boundary we have Lipschitz type stability estimate.)
This type of depth dependence stability estimate has been proved in [88] for the case of some
electrical inclusions. Theorem 2.6 is a consequence of Theorem 2.2 and the following result.

Theorem 2.7. Assume 0 is not a Dirichlet eigenvalue of ∆− qi, i = 1, 2. Let s > n/2, n ≥ 3
and

‖qj‖Hs(Ω) ≤M.

Then there exists C = C(Ω,M, n, s) and 0 < σ < 1 (σ = σ(n, s)) such that

‖q1 − q2‖H−1(Ω) ≤ C
(
| log ‖Λq1 − Λq2‖1/2,−1/2|−σ + ‖Λq1 − Λq2‖1/2,−1/2

)
. (23)

Theorem 2.7 also applies to the Helmholtz equation with the potential of the form q =
−k2c(x) where c(x) denotes the speed of sound and k the frequency. It is proven in [89] that
the stability estimates changes from logarithmic from low frequencies to Lipschitz for high fre-
quencies. The same has been observed in [59] for the case that the potential is of the form
q(x)− k2.

The complex geometrical optics solution of Theorems 2.4 and 2.5 were also used by A.
Nachman [86] and R. Novikov [94] to give a reconstruction procedure of the conductivity from Λγ .
Reconstruction for C1 conductivities was done in [34].

3 The Partial Data Problem

In several applications in EIT one can only measure currents and voltages on part of the boun-
dary. Substantial progress has been made recently on the problem of whether one can determine
the conductivity in the interior by measuring the DN map on part of the boundary. We review
here the article [67]. The paper [20] used the method of Carleman estimates with a linear weight
to prove that, roughly speaking, knowledge of the DN map in “half” of the boundary is enough
to determine uniquely a C2 conductivity. The regularity assumption on the conductivity was
relaxed to C

3
2

+ε, ε > 0 in [68]. Stability estimates for the uniqueness result of [20] were given in
[45]. Stability estimates for the magnetic Schrödinger operator with partial data in the setting
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of [20] can be found in [114]. The result [20] was substantially improved in [67]. The latter paper
contains a global identifiability result where it is assumed that the DN map is measured on any
open subset of the boundary of a strictly convex domain for all functions supported, roughly,
on the complement. We state the theorem more precisely below. The key new ingredient is the
construction of a larger class of CGO solutions than the ones considered in Section 2.1. Let
x0 ∈ Rn \ ch (Ω), where ch (Ω) denotes the convex hull of Ω. Define the front and the back faces
of ∂Ω by

F (x0) = {x ∈ ∂Ω; (x− x0) · ν ≤ 0}, B(x0) = {x ∈ ∂Ω; (x− x0) · ν > 0}.

The main result of [67] is the following:

Theorem 3.1. Let n > 2. With Ω, x0, F (x0), B(x0) defined as above, let q1, q2 ∈ L∞(Ω)
be two potentials and assume that there exist open neighborhoods F̃ , B̃ ⊂ ∂Ω of F (x0) and
B(x0) ∪ {x ∈ ∂Ω; (x− x0) · ν = 0} respectively, such that

Λq1u = Λq2u in F̃ , for all u ∈ H1/2(∂Ω) ∩ E ′(B̃). (24)

Then q1 = q2.

Here E ′(B̃) denotes the space of compactly supported distributions in B̃. The proof of this
result uses Carleman estimates for the Laplacian with limiting Carleman weights (LCW). The
Carleman estimates allow one to construct, for large τ , a larger class of CGO solutions for the
Schrödinger equation than previously used. These have the form

u = eτ(φ+iψ)(a+ r), (25)

where ∇φ · ∇ψ = 0, |∇φ|2 = |∇ψ|2 and φ is the LCW. Moreover a is smooth and non-vanishing
and ‖r‖L2(Ω) = O( 1

τ ), ‖r‖H1(Ω) = O(1). Examples of LCW are the linear phase φ(x) = x · ω,

ω ∈ Sn−1, used previously, and the non-linear phase φ(x) = ln |x− x0|, where x0 ∈ Rn \ ch (Ω)
which was used in [67]. Any conformal transformation of these would also be a LCW. A char-
acterization of all the LCW in Rn, n > 2, was given in [31]. In two dimensions any harmonic
function is a LCW [119]. The CGO solutions used in [67] are of the form

u(x, τ) = e
log |x−x0|+id(

x−x0
|x−x0|

,ω)
(a+ r) (26)

where x0 is a point outside the convex hull of Ω, ω is a unit vector and d( x−x0
|x−x0| , ω) denote

distance. We take directions ω so that the distance function is smooth for x ∈ Ω. For more
details see [67].

It is an open problem in dimension n > 2 whether if we take Dirichlet data supported in
an open subset of the boundary and the Neumann data is measured in the same set one can
determine uniquely the potential. This was shown in [5] if the potential is known near the
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boundary. Isakov [58] proved such a uniqueness result in dimension three or higher for the case
when the complement of the open set where the measurements are made is an open subset of
a plane or a sphere. The methods of [67] and Isakov [58] and the results of those papers were
extended in [64]. See [65] for a recent survey. the case of partial data on a slab was studied
in [83]. The DN map with partial data for the magnetic Schrödinger operator was studied in
[30], [69], [114], [76], [29]. The case of the polyharmonic operator was considered in [77]. We
also mention that in [38] (resp. [61]) CGO approximate solutions are concentrated near planes
(resp. spheres) and provided some local results related to the local DN map. It would be very
interesting to extend the partial data result to systems. See [102] for Dirac systems, [25] for
Maxwell and [53] for elasticity. Using methods of hyperbolic geometry similar to [61] it is shown
in [47] that one can reconstruct inclusions from the local DN map using CGO solutions that decay
exponentially inside a ball and grow exponentially outside. These are called complex spherical
waves. A numerical implementation of this method has been done in [47]. The construction of
complex spherical waves can also be done using the CGO solutions constructed in [67]. This
was done in [118] in order to detect elastic inclusions, in [119] to detect inclusions in the two
dimensional case for a large class of systems with inhomogeneous background, and in [103] for
the case of inclusions contained in a slab.

Stability estimates for the result of [67] were proven in [23] and a reconstruction method
proposed in [87].

4 The Calderón Problem in Two Dimensions

Astala and Päivärinta [6], in a seminal contribution, have extended significantly the uniqueness
result of [85] for conductivities having two derivatives in an appropriate sense and the result
of [18] for conductivities having one derivative in appropriate sense, by proving that any L∞

conductivity in two dimensions can be determined uniquely from the DN map. We remark that
the method of [85] and [18] uses, CGO solutions, and the ∂ method. The proof of [6] relies also
on construction of CGO solutions for the conductivity equation with L∞ coefficients and the ∂
method. This is done by transforming the conductivity equation to a quasi-regular map. Let D
be the unit disk in the plane. Then we have

Lemma 4.1. Assume u ∈ H1(D) is real valued and satisfies the conductivity equation on D.
Then there exists a function v ∈ H1(D), unique up to a constant, such that f = u+ iv satisfies
the Beltrami equation

∂f = µ∂f, (27)

where µ = (1 − γ)/(1 + γ). Conversely, if f ∈ H1(D) satisfies (27) with a real-valued µ, then
u = Ref and v = Imf satisfy

∇ · γ∇u = 0 and ∇ · 1

γ
∇v = 0, (28)

respectively, where γ = (1− µ)/(1 + µ).
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Let us denote κ = ||µ||L∞ < 1. Then (27) means that f is a quasi-regular map. The
function v is called the γ-harmonic conjugate of u and it is unique up to a constant. Astala and
Päivärinta consider the µ-Hilbert transform Hµ : H1/2(∂Ω)→ H1/2(∂Ω) that is defined by

Hµ : u
∣∣
∂Ω
7→ v

∣∣
∂Ω

and show that the DN map Λγ determinesHµ and vice versa. Below we use the complex notation
z = x1 + ix2. Moreover, for the equation (27), it is shown that for every k ∈ C there are complex
geometrical optics solutions of the Beltrami equation that have the form

fµ(z, k) = eikzMµ(z, k), (29)

where

Mµ(z, k) = 1 +O
(

1

z

)
as |z| → ∞. (30)

More precisely, they prove that:

Theorem 4.2. For each k ∈ C and for each 2 < p < 1 + 1/κ the equation (27) admits a unique
solution f ∈W 1,p

loc (C) of the form (29) such that the asymptotic formula (30) holds true.

In the case of non-smooth coefficients the function Mµ grows sub-exponentially in k. Astala
and Päivärinta introduce the “transport matrix” to deal with this problem. Using a result of
Bers connecting pseudoanalytic functions with quasi-regular maps they show that this matrix
is determined by the Hilbert transform Hµ and therefore the DN map. Then they use the
transport matrix to show that Λγ determines uniquely γ. See [6] for more details. Logarithmic
type stability estimates for Hölder conductivities of positive exponent have been given in [13].

4.1 Bukhgeim’s Result

In an important breakthrough, Bukhgeim [19] proved that a potential in Lp(Ω), p > 2 can be
uniquely determined from the set of Cauchy data as defined in (14). An earlier result [107] gave
this for a generic class of potentials. As before, if two potentials q1, q2 have the same set of
Cauchy data, we have ∫

Ω
(q1 − q2)u1u2dx = 0 (31)

where ui, i = 1, 2, are solutions of the Schrödinger equation. Assume now that 0 ∈ Ω. Bukhgeim
takes CGO solutions of the form

u1(z, k) = ez
2k(1 + ψ1(z, k)), u2(z, k) = e−z

2k(1 + ψ2(z, k)) (32)

where z, k ∈ C and we have used the complex notation z = x1 + ix2. Moreover ψ1 and ψ2

decay uniformly in Ω, in an appropriate sense, for |k| large. Note that the weight z2k in the
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exponential is a limiting Carleman weight since it is a harmonic function but it is singular at 0
since its gradient vanishes there. Substituting (32) into (31) we obtain

∫

Ω
e2iτx1x2(q1 − q2)(1 + ψ1 + ψ2 + ψ1ψ2)dx = 0.

Now using the decay of ψi in τ , i = 1, 2, and applying stationary phase (the phase function x1x2

that has a non-degenerate critical point at 0) we obtain q1(0) = q2(0) = 0 in Ω. Of course we can
do this at any point of Ω proving the result. This result also shows that complex conductivities
can be determined uniquely from the DN map. Francini has shown in [33] that this was the case
for conductivities with small imaginary part. It also implies unique determination of a potential
from the fixed energy scattering amplitude in two dimensions.

Stability estimates for potentials in W ε,p, p > 2 were proven in [15].

4.2 Partial Data Problem in 2D

It is shown in [49] that for a two dimensional bounded domain the Cauchy data for the
Schrödinger equation measured on an arbitrary open subset of the boundary determines uniquely
the potential. This implies, for the conductivity equation, that if one measures the current fluxes
at the boundary on an arbitrary open subset of the boundary produced by voltage potentials
supported in the same subset, one can determine uniquely the conductivity. The paper [49]
uses Carleman estimates with weights which are harmonic functions with non-degenerate crit-
ical points to construct appropriate complex geometrical optics solutions to prove the result.
We describe this more precisely below. Let Ω ⊂ R2 be a bounded domain which consists of N
smooth closed curves γj , ∂Ω = ∪Nj=γj . As before we define the set of Cauchy data for a bounded
potential q by:

Ĉq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
| (∆− q)u = 0 on Ω, u ∈ H1(Ω)

}
. (33)

Let Γ ⊂ ∂Ω be a non-empty open subset of the boundary. Denote Γ0 = ∂Ω \Γ. The main result
of [49] gives global uniqueness by measuring the Cauchy data on Γ. Let qj ∈ C2+α(Ω), j = 1, 2
for some α > 0 and let qj be complex-valued. Consider the following sets of Cauchy data on Γ:

Cqj =

{(
u|Γ,

∂u

∂ν

∣∣∣
Γ

)
| (∆− qj)u = 0 in Ω, u|Γ0 = 0, u ∈ H1(Ω)

}
, j = 1, 2. (34)

Theorem 4.3. Assume Cq1 = Cq2 . Then q1 = q2.

Using Theorem 4.3 one concludes immediately, as a corollary, the following global identifia-
bility result for the conductivity equation (2). This result uses that knowledge of the Dirichlet-
to-Neumann map on an open subset of the boundary determines γ and its first derivatives on Γ
(see [72], [111]).
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Corollary 4.4. With some α > 0, let γj ∈ C4+α(Ω), j = 1, 2, be non-vanishing functions.
Assume that

Λγ1(f) = Λγ2(f) on Γ for all f ∈ H1/2(Γ), supp f ⊂ Γ.

Then γ1 = γ2.

It is easy to see that Theorem 4.3 implies the analogous result to [67] in the two dimensional
case. Notice that Theorem 4.3 does not assume that Ω is simply connected.

The two dimensional case has special features since one can construct a much larger set of
complex geometrical optics solutions than in higher dimensions. On the other hand, the problem
is formally determined in two dimensions and therefore more difficult. The proof of Theorem 4.3
is based on the construction of appropriate complex geometrical optics solutions by Carleman
estimates with degenerate weight functions.

For this result it is used in [49] a more general class of CGO solutions than the ones con-
structed by Bukhgeim, since we would like to have the imaginary part of the phase vanish on Γ.
So we consider more general holomorphic functions with non-degenerate critical points as phases.
Let the function Φ(z) = ϕ(x1, x2)+ iψ(x1, x2) ∈ C2(Ω) be holomorphic in Ω and Im Φ|

∂Ω\Γ̃ = 0.

Notice that this implies ∇ϕ · ν = 0 on ∂Ω \ Γ̃. We denote the set of critical points of Φ by

H = {z ∈ Ω|∂zΦ(z) = 0}.

We assume that Φ has a finite number of non-degenerate critical points in Ω, that is ∂2
zΦ(z) 6= 0,

z ∈ H.
The CGO solutions used in [49] of

(∆− q)u = 0 in Ω; u|
∂Ω\Γ̃ = 0 (35)

are of the form

u(x) = eτΦ(z)(a(z) + a0(z)/τ) + eτΦ(z)(a(z) + a1(z)/τ) + eτϕu1 + eτϕu2. (36)

The functions a, a0, a1 ∈ C2(Ω) are holomorphic in Ω and Re a|
∂Ω\Γ̃ = 0. Moreover

‖uj‖L2(Ω) = o

(
1

τ

)
, τ →∞, j = 1, 2. (37)

This method has been extended to a general class of second order elliptic equations in [50],
[51] and with measurements in disjoint sets in [52]. A similar result to Theorem 4.3 was proven
in [54] for the Neumann-to-Dirichlet map which is more physical in some situations. For other
developments see the survey paper [56].
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5 Anisotropic Conductivities

Anisotropic conductivities depend on direction. Muscle tissue in the human body is an important
example of an anisotropic conductor. For instance cardiac muscle has a conductivity of 2.3 mho
in the transverse direction and 6.3 in the longitudinal direction. The conductivity in this case
is represented by a positive definite, smooth, symmetric matrix γ = (γij(x)) on Ω. Under the
assumption of no sources or sinks of current in Ω, the potential u in Ω, given a voltage potential f
on ∂Ω, solves the Dirichlet problem





n∑
i,j=1

∂

∂xi

(
γij

∂u

∂xj

)
= 0 on Ω

u|∂Ω = f.

(38)

The DN map is defined by

Λγ(f) =
n∑

i,j=1

νiγij
∂u

∂xj

∣∣∣
∂Ω

(39)

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂Ω and u is the solution of (38). The
inverse problem is whether one can determine γ by knowing Λγ . The map Λγ doesn’t determine
γ uniquely. This observation is due to L. Tartar (see [72] for an account). Let ψ : Ω → Ω be a
C∞ diffeomorphism with ψ|∂Ω = Id where Id denotes the identity map. We have

Λγ̃ = Λγ (40)

where

γ̃ =

(
(Dψ)T ◦ γ ◦ (Dψ)

|detDψ|

)
◦ ψ−1. (41)

Here Dψ denotes the (matrix) differential of ψ, (Dψ)T its transpose and the composition in (41)
is to be interpreted as multiplication of matrices. We have then a large number of conductivities
with the same DN map: any change of variables of Ω that leaves the boundary fixed gives rise
to a new conductivity with the same electrostatic boundary measurements. The question is
then whether this is the only obstruction to unique identifiability of the conductivity. In two
dimensions this has been shown for L∞(Ω) conductivities in [7]. This is done by reducing the
anisotropic problem to the isotropic one by using isothermal coordinates [108] and using Astala
and Päivärinta’s result in the isotropic case [6]. Earlier results were for C3 conductivities using
the result of Nachman [85] and for Lipschitz conductivities in [106] using the techniques of [18].

In three dimensions, as was pointed out in [82], this is a problem of geometrical nature and
makes sense for general compact Riemannian manifolds with boundary. Let (M, g) be a compact
Riemannian manifold with boundary. The Laplace-Beltrami operator associated to the metric g
is given in local coordinates by

∆gu =
1√

det g

n∑

i,j=1

∂

∂xi

(√
det ggij

∂u

∂xj

)
(42)
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where (gij) is the matrix inverse of the matrix (gij). Let us consider the Dirichlet problem
associated to (42)

∆gu = 0 on Ω, u|∂Ω = f. (43)

We define the DN map in this case by

Λg(f) =

n∑

i,j=1

νigij
∂u

∂xj

√
det g

∣∣
∂Ω

(44)

The inverse problem is to recover g from Λg. We have

Λψ∗g = Λg (45)

where ψ is any C∞ diffeomorphism of M which is the identity on the boundary. As usual ψ∗g
denotes the pull back of the metric g by the diffeomorphism ψ. In the case that M is an open,
bounded subset of Rn with smooth boundary, it is easy to see ([82]) that for n ≥ 3

Λg = Λγ (46)

where
(gij) = (detγkl)

1
n−2 (γij)−1, (γij) = (det gkl)

1/2(gij)
−1. (47)

In the two dimensional case there is an additional obstruction since the Laplace-Beltrami oper-
ator is conformally invariant. More precisely we have

∆αg =
1

α
∆g

for any function α, α 6= 0. Therefore we have, for n = 2,

Λα(ψ∗g) = Λg (48)

for any smooth function α 6= 0 so that α|∂M = 1. Lassas and Uhlmann ([80]) proved that (45)
is the only obstruction to unique identifiability of the conductivity for real-analytic manifolds in
dimension n ≥ 3. In the two dimensional case they showed that (48) is the only obstruction to
unique identifiability for smooth Riemannian surfaces. Moreover these results assume that the
DN map is measured only on an open subset of the boundary. We state the two basic results.
Let Γ be an open subset ∂M . We define for f , supp f ⊆ Γ

Λg,Γ(f) = Λg(f)|Γ.

Theorem 5.1 (n = 2). Let (M, g) be a compact Riemannian surface with boundary. Let Γ ⊆ ∂M
be an open subset. Then Λg,Γ determines uniquely the conformal class of (M, g)uptoisometry.
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Theorem 5.2 (n ≥ 3). Let (M, g) be a real-analytic compact, connected Riemannian manifold
with boundary. Let Γ ⊆ ∂M be real-analytic and assume that g is real-analytic up to Γ. Then
Λg,Γ determines uniquely (M, g) up to an isometry.

The article [98] shows that one can determine for simple manifolds in two dimensions Λg if
one knows the boundary distance function. This lead to the solution of the boundary rigidity
problem in two dimensions.

In [14] another proof was given of Theorem 5.2. Einstein manifolds are real-analytic in the
interior and it was conjectured by Lassas and Uhlmann that they were uniquely determined up
to isometry by the DN map. This was proven in [39]. Notice that these results don’t assume
any condition on the topology of the manifold except for connectedness. An earlier result of
[82] assumed that (M, g) was strongly convex and simply connected and Γ = ∂M in both
results. Theorem 5.2 was extended in [81] to non-compact, connected real-analytic manifolds
with boundary. These results were extended to differential forms in [75].

5.0.1 The Calderón Problem on Manifolds

The invariant form on a Riemannian manifold with boundary (M, g) for an isotropic conductiv-
ity β is given by

divg(β∇g)u = 0 (49)

where divg (resp. ∇g) denotes divergence (resp. gradient) with respect to the Riemannian
metric g. This includes the case considered by Calderón with g the Euclidean metric, the
anisotropic case by taking gij = γijβ and β =

√
det g. It was shown in [106] for bounded

domains of Euclidean space in two dimensions that the isometric class of (β, g) is determined
uniquely by the DN map associated to (49). In two dimensions, when the metric g is known,
it is proven in [46] that one can uniquely determine the conductivity β. Guillarmou and Tzou
[41] have shown that a potential is uniquely determined for the Schrödinger equation ∆g − q,
with ∆g the Laplace-Beltrami operator associated to the metric g, generalizing the result of [46].
This result has been extended to connections in [42] and to general elliptic Systems on vector
bundles in [1].

In dimension n ≥ 3 it is an open problem whether one can determine the isotropic conduc-
tivity β from the corresponding DN map associated to (49). As before one can consider the
more general problem of recovering the potential q from the DN map associated to ∆g − q. We
review below the progress that has been made on this problem based on [31].

5.1 Complex geometrical optics on manifolds

We review the recent construction of complex geometrical optics construction for a class of
Riemannian manifolds based on [31]. In this paper those Riemannian manifolds which admit
limiting Carleman weights, were characterized. All such weights in Euclidean space were listed
in Theorem 1.13.
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Theorem 5.3. If (M, g) is an open manifold having a limiting Carleman weight, then some
conformal multiple of the metric g admits a parallel unit vector field. For simply connected
manifolds, the converse is also true.

Locally, a manifold admits a parallel unit vector field if and only if it is isometric to the
product of an Euclidean interval and another Riemannian manifold. Thus, if (M, g) has an
LCW ϕ, one can choose local coordinates in such a way that φ(x) = x1 and

g(x1, x
′) = c(x)

(
1 0
0 g0(x′)

)
,

where c is a positive conformal factor. Conversely, any metric of this form admits ϕ(x) = x1

as a limiting weight. In the case n = 2, limiting Carleman weights in (M, g) are exactly the
harmonic functions with non-vanishing differential. Let us now introduce the class of manifolds
which admit limiting Carleman weights and for which one can prove uniqueness results. For
this we need the notion of simple manifolds.

Definition 5.4. A manifold (M, g) with boundary is simple if ∂M is strictly convex, and for
any point x ∈M the exponential map expx is a diffeomorphism from some closed neighborhood
of 0 in TxM onto M .

Definition 5.5. A compact manifold with boundary (M, g), of dimension n ≥ 3, is admissible
if it is conformal to a submanifold with boundary of R × (M0, g0) where (M0, g0) is a compact
simple (n− 1)-dimensional manifold.

Examples of admissible manifolds include the following:

1. Bounded domains in Euclidean space, in the sphere minus a point, or in hyperbolic space.
In the last two cases, the manifold is conformal to a domain in Euclidean space via stere-
ographic projection.

2. More generally, any domain in a locally conformally flat manifold is admissible, provided
that the domain is appropriately small. Such manifolds include locally symmetric 3-
dimensional spaces, which have parallel curvature tensor so their Cotton tensor vanishes.

3. Any bounded domain M in Rn, endowed with a metric which in some coordinates has the
form

g(x1, x
′) = c(x)

(
1 0
0 g0(x′)

)
,

with c > 0 and g0 simple, is admissible.

4. The class of admissible metrics is stable under C2-small perturbations of g0.
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The first inverse problem involves the Schrödinger operator

Lg,q = ∆g − q,

where q is a smooth complex valued function on (M, g). We make the standard assumption
that 0 is not a Dirichlet eigenvalue of Lg,q in M . Then the Dirichlet problem

{
Lg,qu = 0 in M,

u = f on ∂M

has a unique solution for any f ∈ H1/2(∂M), and we may define the DN map

Λg,q : f 7→ ∂νu|∂M .

Given a fixed admissible metric, one can determine the potential q from boundary measurements.

Theorem 5.6. Let (M, g) be admissible, and let q1 and q2 be two smooth functions on M . If
Λg,q1 = Λg,q2, then q1 = q2.

This result was known previously in dimensions n ≥ 3 for the Euclidean metric [109] and for
the hyperbolic metric [60]. It has been generalized to Maxwell’s equations in [66].
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ences Mathématiques de Paris.
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surements, Ann. Sci. École Norm. Sup., 34 (2001), 771–787.

[81] Lassas, M., Taylor, M. and Uhlmann, G., The Dirichlet-to-Neumann map for complete
Riemannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222.

[82] Lee, J. and Uhlmann, G., Determining anisotropic real-analytic conductivities by boun-
dary measurements, Comm. Pure Appl. Math., 42 (1989), 1097–1112.

[83] Li, X. and Uhlmann, G., Inverse problems on a slab, Inverse Problems and Imaging, 4
(2010), 449-462.

[84] Mandache, N., Exponential instability in an inverse problem for the Schrödinger equation,
Inverse Problems, 17 (2001), 1435–1444.

[85] Nachman, A., Global uniqueness for a two-dimensional inverse boundary value problem,
Ann. of Math., 143 (1996), 71-96.

[86] Nachman, A., Reconstructions from boundary measurements, Ann. of Math., 128 (1988),
531–576.

[87] Nachman, A. and Street, B., Reconstruction in the Calderón problem with partial data,
Comm. PDE, 35 (2010), 375-390.

[88] Nagayasu, S., Uhlmann, G. and Wang, J.-N., Depth dependent stability estimate in elec-
trical impedance tomography, Inverse Problems, 25 (2009), 075001.

[89] Nagayasu, S., Uhlmann, G. and Wang, J.-N., Reconstruction of penetrable obstacles in
acoustics, SIAM J. Math. Anal., 43 (2011), 189-211.

[90] Nagayasu, S, Uhlmann, G. and Wang, J.-N., Increasing stability for the acoustic equation,
Inverse Problems, 29 (2013), 020012.

[91] Nakamura, G. and Tanuma, K., Local determination of conductivity at the boundary from
the Dirichlet-to-Neumann map, Inverse Problems, 17 (2001), 405–419.

Exp. no XIII— 30 Years of Calderón’s Problem

XIII–23



[92] Nakamura G. and Uhlmann, G., Global uniqueness for an inverse boundary value problem
arising in elasticity, Invent. Math., 118 (1994), 457–474. Erratum: Invent. Math., 152
(2003), 205–207.

[93] Nakamura, G., Sun, Z. and Uhlmann, G., Global identifiability for an inverse problem for
the Schrödinger equation in a magnetic field, Math. Annalen, 303 (1995), 377–388.

[94] Novikov R. G., Multidimensional inverse spectral problems for the equation −∆ψ+(v(x)−
Eu(x))ψ = 0, Funktsionalny Analizi Ego Prilozheniya, 22 (1988), 11-12, Translation in
Functional Analysis and its Applications, 22 (1988) 263–272.
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