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L2-STABILITY OF MULTI-SOLITONS

CLAUDIO MUÑOZ

1. Introduction

The aim of this note is to give a short review of our recent work (see [5]) with
Miguel A. Alejo and Luis Vega, concerning the L2-stability, and asymptotic stabil-
ity, of the N -soliton of the Korteweg-de Vries (KdV) equation

ut + (uxx + u2)x = 0. (1.1)

Here u = u(t, x) is a real valued function, and (t, x) ∈ R2. This equation arises
in Physics as a model of propagation of dispersive long waves, as was pointed out
by Russel in 1834 [30]. The exact formulation of the KdV equation comes from
Korteweg and de Vries (1895) [18]. This equation was studied in a numerical work
by Fermi, Pasta and Ulam, and by Kruskal and Zabusky [13, 19].

From the mathematical point of view, equation (1.1) is an integrable model [2, 3,
20, 1], with infinitely many conservation laws. Moreover, since the Cauchy problem
associated to (1.1) is locally well posed in L2(R) (cf. Bourgain [8]), each solution
is indeed global in time thanks to the Mass conservation law

M [u](t) :=
1

2

∫

R
u2(t, x)dx = M [u](0). (1.2)

On the other hand, equation (1.1) has solitary wave solutions referred as solitons,
solutions of the form

u(t, x) = Qc(x− ct), Qc(s) := cQ(
√
cs), c > 0, (1.3)

and

Q(s) :=
3

1 + cosh(s)
. (1.4)

The study of perturbations of solitons or solitary waves lead to the introduction
of the concepts of orbital and asymptotic stability. In particular, it is natural to
expect that solitons are stable in the energy space H1(R). Indeed, H1-stability
of KdV solitons has been considered by Benjamin and Bona-Souganidis-Strauss
in [6, 7]. On the other hand, the asymptotic stability has been studied e.g. in
Pego-Weinstein and Martel-Merle [35, 22].

Concerning the more involved case of the sum of N ≥ 2 decoupled solitons, sta-
bility and asymptotic stability results are very recent. First of all, recall that, as
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a consequence of the integrability property, KdV allows the existence of solutions
behaving, as time goes to infinity, as the sum of N decoupled solitons. These solu-
tions are well-known in the literature and are called N -solitons, or generically multi-
solitons [14]. Indeed, any N -soliton solution has the form u(t, x) := U (N)(t, x) :=
U (N)(x; cj , xj − cjt), where

{
U (N)(x; cj , yj) : cj > 0, yj ∈ R, j = 1, . . . , N

}
(1.5)

is a family of explicit N -soliton profiles (see e.g. Maddocks-Sachs [21], §3.1). In
particular, this solution describes multiple soliton collisions; but since solitons for
KdV equation interact in a linear fashion, there is no residual appearing after the
collisions, even if the equation is nonlinear in nature. In other words,

lim
t→±∞

∥∥U (N)(t)−
N∑

j=1

Qcj (· − cjt− x±j )
∥∥
H1(R)

= 0,

with x±j ∈ R depending on the set (ck). This is also a consequence of the integra-
bility property.

In [21], Maddocks and Sachs considered the HN (R)-stability of the N -soliton
solution of KdV, by using N + 1 conservation laws. Next, in [27, 26], Martel,
Merle and Tsai improved the preceding result by proving stability and asymptotic
stability of the sum of N solitons, well decoupled at the initial time, in the energy
space. Their proof also applies for general nonlinearities and not only for the
integrable cases, provided they have stable solitons, in the sense of Weinstein [37].
Their approach is based on the construction of N almost conserved quantities,
related to the mass of each solitary wave, and the total energy of the solution. As
a consequence of the existence of N -soliton solutions for KdV, the above results
can be extended to give a global stability property, improving the Maddock-Sachs
results. See also [23, 24, 25] for global H1-stability results in some non-integrable
cases.

As far as we know, the unique stability result for KdV solitons, below H1(R),
was proved by Merle and Vega in [28]. Precisely, in that work, the authors prove
that solitons of (1.1) are L2-stable, by using the Miura transform

M [v] :=
3√
2
vx −

3

2
v2, (1.6)

which links solutions of the defocusing, modified KdV equation,

vt + (vxx − v3)x = 0, v = v(t, x) ∈ R, (t, x) ∈ R2, (1.7)

with solutions of the KdV equation (1.1). In particular, the image of the family

of kink solutions ϕc(t, x) :=
√
c tanh(

√
c/2(x + ct + x0)), c > 0, x0 ∈ R, of (1.7)

under the transformation (1.6) is the soliton Qc above described, up to a standard
Galilean transformation (cf. [28]).

Let us describe in more detail the Merle-Vega’s approach. First of all, from the
fact that the image of mKdV kinks are KdV solitons, and using the fact that the
soliton is a minimizer of a well-known H1 functional, one can define the inverse
of the Miura transform (1.6) in a small L2-vicinity of the soliton Qc, to obtain
a small H1 neighborhood of the kink solution. Since the kink solution of (1.7)
is H1-stable (see e.g. Zhidkov, Merle-Vega [39, 28]), by applying once again the
Miura transform to the mKdV solution, and using a well-known unicity argument,
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the authors concluded the L2-stability of the KdV soliton. The following figure
describes the aforementioned approach:

KdV
u0 ∼L2 Qc

Miura−−−−−−−−→
v0=M−1[u0]

mKdV
v0 ∼H1 kink

L2-KdV flow

(Bourgain)

y t > 0
H1-mKdV flow

(Merle-Vega)

yH
1-stability

(Zhidkov)

u(t) = ū(t)
u(0) = u0

Miura←−−−−−−−−
ū(t)=M [v](t)

v(t) stable
v(0) = v0

(1.8)

Fig. 1: The Merle-Vega’s approach.

The Merle-Vega’s idea has been applied to different models describing several
phenomena. A similar Miura transform is available for the KP II equation, a two-
dimensional generalization of the KdV equation. Mizumachi and Tzvetkov have
shown the stability of solitary waves of KdV, seen as solutions of KP II, under
periodic transversal perturbations [32]. Finally, we recall the L2-stability result for
solitary waves of the cubic NLS equation proved by Mizumachi and Pelinovsky in
[31]. Other applications of the Miura transform are local well and ill-posedness
results (cf. [17, 10]).

A natural question to consider is the generalization of the Merle-Vega’s result to
the case of multi-soliton solutions. In [12] (see also [36]), the authors state that the
Miura transform sends multi-kink solutions of (1.7) towards a well defined family of
multi-soliton solutions of (1.1). However, we have found that multi-kinks are hard
to manipulate, due to the continuous interaction of non-local terms (recall that a
kink does not belong to L2(R)).1 Therefore we have followed a different approach.

Indeed, in [5] we considered a Gardner transform [29, 11], well-known in the
mathematical and physical literature since the late sixties, and which links H1-
solutions of the Gardner equation

vt + (vxx + v2 − βv3)x = 0, in Rt × Rx, β > 0, (1.9)

with L2-solutions of the KdV equation (1.1). More specifically, given any β > 0
and v(t) ∈ H1(R), solution of the Gardner equation (1.9), the Gardner transform
[11]

u(t) = Mβ [v](t) := [v − 3

2

√
2βvx −

3

2
βv2](t), (1.10)

is an L2-solution of KdV. Compared with the original Miura transform (1.6), it has
an additional linear term which simplifies the proofs.

In addition, the Gardner equation is also an integrable model [11], with soliton
solutions of the form

v(t, x) := Qc,β(x− ct),

1See [34] for a recent proof of the stability of multi-kinks of mKdV.
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and2

Qc,β(s) :=
3c

1 + ρ cosh(
√
cs)

, with ρ := (1− 9

2
βc)1/2, 0 < c <

2

9β
. (1.11)

In particular, in the formal limit β → 0, we recover the standard KdV soliton
(1.3)-(1.4). On the other hand, the Cauchy problem associated to (1.9) is globally
well-posed under initial data in the energy class H1(R) (cf. Kenig-Ponce-Vega [16]),
thanks to the mass (1.2) and energy conservation laws.

We have been interested in the image of the family of solutions (1.11) under
the aforementioned, Gardner transform. Surprisingly enough, it turns out that the
resulting family is nothing but the KdV soliton family (1.3). Indeed, a direct
computation shows that for the Gardner soliton solution (1.11), one has

Mβ [Qc,β ](t) =
[
Qc,β −

3

2

√
2βQ′c,β −

3

2
βQ2

c,β

]
(x− ct)

= Qc(x− ct− δ), (1.12)

with δ = δ(c, β) > 0 provided β > 0, and Qc the KdV soliton solution (1.3). In
other words, the Gardner transform (1.10) sends the Gardner soliton towards a
slightly translated KdV soliton. This last fact formally suggests that multi-soliton
solutions of the Gardner equation (1.9) are sent towards (or close enough to) multi-
soliton solutions of the KdV model (1.1), as is done in [36] for the case of the Miura
transform.

In [5], we profit of this property to improve the H1-stability and asymptotic sta-
bility properties proved by Martel, Merle and Tsai in [27], and Martel and Merle
[26], now in the case of L2-perturbations of the KdV multi-solitons. In order to
maintain the presentation the simplest possible, we prefer do not state the asymp-
totic stability result that we have obtained. See [5] for more details.

Theorem 1.1 (L2-stability of the N -soliton, [5]). Let δ > 0, N ≥ 2, 0 < c01 <
. . . < c0N and x0

1, . . . , x
0
N ∈ R. There exists α0 > 0 such that if 0 < α < α0, then

the following holds. Let u(t) be a solution of (1.1) such that

‖u(0)− U (N)(·; c0j ,−x0
j )‖L2(R) ≤ α,

with UN the N -soliton profile described in (1.5). Then there exist xj(t), j =
1, . . . , N , such that

sup
t∈R

∥∥u(t)− U (N)(·; c0j ,−xj(t))
∥∥
L2(R)

≤ δ. (1.13)

The above result can be seen as a consequence of the stability of an initial datum
close enough to the sum of N decoupled solitons of the KdV equation, and the
uniform continuity of the KdV flow for L2-data, see e.g. [27], Corollary 1.

Theorem 1.2 (L2-stability of the sum of N solitons of KdV). Let N ≥ 2 and
0 < c01 < c02 < . . . < c0N . There exist parameters α0, A0, L, γ > 0, such that
the following holds. Consider u0 ∈ L2(R), and assume that there exist L > L0,
α ∈ (0, α0) and x0

1 < x0
2 < . . . < x0

N , such that

x0
j > x0

j−1 + L, with j = 2, . . . , N,

2See e.g. [9, 33] and references therein for a more detailed description of solitons and integra-

bility for the Gardner equation.
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and

‖u0 −R0‖L2(R) ≤ α, with R0 :=

N∑

j=1

Qc0j (· − x
0
j ). (1.14)

Then there exist x1(t), . . . xN (t) such that the solution u(t) of the Cauchy problem
for the KdV equation (1.1), with initial data u0, satisfies

sup
t≥0

∥∥u(t)−
N∑

j=1

Qc0j (· − xj(t))
∥∥
L2(R)

≤ A0(α+ e−γ0L). (1.15)

In the next section we sketch the proof of this last result. As a final remark,
we believe that using the methods developed in [5], the stability –under periodic
transversal perturbations– of the KdV multi-soliton U (N), seen as a solution of the
KP II equation constant in the y-variable, can be handled via a Gardner transform,
improving the results by Mizumachi and Tzvetkov [32].

2. Proof of Theorem 1.2

Let u0 ∈ L2(R) satisfying (1.14). Let us denote by z0 := u0 − R0, such that
‖z0‖L2(R) ≤ α. We want to solve the nonlinear Ricatti equation

Mβ [v0] = u0 = R0 + z0, (2.1)

with Mβ the Gardner transform given by (1.10). We will prove that provided α
and β are small enough, and using a fixed point argument, instead of the original
Merle-Vega’s idea.

Proposition 2.1 (Local invertibility around R0). There exists β0 > 0 such that,
for all 0 < β < β0, the following holds. There exist K0, L0, γ0, α0 > 0 such that for
all 0 < α < α0, L > L0, and ‖z0‖L2(R) ≤ α, there exists a solution v0 ∈ H1(R) of
(2.1), such that

‖v0 − S0‖H1(R) ≤ K0(
α√
β

+ e−γ0L), (2.2)

with S0(x) :=
∑N
j=1Qc0j ,β(x− x0

j − δj),

δj = δj(c
0
j ) := (c0j )

−1/2 cosh−1(
1

ρj
), 3 ρj := (1− 9

2
βc0j )

1/2, j = 1, . . . , N, (2.3)

and Qc,β being the soliton solution of the Gardner equation (1.9).

Let us sketch the proof of this result. Assume β > 0 small, such that δj = O(β),
independent of c0j . Note also that S0 ∈ H1(R) with ‖S0‖H1(R) ≤ K, independent
of β. Moreover, a direct computation, using (1.12) shows that

Mβ [S0](t) = R0 +OL2(R)(βe
−γ0L), (2.4)

for some γ0 > 0, independent of β small. Then, we look for a solution v0 ∈ H1(R)
of (2.1), of the form v0 = S0 +w0, and w0 small in H1(R). In other words, w0 has
to solve the nonlinear equation

L[w0] = (R0 −Mβ [S0]) + z0 +
3

2
βw2

0, (2.5)

3We take the positive inverse.
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with

L[w0] := −3

2

√
2βw0,x + (1− 3βS0)w0. (2.6)

We can see L as a unbounded operator in L2(R), with dense domain H1(R). From
standard energy estimates (see [5]), one has that for β > 0 small enough, any
solution w0 ∈ H1(R) of the linear problem

L[w0] = f, f ∈ L2(R), (2.7)

must satisfy, for some fixed constant K0 > 0,

‖w0‖H1(R) ≤
K0√
β
‖f‖L2(R). (2.8)

In order to prove the existence and uniqueness of a solution of (2.7), we use (2.8)
and a fixed point approach, in the spirit of [38, 15]. See [5] for the details.

In what follows, let us denote by T := L−1 : L2(R) → H1(R) the resolvent
operator above mentioned. Now, from (2.5), we want to solve the nonlinear problem

w0 = T [w0] = L−1
[
(R0 −Mβ [S0]) + z0 +

3

2
βw2

0

]
. (2.9)

In order to invoke, once again, a fixed point argument, we consider the ball

B :=
{
w0 ∈ H1(R)

∣∣∣ ‖w0‖H1(R) ≤ 2K0(
α√
β

+ e−γ0L)
}
,

with K0 > 0 the constant from (2.8), and γ0 > 0 given in (2.4). A direct argument
shows that T is a contraction mapping from B into itself, provided β is small. The
proof is now complete.

The above proposition allows to construct the inverse of the Gardner transform
in a small L2-vicinity of R0. Now we follow a similar approach to that of [28],
applied this time to the Gardner equation. In order to do this, recall the following
stability result for Gardner solitons, proved by Martel and Merle in the general case
of gKdV equations.

Proposition 2.2 (H1-stability for Gardner solitons, [27, 26]). Let 0 < c01 < c02 <
. . . < c0N < 2

9β be such that

∂c

∫

R
Q2
c,β

∣∣∣
c=cj

> 0, for all j = 1, . . . , N. (2.10)

There exists α̃0, Ã0, L̃0, γ̃ > 0 such that the following is true. Let v0 ∈ H1(R), and

assume that there exists L̃ > L̃0, α̃ ∈ (0, α̃0) and x̃0
1 < x̃0

2 < . . . < x̃0
N , such that

‖v0 −
N∑

j=1

Qc0j ,β(· − x̃0
j )‖H1(R) ≤ α̃, (2.11)

x̃0
j > x̃0

j−1 + L̃, j = 2, . . . , N. (2.12)

Then there exists x̃1(t), . . . x̃N (t) such that the solution v(t) of the Cauchy problem
associated to (1.9), with initial data v0, satisfies

v(t) = S(t) + w(t), S(t) :=

N∑

j=1

Qc0j ,β(· − x̃j(t)),

Claudio Muñoz
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and

sup
t≥0

{
‖w(t)‖H1(R) +

N∑

j=1

|x̃′j(t)− cj |
}
≤ Ã0(α̃+ e−γ̃L̃). (2.13)

We apply this property to the initial datum v0 obtained in Proposition 2.1. After
this point, the proof of Theorem 1.2 follows closely the ideas of [28], giving the
desired result. We finish with the following diagram, which describes the approach
we have followed.

KdV
u0 ∼L2 R0

Gardner−−−−−−−−→
v0=M−1

β [u0]

Gardner
v0 ∼H1 S0

L2-KdV flow

(Bourgain)

y t > 0
H1-Gardner flow

(K-P-V)

y H1-stability

(Martel-Merle)

u(t) = ū(t)
Gardner←−−−−−−−−−

ū(t)=Mβ [v](t)
v(t) stable

Fig. 2: The Gardner’s approach.

See [5] for a detailed proof.
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