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On Bardina and Approximate Deconvolution

Models

Roger LEWANDOWSKI ∗

1 Introduction

This text is based on the talk which was given at Seminar Laurent Schwartz,
Ecole Polytechnique, France, April 3, 2012.

We first outline the procedure of averaging the incompressible Navier-Stokes
equations when the flow is turbulent for various type of filters.

We introduce the turbulence model called Bardina’s model, for which we
are able to prove existence and uniqueness of a distributional solution.

In order to reconstruct some of the flow frequencies that are underestimated
by Bardina’s model, we next introduce the approximate deconvolution model
(ADM). We prove existence and uniqueness of a “regular weak solution” to
the ADM for each deconvolution order N , and then that the corresponding
sequence of solutions converges to the mean Navier-Stokes Equations when
N goes to infinity.

2 Filtered Navier-Stokes Equation

2.1 Navier-Stokes Equations

The incompressible Navier-Stokes Equations (NSE) that modelise the mo-
tion of a fluid are





∂tu +∇ · (u⊗ u)− ν∆u +∇p = f ,
∇ · u = 0,

u(0,x) = u0(x),
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where u = u(t,x) is the velocity, p = p(t,x) is the pressure rescaled by the
density, assumed to be constant in the momentum equation. For turbulent
flows, we know from Kolmogorov theory that one needs about Re9/4 degrees
of freedom in a unit box, which requires too much computer memory, where
Re is the Reynolds number, typically larger than 1010 in practical situations.
Turbulent models aim to compute mean fields to reduce the complexity and
to stabilize numerical schemes.

2.2 General Filtering Principle by convolution

Let (u, p) the mean flow field defined by

u(t,x) =

∫
Gα(x,y)u(y)dy, p =

∫
Gα(x,y)p(y)dy,

for a given convolution kernel Gα. For homogeneous turbulent flows, one
may take

Gα(x,y) = Gα(|x− y|), u = Gα ? u = Gα(u).

The kernel Gα is smooth, reduces amplitude of high frequency modes and
converges to the dirac function in the sense that

Gα(u)→ u when α→ 0.

Typical examples :

• Gaussian filter: Let r = |x− y|,

Gα(r) =
1

(4π)
3
2α3

e−r
2/α2

, α > 0.

Notice that if u = Gα ? u,

∂αu−∆xu = 0, u|α=0 = u,

therefore
u→ u when α→ 0.

• Helmholz filter: Gα is the Green function of the operator −α2∆ + Id,
α > 0, whose fourier’s transform is

Ĝα(k) =
1

1 + α2|k|2 ,

where k is the wave vector, which means that u = Gα ? u solves

−α2∆u + u = u.
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In the following, we shall consider the Helmholz filter. More generally, for
any quantity ψ related to the flow,

−α2∆ψ + ψ = ψ.

The length α > 0 is of the same order than mean mesh size in any practical
calculation, and

kc =
2π

α
is the ”cut-frequency” . We also denote

u = Gu u = Au

when G is invertible and (we do not write the subscript α for simplicity)

A = G−1.

We aim to find approximated equations satisfied by (u, p) or rather their
”model substitute” (w, q)”, to describe flow scales k ≥ kc, k = |k| denotes
the vawe number.

2.3 Bardina’s Model

Taking the mean of the Navier-Sokes Equations yields

(2.1)





∂tu +∇ · (u⊗ u)− ν∆u +∇p = f +∇ · (u⊗ u− u⊗ u),
∇ · u = 0,

u(0,x) = u0(x),

where
τ r = u⊗ u− u⊗ u

denotes the residual stress. We assume |τ r| << 1. For instance when u is
C1 and for the Helmholtz filter, it is easely checked that ||τ r||H1 = 0(α2).
Neglecting the residual stress and its variations leads to consider the model
for

(w, q) ≈ (u, p),

which simplified the mean Navier-Stokes Equations as

(2.2)





∂tw +∇ · (w⊗w)− ν∆w +∇q = f ,
∇ ·w = 0,

w(0,x) = u0(x).

The boundary conditions are periodic boundary conditions. This model was
introduced first in Bardina et al [2], and is called Bardina’s model.
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3 Mathematical setting of Bardina’s model

3.1 Function space

Let T3 be the 3-D torus

T3 = IR3/T3 where T3 := 2πZ3/L

for some given L > 0. All considered fields have a zero mean on T3.

We assume u0 ∈ H0, f ∈ L2([0, T ]× T3)
3, where

Hs =

{
w : T3 → IR3, w ∈ Hs(T3)

3, ∇ ·w = 0,

∫

T3

w dx = 0

}
,

which is a closed subset of,

Hs =



w =

∑

k∈T ?
3

ŵke
ik·x :

∑

k∈T ?
3

|k|2s|ŵk|2 <∞, k · ŵk = 0



 ,

by noting ∀k = (k1, k2, k3) ∈ T3, |k|2 = k21 + k22 + k23, and

(w,v)Hs =
∑

k∈T ?
3

|k|2sŵk · v̂?k, ||w||s = (
∑

k∈T ?
3

|k|2s|wk|2)
1
2 .

3.2 Estimate for Bardina’s model with Helmholz filter

When G and A = G−1 = −α2∆ + I is the Helmholz filter, which commutes
with differential operators, Bardina’s model may be written as

(3.1)





∂tw +A−1(∇ · (w⊗w))− ν∆w +∇q = f ,
∇ ·w = 0,

w(0,x) = u0(x).

We add the compatibility conditions
∫

T3

w = 0,

∫

T3

q = 0.

Take formally Aw = −α2∆w + w as test vector field in (3.1), and integrate
over T3. Since A is self adjoint for the L2 inner product,

(A−1(∇ · (w⊗w)), Aw)L2 = (∇ · (w⊗w)),w)L2 =∫

T3

((w · ∇) w) ·w = 0,
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by using ∇ ·w = 0 and periodicity.

We study now the remaining terms.

• Evolution term. We note that

−
∫

T3

∂tw ·∆w =

∫

T3

∇∂tw : ∇w =
d

2dt

∫

T3

|∇w|2,

therefore,

(∂tw, Aw)L2 =

∫

T3

∂tw · (−α2∆w + w) =
d

2dt

∫

T3

α2|∇w|2 + |w|2.

• Diffusion term. By a straighforward calculation, we get

(−ν∆w, Aw)L2 = ν

∫

T3

|∇w|2 + α2|∆w|2

• The pressure term. Since ∇ · (Aw) = A (∇ ·w) = 0,

(∇q, Aw)L2 = 0.

In conclusion, by using usual procedures, we have for all t > 0 and any
smooth solution (w, q) to (3.1),

(3.2)

||w(t, ·)||20 + α2||w(t, ·)||21+
ν

∫ t

0
(||w(t′, ·)||21 + α2||∆w(t′, ·)||20)dt′ ≤

||u0(·)||20 + α2||u0(·)||21 +
1

ν

∫ t

0
||f(t′, ·)||2−1dt′,

which also means that under suitable assumptions about the data, that is
u0 ∈ H0 and f ∈ L2(IR,H−1), w is bounded in,

L∞(IR+,H0) ∩ L2(IR+,H1),

with uniform bounds in α, and

L∞(IR+,H1) ∩ L2(IR+,H2),

with bounds that blow up when α→ 0.
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3.3 Existence and uniqueness of a solution to Bardina’s model

Theorem 3.1. (Layton-Lewandowski, 2006) Bardina’s model (2.2) admits
a unique solution (wα, qα) inthe sense of the distributions, such that

wα ∈ L∞(IR+,H0) ∩ L2(IR+,H1),
wα ∈ L∞(IR+,H1) ∩ L2(IR+,H2),
qα ∈ L2(IR, H1(T3).

Moreover, from the sequence (wα, qα)α>0, one can extract a subsequence
(still denoted by (wα, qα)α>0) such that wα → u in L2(IR+×T3) and qα → p
in L5/3(IR+ × T3) when α → 0 and such that (u, p) is a weak dissipative
solution to the Navier-Stokes Equations.

The proof, which is detailled in [7], is based on the Galerking method, the
estimate (3.2) and classical tools of functional analysis, including standard
compactness lemma.

Practical calculations [3] lead to distinguish 3 types of scales:

• the resolved scales

• the subgrid scales (SGS) (filtration by the numerical scheme)

• the subfilter scales (SFS) (filtration by the convolution)

Figure 3.1: From Chow et al. [3]. c©American Meteorological Society. Reprinted with
permission.

The challenge is the reduction of the SFS area.
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4 Approximate Deconvolution Models (ADM)

4.1 General Setting

As said above, we aim to reduce the SFS area. To do so, we follow the
procedure introduced in [10] and [11], which is based on a deconvolution
operator defined by

DN =
N∑

n=0

(I−G)n.

When G is invertible, one may expect that

DN → G−1 = A, when N →∞.

The corresponding ADM is:

(4.1)





∂tw +∇ · (DN (w)⊗DN (w))− ν∆w +∇q = f ,
∇ ·w = 0,

w(0,x) = u0(x),

N.B. When N = 0, this is the Bardina’s model.

The Issues are:

• Is there an alternative to the Helmholz filter,

• What kind of solution is the more suitable to the ADM,

• Can one proves the existence and uniqueness of solutions satisfying
estimates that do not depend on N ,

• What is the behavior of the solution when N →∞.

This will serve as a guide for the following.

Remark 4.1. When G is the Helmholtz filter of width α, we already know
that:
- there Exists a unique distributional solution to the ADM, whose estimates
depends on N , which converges to a solution to the NSE when α → 0 (see
in [5]),
- the rate of convergence to the NSE when α → 0 is of order α1/3, the
constant depending on N (see in [8]).
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4.2 The filter and the deconvolution operator

Assume G invertible. We denote by Ĝk the symbol of the operator G,
defined by the Fourier’s series of the kernel still denoted by G,

G =
∑

k∈T ?
3

Ĝk e
ik·x, A = G−1 =

∑

k∈T ?
3

Âk e
ik·x

In addition Gw = G ?w =
∑

k∈T ?
3

Ĝk ŵke
ik·x.

The generalised Helmholz filter is defined by:

∀k ∈ T ?3 , Ĝk =
1

1 + α2p|k|2p , Ĝα = 0,

which is an isomorphism Hs → Hs+2p, and

−α2p∆pu + u = u, ∇ · u = 0.

The symbol of the deconvolution operator DN =
∑

0≤n≤N
(I−G)n is:

D̂N,k =

N∑

n=0

(
α2p|k|2p

1 + α2p|k|2p
)n

= (1 + α2p|k|2p)ρN,p,k,

ρN,p,k = 1−
(

α2p|k|2p
1 + α2p|k|2p

)N+1

.

The main properties of this operator are:

• 1 ≤ D̂N,k ≤ N + 1, ∀k ∈ T3,

• D̂N,k ≈ (N + 1)
1 + α2p|k|2p
α2p|k|2p for large |k|, lim

|k|→+∞
D̂N,k = N + 1,

• D̂N,k ≤ (1 + α2p|k|2p) = Âk, ∀k ∈ T3,

• ∀k ∈ T3 fixed D̂N,k → 1 + α2p|k|2p = Âk, as N → +∞,

• ∀v ∈ L2([0, T ],H2p), DN (v)→ Apv in L2([0, T ]× T3)
3, as N →∞.
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4.3 Notion of Solution and existence result

Definition 4.1 (Regular Weak solution). We say that the couple (w, q) is
a “regular weak solution” to the ADM (4.1) if and only if the three following
items are satisfied:

1) Regularity

w ∈ L2([0, T ]; H1+p) ∩ C([0, T ]; Hp),(4.2)

∂tw ∈ L2([0, T ]; H0)(4.3)

q ∈ L2([0, T ];H1(T3)),(4.4)

2) Initial data

(4.5) lim
t→0
‖w(t, ·)− u0‖Hp = 0,

3) Weak Formulation

∀v ∈ L2([0, T ];H1(T3)
3),(4.6) 




∫ T

0

∫

T3

∂tw · v−
∫ T

0

∫

T3

DN (w)⊗DN (w) : ∇v+

ν

∫ T

0

∫

T3

∇w : ∇v

+

∫ T

0

∫

T3

∇q · v =

∫ T

0

∫

T3

f · v.

(4.7)

Theorem 4.1. (Berselli-Lewandowski 2012) Assume p > 3/4. The ADM
has a unique regular weak solution. Moreover, when p ≥ 1,

∂tw ∈ L2([0, T ],Hp−1), q ∈ L2([0, T ], Hp(T3)).

The proof of this theorem is detailled in [4]. Apart the usual tools of func-
tional analysis, the result is based on the following estimates. We formally
take ADNw as test in the ADM, to get the following energy equality:

1

2

d

dt
‖A 1

2D
1
2
N (w)‖2 + ‖∇A 1

2D
1
2
N (w)‖2 = (A

1
2D

1
2
N f , A

1
2D

1
2
N (w))

The basic properties of D̂N,k combined with the energy estimate satisfied
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by A
1
2D

1
2
N (w), yield the following formal estimates:

Label Variable bound order

a) A
1
2D

1
2
N (w) L∞([0, T ]; H0) ∩ L2([0, T ]; H1) O(1)

b) D
1/2
N (w) L∞([0, T ]; H0) ∩ L2([0, T ]; H1) O(1)

c) D
1/2
N (w) L∞([0, T ]; Hp) ∩ L2([0, T ]; H1+p) O(α−p)

d) w L∞([0, T ]; H0) ∩ L2([0, T ]; H1) O(1)

e) w L∞([0, T ]; Hp) ∩ L2([0, T ]; H1+p) O(α−p)
f) DN (w) L∞([0, T ]; H0) ∩ L2([0, T ]; H1) O(1)

g) DN (w) L∞([0, T ]; Hp) ∩ L2([0, T ]; Hp+1) O(α−p · (N + 1)1/2)

h) ∂tw L2([0, T ]; H0), for p > 3
4 O(α−p)

4.4 Asymptotic behavior

The interesting problem is the problem of letting N running to∞. We have
the following result.

Theorem 4.2. (Berselli-Lewandowski 2012) Let (wN , qN ) denote the solu-
tion to the ADM at N . From the sequence (wN , qN )N∈IN one can extract a
sub-sequence (still denoted (wN , qN )N∈IN) such that

wN → w
weakly in L2([0, T ]; H1+p) ∩ L∞([0, T ]; Hp)
strongly in Lr([0, T ]; Hp(T3)

3), ∀ 1 ≤ r < +∞,
qN → q weakly in L2([0, T ];H1(T3) ∩ L5/3([0, T ];W 2p,5/3(T3))

and such that the system





∂tw +∇ · (Aw⊗Aw)− ν∆w +∇q = f ,
∇ ·w = 0,

w(0,x) = u0(x),

holds in the sense of the distributions.

We call the limit system the mean Navier-Stokes Equations. The following
explain the motivation of this terminology. Let us consider

(u, p) = (Aw, Aq)

which can also be written as

(w, q) = (Gu, Gp) = (u, p).
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The mean NSE becomes




∂tu +∇ · (u⊗ u)− ν∆u +∇p = f

= ∂tu +∇ · u⊗ u− ν∆u +∇p,
∇ · u = 0 = ∇ · u,

u(0,x) = u0(x),

which is the NSE that have been averaged, since the operator G commutes
with differential operators, hence the name ”mean NSE” (MNSE), precisely
equations (2.1). In fact, (u, p) is a ”very weak” solution to the NSE.

Remark 4.1. The solution to the MNSE is dissipative, which means that
it satisfies an energy inequality.
The critical exponent 3/4 is not optimal: existence and uiniqueness can be
obtained up to p > 1/2, which is an improvement by H. Ali [1].

The proof is detailled in [4]. The main steps consists first in obtaining
additional shars estimates, set in the array below.

Variable bound order

wN L∞([0, T ]; H0) ∩ L2([0, T ]; H1) O(1)

wN L∞([0, T ]; Hp) ∩ L2([0, T ]; H1+p) O(α−1)
DN (wN ) L∞([0, T ]; H0) ∩ L2([0, T ]; H1) O(1)

∂twN L2([0, T ]× T3)
3 O(α−1)

qN L2([0, T ];H1(T3)) ∩ L5/3([0, T ];W 2,5/3(T3)) O(α−1)
∂tDN (wN ) L4/3([0, T ]; H−1) O(1)

Next we show that:

• ADN (Vn) ⊂ Vn, where Vn is a finite dimensional Galerkin space,

• we justisfy that ADNw is a possible test, when 3/4 < p ≤ 1 first,
1 < p next

• we make use of the main properties of D̂N,k, which yields in particular

||w||s ≤ ||DNw||s ≤ ||A1/2D
1/2
N w||s, ∀ s.

• we prove a compactness property satisfied by (DNwN )N∈IN thanks
to Aubin-Lions Lemma, and use it to pass to the limit in the term
DNwN ⊗DNwN , which is the main task.
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