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Null controllability of degenerate parabolic
equations of Grushin and Kolmogorov type

K. Beauchard ∗

Abstract

The goal of this note is to present the results of the references [5] and
[4]. We study the null controllability of the parabolic equations associated
with the Grushin-type operator ∂2

x + |x|2γ∂2
y (γ > 0) in the rectangle

(x, y) ∈ (−1, 1)×(0, 1) or with the Kolmogorov-type operator vγ∂xf+∂2
vf

(γ ∈ {1, 2}) in the rectangle (x, v) ∈ T×(−1, 1), under an additive control
supported in an open subset ω of the space domain.

We prove that the Grushin-type equation is null controllable in any
positive time for γ < 1 and that there is no time for which it is null
controllable for γ > 1. In the transition regime γ = 1 and when ω is a
strip ω = (a, b)× (0, 1) , (0 < a, b ≤ 1), a positive minimal time is required
for null controllability.

For the Kolmogorov-type equation with γ = 1 and periodic-type bound-
ary conditions (in v), we prove that null controllability holds in any posi-
tive time, with any control support ω. This improves the previous result
[6], in which the control support was a strip ω = T× (a, b).

For the Kolmogorov-type equation with Dirichlet boundary conditions
and a strip ω = T × (a, b) (0 < a < b < 1) as control support, we prove
that null controllability holds in any positive time if γ = 1, and only in
large time if γ = 2.

Our approach, inspired from [8, 33], is based on 2 key ingredients:
the observability of the Fourier components of the solution of the adjoint
system (a heat equation with potential), uniformly with respect to the
frequency, and the explicit exponential decay rate of these Fourier com-
ponents.

Key words: null controllability, degenerate parabolic equations, Carleman es-
timates, hypoelliptic systems.
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1 Introduction

1.1 Main results
In this article, we consider

• the Grushin-type equations
{
∂tf − ∂2

xf − |x|2γ∂2
yf = u(t, x, y)1ω(x, y) (t, x, y) ∈ (0,∞)× Ω ,

f(t, x, y) = 0 (t, x, y) ∈ (0,∞)× ∂Ω ,
(1)

where γ > 0, Ω := (−1, 1)× (0, 1) and ω is an open subset of Ω,

• and the Kolmogorov-type equations

∂tf + vγ∂xf − ∂2
vf = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0,+∞)× Ω , (2)

where γ ∈ {1, 2}, Ω = T× (−1, 1) and ω is an open subset of Ω.

For the Kolmogorov-type equations, depending on the value of γ, we use
different boundary conditions in variable v: periodic type boundary conditions
when γ = 1

{
f(t, x− t,−1) = f(t, x+ t,+1) , (t, x) ∈ (0,+∞)× T ,
∂vf(t, x− t,−1) = ∂vf(t, x+ t, 1) , (t, x) ∈ (0,+∞)× T , (3)

or Dirichlet boundary conditions when γ ∈ {1, 2}

f(t, x,−1) = f(t, x,+1) = 0 , (t, x) ∈ (0,+∞)× T . (4)

We will also use initial data

f(0, x, y) = f0(x, y), (x, y) ∈ Ω , (5)

for Grushin-type equations and

f(0, x, v) = f0(x, v), (x, v) ∈ Ω , (6)

for Kolmogorov-type equations.

Let us emphasize that we use the same letter Ω for the spacial domains of
both equations, even if they are different.

Both equations are linear control systems in which

• the state is f ,

• the control u is supported in the subset ω,

and both are degenerate parabolic equations: for the Grushin-type equations,
the coefficient of ∂2

yf vanishes on the line {x = 0}, whereas for the Kolmogorov-
type equations, the degeneracy happens everywhere (no second derivative with
respect to x). We will investigate the null controllability of (1) and (2).
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Definition 1 (Null controllability). Let T > 0. System (1) (resp. (2)-(3),
resp. (2)-(4)) is null controllable in time T if, for every f0 ∈ L2(Ω), there
exists u ∈ L2((0, T ) × Ω) such that the solution of the Cauchy problem (1)-(5)
(resp. (2)-(3)-(6), resp. (2)-(4)-(6)) satisfies f(T, ·, ·) = 0.

System (1) (resp. (2)-(3), resp. (2)-(4)) is null controllable if there exists
T > 0 such that it is null controllable in time T .

The main results of this paper are stated in Theorems 1 and 2 below.
Concerning Grushin-type equations (1), the following null controllability result
holds.

Theorem 1. Let ω be an open subset of (0, 1)× (0, 1).

1. If γ ∈ (0, 1), then system (1)-(5) is null controllable in any time T > 0.

2. If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b 6 1, then there exists
T ∗ > a2

2 such that

• for every T > T ∗ system (1)-(5) is null controllable in time T ,

• for every T < T ∗ system (1)-(5) is not null controllable in time T .

3. If γ > 1, then (1)-(5) is not null controllable.

Concerning Kolmogorov-type equations (2), the following null controllability
result holds.

Theorem 2. 1. If γ = 1 and ω is an open subset of Ω, then the system
(2)-(3) is null controllable in any time T > 0.

2. If γ = 1 and ω = T× (a, b) with −1 < a < b < 1, then the system (2)-(4)
is null controllable in any time T > 0.

3. If γ = 2 and ω = T× (a, b) with 0 < a < b < 1 then there exists T ∗ > a2/2
such that

• the system (2)-(4) is null controllable in any time T > T ∗,

• the system (2)-(4) is not null controllable in time T < T ∗.

4. If γ = 2 and ω = T × (a, b) with −1 < a < 0 < b < 1 then the system
(2)-(4) is null controllable in any time T > 0.

Theorem 2 improves the results of reference [6], for system (2)-(3) with γ = 1
and ω = T × (a, b), −1 < a < b < 1. Note that in the third statement, the
set {v = 0} is not contained in the control location ω contrary to the fourth case.

Theorems 1 and 2 emphasize several behaviors

1. a finite speed of propagation through the set {x = 0} for the Grushin-type
equations with γ = 1 and through the set {v = 0} for Kolmogorov type
equations with γ = 2 and Dirichlet boundary conditions,

2. a sensitivity to boundary conditions (in v) for the Kolmogorov equation
(see the asymptotic behavior of Fourier components in Propositions 10,
13 and 15),
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By duality, these null controllability results are equivalent to observability
inequalities for the adjoint systems:

{
∂tg − ∂2

xg − |x|2γ∂2
yg = 0 (t, x, y) ∈ (0,∞)× Ω ,

g(t, x, y) = 0 (t, x, y) ∈ (0,∞)× ∂Ω ,
(7)

for the Grushin-type equations and

∂tg − vγ∂xg − ∂2
vg = 0 , (t, x, v) ∈ (0,+∞)× Ω , (8)

for the Kolmogorov-type equations, associated with the following boundary con-
ditions when γ = 1

{
g(t, x− T + t,−1) = g(t, x+ T − t, 1) , (t, x) ∈ (0,+∞)× T ,
∂vg(t, x− T + t,−1) = ∂vg(t, x+ T − t, 1) , (t, x) ∈ (0,+∞)× T , (9)

or the following ones for γ ∈ {1, 2}

g(t, x,−1) = g(t, x, 1) = 0 , (t, x) ∈ (0,+∞)× T . (10)

We will also use initial data

g(0, x, y) = g0(x, y) , (x, y) ∈ Ω , (11)

for (7) or, for (8)
g(0, x, v) = g0(x, v) , (x, v) ∈ Ω . (12)

Definition 2 (Observability). Let T > 0. System (7) (resp. (8)-(9), resp.
(8)-(10)) is observable in ω in time T if there exists C > 0 such that, for every
g0 ∈ L2(Ω), the solution of the Cauchy-problem (7)-(11) (resp (8)-(9)-(12),
resp. (8)-(10)-(12)) satisfies

∫

Ω

|g(T, x, y)|2dxdy 6 C

∫ T

0

∫

ω

|g(t, x, y)|2dxdydt .

System (7) (resp. (8)-(9), resp. (8)-(10)) is observable in ω if there exists
T > 0 such that it is observable in ω in time T .

For Grushin-type equations (7), the following observability result holds.

Theorem 3. Let ω be an open subset of (0, 1)× (0, 1).

1. If γ ∈ (0, 1), then system (7) is observable in ω in any time T > 0.

2. If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b 6 1, then there exists
T ∗ > a2

2 such that

• for every T > T ∗ system (7) is observable in ω in time T ,

• for every T < T ∗ system (7) is not observable in ω in time T .

3. If γ > 1, then system (7) is not observable in ω.

Karine Beauchard
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Remark 1. When γ = 1, the geometric restriction on the control domain ω
only affects our positive result. Indeed, Theorem 1 trivially implies that (1) fails
to be null controllable (if γ = 1 and T is small) when ω is any connected open
set at positive distance from the degeneracy region {x = 0}. It is also straight-
forward to observe that, if ω contains a strip containing {x = 0}, then null
controllability holds for any γ > 0 thanks to standard localization arguments
(see [5, Appendix]).

For Kolmogorv-type equations (8), the following observability result holds.

Theorem 4. 1. If γ = 1 and ω is an open subset of Ω, then the system
(8)-(9) is observable in ω in any time T > 0.

2. If γ = 1 and ω = T× (a, b) with 0 < a < b < 1, then the system (8)-(10)
is observable in ω in any time T > 0.

3. If γ = 2 and ω = T×(a, b) with 0 < a < b < 1, then there exists T ∗ > a2/2
such that

• the system (8)-(10) is observable in ω in any time T > T ∗,

• the system (8)-(10) is not observable in ω in time T < T ∗.

4. If γ = 2 and ω = T × (a, b) with −1 < a < 0 < b < 1 then the system
(8)-(10) is observable in ω in any time T > 0.

1.2 Motivation and bibliographical comments
1.2.1 Null controllability of the heat equation

The null and approximate controllability of the heat equation are essentially
well understood subjects for both linear and semilinear equations, for bounded
or unbounded domains (see, for instance, [16], [20], [22], [23], [24], [28], [32],
[33], [36], [39], [40], [45], [46]) and also with discontinuous (see, e.g. [17], [7], [8],
[41]) or singular ([42] and [19]) coefficients.

In particular, the heat equation on a smooth bounded domain Ω of Rd (d ∈
N∗), with a source term located on an open subset ω of Ω is null controllable in
arbitrarily small time T and with an arbitrarily small control support ω. This
result is due, for the case d = 1, to H. Fattorini and D. Russell [21, Theorem 3.3],
and, for d > 2, to O. Imanuvilov [30], [31] (see also the book [26] by A. Fursikov
and O.Imanuvilov) and G. Lebeau and L. Robbiano [33]. It is then natural to
wonder whether the same result holds for degenerate parabolic equations.

1.2.2 Boundary-degenerate parabolic equations

The null controllability of parabolic equations degenerating on the boundary of
the domain in one space dimension is well-understood, much less so in higher
dimension. Given 0 < a < b < 1 and γ > 0, let us consider the 1D equation

∂tw + ∂x(x2γ∂xw) = u(t, x)1(a,b)(x) , (t, x) ∈ (0,∞)× (0, 1) ,

with suitable boundary conditions. Then, null controllability holds if and only if
γ ∈ (0, 1) (see [13, 14]), while, for γ ≥ 1, the best result one can show is “regional
null controllability”(see [12]), which consists in controlling the solution within
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the domain of influence of the control. Several extensions of the above results
are available in one space dimension, see [1, 37] for equations in divergence
form, [11, 10] for nondivergence form operators, and [9, 25] for cascade systems.
Fewer results are available for multidimensional problems, mainly in the case
of two dimensional parabolic operators which simply degenerate in the normal
direction to the boundary of the space domain, see [15].

1.2.3 Parabolic equations degenerating inside the domain

In [38], the authors study linearized Crocco type equations
{
∂tf + ∂xf − ∂vvf = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× T× (0, 1) ,
f(t, x, 0) = f(t, x, 1) = 0, (t, x) ∈ (0, T )× T .

For a given strict open subset ω of T× (0, 1), they prove that null controllability
does not hold: the optimal result is regional null controllability. Note that,
for Kolmogorov equation (2), the coupling between the diffusion (in v) and the
transport (in x at speed v) generates diffusion both in variables x and v (see
Propositions 10, 13 and 15).

1.2.4 Hypoellipticity, unique continuation and null controllability

It could be interesting to analyze the connections between null controllability
and hypoellipticity.

1.2.5 Hypoellipticity

We recall that a linear differential operator P with C∞ coefficients in an open
set Ω ⊂ Rd is called hypoelliptic if, for every distribution u in Ω, u must be a
C∞ function in every open set where so is Pu. The following sufficient condition
(which is also essentially necessary) for hypoellipticity is due to Hörmander (see
[29]).

Theorem 5. Let P be a second order differential operator of the form P =∑r
j=1X

2
j +X0 + c, where X0, ..., Xr denote first order homogeneous differential

operators in an open set Ω ⊂ Rn with C∞ coefficients, and c ∈ C∞(Ω). Assume
that there exists n operators among

Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], ..., [Xj1 , [Xj2 , [Xj3 , [..., Xjk ]...]]],

where ji ∈ {0, 1, ..., r}, which are linearly independent at any given point in Ω.
Then, P is hypoelliptic.

Grushin operator G := ∂2
x+|x|2γ∂2

y and Kolmogorov operatorK := vγ∂x+∂2
v

are prototypes of hypoelliptic operators of type I (K = X0 + X2
1 ) and of type

II (G = X2
0 +X2

1 ). They are associated to the vector fields

X0(x, v) :=

(
vγ

0

)
, X1(x, v) :=

(
0
1

)

that satisfy Hörmander condition for every γ ∈ N∗. Indeed,

[X0, X1](x, v) =

(
γvγ−1

0

)
, [X1, [X1, X2]](x, v) =

(
γ(γ − 1)vγ−2

0

)
.

Thus, when γ = 1, the first iterated Lie bracket is sufficient, whereas when
γ = 2, the second one the required (at v = 0), to satisfy Hörmander’s condition.
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1.2.6 Hypoellipticity and unique continuation

First, let us recall that, in the elliptic case, the unique continuation property
is proved by Garofalo in [27] for the Grushin-type operators G and by Alinhac
and Zuily in [2] for the Kolmogorov-type operators K. Now, let us focus on the
parabolic case.

It is well known that hypoellipticity is not sufficient for unique continuation
(see [47]). In particular, Alinhac and Zuily proved in [2] the existence of a C∞-
zero order perturbation a(t, x, v) such that the operator ∂t−vγ∂x−∂2

v−a(t, x, v)
does not satisfy the unique continuation property.

For the Grushin-type equations studied in this article, the unique continua-
tion trivially holds, for every γ > 0, thanks to the particular geometric config-
uration (see Proposition 3).

1.2.7 Hypoellipticity and null controllability

Theorems 1 and 2 show that

• for Grushin-type equations, null controllability holds only when the first
iterated Lie-bracket is sufficient to satisfy Hörmander’s condition (γ ∈
(0, 1]),

• whereas for Kolmogorov-type equations, null controllability holds when
the two first iterated Lie-brackets are sufficient.

This suggests that a link could relate null controllability of hypoelliptic op-
erators (depending on their type) to the number of iterated Lie brackets that
are necessary to satisfy Hörmander’s condition. This remains—for the time
being—a challenging open problem.

1.3 Structure of the article
In section 2, we prove Theorem 1 for Grushin-type operators. In section 2, we
prove Theorem 2 for Kolmogorov-type operators.

2 Proof of Theorem 1 for Grushin-type operators

2.1 Well posedness of the Cauchy-problem, Fourier de-
composition and unique continuation

Define the product

(f, g) :=

∫

Ω

(
fxgx + |x|2γfygy

)
dxdy (13)

for every f , g in C∞0 (Ω), and set V := C∞0 (Ω)
| · |V , where |f |V := (f, f)1/2.

Consider the bilinear form a on V defined by

a(f, g) = −(f, g) ∀f, g ∈ V . (14)
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Moreover, set

D(A) :=
{
f ∈ V : ∃ c > 0 such that |a(f, h)| ≤ c‖h‖L2(Ω) ∀h ∈ V

}
, (15)

Af := ∂2
xf + |x|2γ∂2

yf.

The following wellposedness result is classical (see, for instance, [35] or [44,
Theorem 1.18]).

Proposition 1. For every f0 ∈ L2(Ω), T > 0 and u ∈ L2(0, T ;L2(Ω)), there
exists a unique weak solution f ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) of the Cauchy
problem (1)-(5). This solution satisfies

‖f(t)‖L2(Ω) 6 ‖f0‖L2(Ω) +
√
T‖u‖L2(0,T ;L2(ω)) ∀t ∈ [0, T ] . (16)

Moreover, f(t) ∈ D(A) and f ′(t) ∈ L2(Ω) for a.e. t ∈ (0, T ).

Let us consider the weak solution of (7)-(11). Since g belongs to C([0, T ];L2(Ω)),
the function y 7→ g(t, x, y) belongs to L2(0, 1) for a.e. (t, x) ∈ (0, T ) × (−1, 1),
thus it can be developed in Fourier series with respect to y as follows

g(t, x, y) =
∑

n∈N∗

gn(t, x)ϕn(y) , (17)

where
ϕn(y) :=

√
2 sin(nπy) ∀n ∈ N∗

and

gn(t, x) :=

∫ 1

0

g(t, x, y)ϕn(y)dy ∀n ∈ N∗ . (18)

Proposition 2. For every n ≥ 1, gn is the unique weak solution of




∂tgn − ∂2
xgn + (nπ)2|x|2γgn = 0 (t, x) ∈ (0, T )× (−1, 1) ,

gn(t,±1) = 0 t ∈ (0, T ) ,
gn(0, x) = g0,n(x) x ∈ (−1, 1) ,

(19)

where g0,n ∈ L2(−1, 1) is given by g0,n(x) :=

∫ 1

0

g0(x, y)ϕn(y)dy.

As a consequence, the parabolic operators of Grushin-type satisfy the unique
continuation property

Proposition 3. Let T > 0, γ > 0, let ω be a bounded open subset of (0, 1) ×
(0, 1), and let g ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) be a weak solution of (7). If
g ≡ 0 on (0, T )× ω, then g ≡ 0 on (0, T )× Ω.

Proof: Let ε > 0 be such that ω ⊂ (ε, 1) × (0, 1). By unique continuation for
uniformly parabolic 2D equation, we deduce that g ≡ 0 on (0, T )×(ε, 1)×(0, 1).
Thus, gn ≡ 0 on (0, T )× (ε, 1) for every n ∈ N∗. Then, by unique continuation
for the uniformly parabolic 1D equation (19), we deduce that gn ≡ 0 on (0, T )×
(−1, 1) for every n ∈ N∗. 2
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2.2 Dissipation speed
Let us introduce, for every n ∈ N∗, γ > 0, the operator An,γ defined on L2(−1, 1)
by

D(An,γ) := H2 ∩H1
0 (−1, 1) , An,γϕ := −ϕ′′ + (nπ)2|x|2γϕ . (20)

The smallest eigenvalue of An,γ is given by

λn,γ = min

{∫ 1

−1

[
v′(x)2 + (nπ)2|x|2γv(x)2

]
dx

∫ 1

−1
v(x)2dx

; v ∈ H1
0 (−1, 1), v 6= 0

}
. (21)

We are interested in the asymptotic behavior (as n → +∞) of λn,γ , which
quantifies the dissipation speed of the solution of (19). The following result
turns out to be a key point of the proof of Theorem 1; it may be proved with a
scaling argument in (21).

Proposition 4. For every γ > 0, there are constants c∗ = c∗(γ), c∗ = c∗(γ) > 0
such that

c∗n
2

1+γ 6 λn,γ 6 c∗n
2

1+γ ∀n ∈ N∗ .

2.3 Proof of the negative statements of Theorem 3
The goal of this section is the proof of the following results.

• if γ = 1, ω ⊂ (a, 1)× (0, 1) for some a > 0 and T < a2

2 , then system (8) is
not observable in ω in time T ,

• if γ > 1 and T > 0, then system (8) is not observable in ω in time T .

Without loos of generality, one may assume that ω = (a, b) × (0, 1) with
0 < a < b < 1.

2.3.1 Strategy for the proof

Let g be the solution of (7)-(11). Then, g can be represented as in (17), and we
emphasize that, for a.e. t ∈ (0, T ) and every −1 6 a1 < b1 6 1,

∫

(a1,b1)×(0,1)

|g(t, x, y)|2dxdy =

∞∑

n=1

∫ b1

a1

|gn(t, x)|2dx

(Bessel-Parseval equality). Thus, in order to prove Theorem 3, it is sufficient to
study the observability of system (19) uniformly with respect to n ∈ N∗.

Definition 3 (Uniform observability). Let 0 < a < b 6 1 and T > 0. System
(19) is observable in (a, b) in time T uniformly with respect to n ∈ N∗ if there
exists C > 0 such that, for every n ∈ N∗, g0,n ∈ L2(−1, 1), the solution of (19)
satisfies ∫ 1

−1

|gn(T, x)|2dx 6 C

∫ T

0

∫ b

a

|gn(t, x)|2dx .

System (19) is observable in (a, b) uniformly with respect to n ∈ N∗ if there
exists T > 0 such that it is observable in (a, b) in time T uniformly with respect
to n ∈ N∗.
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The negative parts of the conclusion of Theorem 3 follow from the result
below.

Theorem 6. Let 0 < a < b 6 1.

1. If γ = 1 and T < a2

2 , then system (19) is not observable in (a, b) in time
T uniformly with respect to n ∈ N∗.

2. If γ > 1, then system (19) is not observable in (a, b) uniformly with respect
to n ∈ N∗.

The proof of Theorem 6 relies on the use of appropriate test functions that
falsify uniform observability. This is proved thanks to a well adapted maximum
principle (see Lemma 1) and explicit supersolutions (see (25)) for γ > 1, and
thanks to direct computations for γ = 1.

2.3.2 Proof of Theorem 6 for γ > 1

Let γ ∈ [1,+∞) be fixed and T > 0. For every n ∈ N∗, we denote by λn (instead
of λn,γ) the first eigenvalue of the operator An,γ defined in Section 2.2, and by
vn the associated positive eigenvector of norm one, which satisfies




−v′′n(x) + [(nπ)2|x|2γ − λn]vn(x) = 0 , x ∈ (−1, 1) , n ∈ N∗ ,
vn(±1) = 0 , vn ≥ 0 ,
‖vn‖L2(−1,1) = 1 .

Then, for every n ≥ 1, the function

gn(t, x) := vn(x)e−λnt ∀(t, x) ∈ R× (−1, 1) ,

solves the adjoint system (19). Let us note that
∫ 1

−1

gn(T, x)2dx = e−2λnT ,

∫ T

0

∫ b

a

gn(t, x)2dxdt =
1− e−2λnT

2λn

∫ b

a

vn(x)2dx .

So, in order to prove that uniform observability fails, it suffices to show that

e2λnT

λn

∫ b

a

vn(x)2dx→ 0 when n→ +∞ . (22)

The above convergence will be obtained comparing vn with an explicit superso-
lution of the problem on a suitable subinterval of [−1, 1], thanks to the following
maximum principle

Lemma 1. Let 0 < a < b < 1. For every n ∈ N∗, set

xn :=

(
λn

(nπ)2

) 1
2γ

(23)

and let Wn ∈ C2([xn, 1],R) be a solution of



−W ′′n (x) + [(nπ)2x2γ − λn]Wn(x) > 0 , x ∈ (xn, 1) ,
Wn(1) > 0 ,
W ′n(xn) < −√xnλn .

(24)
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Then there exists n∗ ∈ N∗ such that, for every n > n∗,
∫ b

a

vn(x)2dx 6
∫ b

a

Wn(x)2dx .

In order to apply Lemma 1, we need an explicit supersolution Wn of (24) of
the form

Wn(x) = Cne
−µnxγ+1

, (25)

where Cn, µn > 0. Notice that, in particular, Wn(1) > 0.
First step: let us prove that, for an appropriate choice of µn, the first inequality
of (24) holds. Since

W ′n(x) = −µn(γ + 1)xγWn(x) ,

W ′′n (x) = [−µnγ(γ + 1)xγ−1 + µ2
n(γ + 1)2x2γ ]Wn(x) ,

the first inequality of (24) holds if and only if, for every x ∈ (xn, 1),

[(nπ)2 − µ2
n(γ + 1)2]x2γ + µnγ(γ + 1)xγ−1 > λn . (26)

In particular, it holds when
µn 6 nπ

γ + 1
(27)

and
[(nπ)2 − µ2

n(γ + 1)2]x2γ
n + µnγ(γ + 1)xγ−1

n > λn . (28)

Indeed, in this case, the left hand side of (26) is an increasing function of x. In
view of (23), and after several simplifications, inequality (28) can be recast as

µn 6 γ

γ + 1

(
(nπ)2

λn

) 1
2 + 1

2γ

.

So, recalling (27), in order to satisfy the first inequality of (24) we can take

µn := min

{
nπ

γ + 1
;

γ

γ + 1

(
(nπ)2

λn

) 1
2 + 1

2γ

}
. (29)

For the following computations, it is important to notice that, thanks to (29)
and Proposition 4, for n large enough µn is of the form

µn = C1(γ)n . (30)

Second step: let us prove that, for an appropriate choice of Cn, the third
inequality of (24) holds. Since

W ′n(xn) = −Cnµn(γ + 1)xγne
−µnxγ+1

n ,

the third inequality of (24) is equivalent to

Cn >
λne

µnx
γ+1
n

(γ + 1)µnx
γ− 1

2
n

.
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Therefore, it is sufficient to choose

Cn :=
2λne

µnx
γ+1
n

(γ + 1)µnx
γ− 1

2
n

. (31)

Third step: let us prove condition (22). Thanks to Lemma 1, (25), (30) and
(31), for every n > n∗,

e2λnT

λn

∫ b

a

vn(x)2dx 6 e2λnT

λn

∫ b

a

Wn(x)2dx 6 e2λnT

λn
Wn(a)2

6 e2λnT

λn
C2
ne
−2µna

1+γ 6 e2λnT

λn

4λ2
ne

2µnx
γ+1
n

(γ + 1)2µ2
nx

2γ−1
n

e−2µna
1+γ

.

By identities (23), (30) and Proposition 4, we have

µnx
γ+1
n 6 C2(γ) ∀n ∈ N∗ ,

thus
e2λnT

λn

∫ b

a

vn(x)2dx 6 e2n(λnn T−C1(γ)a1+γ) 4λne
2C2(γ)

(γ + 1)2µ2
nx

2γ−1
n

. (32)

Since γ > 1, we deduce from Proposition 4 that

λn
n
→ 0 as n→ +∞ .

So, for every T > 0, there exists n] > n∗ such that, for every n > n],

λn
n
T − C1(γ)a1+γ < −1

2
C1(γ)a1+γ . (33)

Then, inequality (32) yields condition (22) (since the term that multiplies the
exponential behaves like a rational fraction of n).

2.3.3 Proof of Theorem 6 for γ = 1

In this section, we take γ = 1 and keep the abbreviated forms λn , vn for
λn,γ , vn,γ introduced in Section 2.2. When T < a2

2 , we can easily deduce from
the following lemma that (22) holds; thus, system (19) is not observable in (a, b)
uniformly with respect to n ∈ N∗.

Lemma 2. Let a and b be real numbers such that 0 < a < b 6 1. Then

λn ∼ nπ (34)

and ∫ b

a

vn(x)2dx ∼ e−a
2nπ

2aπ
√
n
. (35)

as n→ +∞.

This Lemma is proved by approximating vn(x) thanks to the Gaussian func-
tion G(x) := e−

x2

2 , which is the first eigenvector of −∂2
x + x2 on the real line.
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2.4 Proof of the positive statements of Theorem 1
The goal of this section is the proof of the following results:

• if γ ∈ (0, 1), then system (1) is null controllable in any time T > 0,

• if γ = 1 and ω = (a, b) × (0, 1), with 0 < a < b 6 1, then there exists
T1 > 0 such that system (1) is null controllable in any time T > T1 or,
equivalently, system (7) is observable in ω in any time T > T1.

The proof of these results relies on a new global Carleman estimate for
solutions of (19), stated in the next section.

2.4.1 A global Carleman estimate

For n ∈ N∗, we introduce the operator

Png :=
∂g

∂t
− ∂2g

∂x2
+ (nπ)2|x|2γg.

Proposition 5. Let γ ∈ (0, 1] and let a, b ∈ R be such that 0 < a < b 6 1.
Then there exist a weight function β ∈ C1([−1, 1];R∗+) and positive constants
C1, C2 such that for every n ∈ N∗, T > 0, and g ∈ C0([0, T ];L2(−1, 1)) ∩
L2(0, T ;H1

0 (−1, 1)) the following inequality holds

C1
∫ T

0

∫ 1

−1

(
M

t(T−t)
∣∣ ∂g
∂x (t, x)

∣∣2 + M3

(t(T−t))3
∣∣g(t, x)

∣∣2
)
e−

Mβ(x)
t(T−t) dxdt

6
∫ T

0

∫ 1

−1
|Png|2e−

Mβ(x)
t(T−t) dxdt+

∫ T
0

∫ b
a

M3

(t(T−t))3 |g(t, x)|2e−
Mβ(x)
t(T−t) dxdt

(36)

where M := C2 max{T + T 2;nT 2}.
Remark 2. In the case of γ ∈ [1/2, 1], our weight β will be the classical one.
On the other hand, for γ ∈ (0, 1/2) we follow the strategy of [1, 11, 37], adapting
the weight β to the nonsmooth coefficient |x|2γ .

2.4.2 Uniform observability

The Carleman estimate of Proposition 5 allows to prove the following uniform
observability result.

Proposition 6. Let γ ∈ (0, 1) and let a, b ∈ R be such that 0 < a < b < 1.
Then there exists C > 0 such that for every T > 0, n ∈ N∗, and g0,n ∈ L2(−1, 1)
the solution of (19) satisfies

∫ 1

−1

gn(T, x)2dx 6 T 2e
C

(
1+T

− 1+γ
1−γ

) ∫ T

0

∫ b

a

gn(t, x)2dxdt.

Let us recall that explicit bounds on the observability constant of the heat
equation with a potential are already known, but not sufficient in our situation
(see, for instance [23, Theorem 1.3], [16, Theorem 2.3], [18]).

Proof of Proposition 6: We derive an explicit observability constant from
the Carleman estimate of Proposition 5. For t ∈ (T/3, 2T/3), we have

4

T 2
6 1

t(T − t) 6 9

2T 2
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and ∫ 1

−1

g(T, x)2dx 6
∫ 1

−1

g(t, x)2dxe−λn
T
3 .

Thus,

C1
64M3

T 6
e−

9Mβ∗
2T2

T

3
eλn

T
3

∫ 1

−1

g(T, x)2dx 6 C3
∫ T

0

∫ b

a

g(t, x)2dxdt

where β∗ := max{β(x) : x ∈ [−1, 1]}, β∗ := min{β(x) : x ∈ [−1, 1]} and
C3 := max{x3e−β∗x}. Using the inequality M > C2[T + T 2] and Proposition 4,
we get ∫ 1

−1

g(T, x)2dx 6 C4T 2ec1
M
T2−c2n

2
1+γ T

∫ T

0

∫ b

a

g(t, x)2dxdt (37)

for some constants c1, c2, C4 > 0 (independent of n, T and g).

First case: n < 1 + 1
T . Then, M = C2(T + T 2) thus

∫ 1

−1

g(T, x)2dx 6 C4T 2ec1C2(1+ 1
T )
∫ T

0

∫ b

a

g(t, x)2dxdt.

Second case: n > 1 + 1
T . Then, M = C2nT 2. The maximum value of the

function x 7→ c1C2x − c2x
2

1+γ T on (0,+∞) is of the form c3T
− 1+γ

1−γ for some
constant c3 > 0 (independent of T ). Thus,

∫ 1

−1

g(T, x)2dx 6 C4T 2ec3T
− 1+γ

1−γ
∫ T

0

∫ b

a

g(t, x)2dxdt.

This gives the conclusion. 2

In the case of γ = 1, we also have the following result.

Proposition 7. Assume γ = 1. Let a, b ∈ R be such that 0 < a < b < 1. Then
there exists T1 > 0 such that, for every T > T1, system (19) is observable in
(a, b) in time T uniformly with respect to n ∈ N∗.

Proof of Proposition 7: One can follow the lines of the previous proof until
(37). Then, for n > 1 + 1

T , we have M = C2nT 2. Thus,
∫ 1

−1

g(T, x)2dx 6 C4T 2e[c1C2−c2T ]n

∫ T

0

∫ b

a

g(t, x)2dxdt.

This proves Proposition 7 with T1 := c1C2/c2. 2

2.4.3 Construction of the control function for γ ∈ (0, 1)

The goal of this section is the proof of null controllability in any time T > 0 for
γ ∈ (0, 1). Our construction of the control steering the initial state to zero is
the one of [8], which is in turn inspired by [33] (see also [34]).

For n ∈ N∗, we define ϕn(y) :=
√

2 sin(nπy) and Hn := L2(−1, 1) ⊗ ϕn,
which is a closed subspace of L2(Ω). For j ∈ N, we define Ej := ⊕n62jHn and
denote by ΠEj the orthogonal projection onto Ej .

Karine Beauchard

XXXIV–14



Proposition 8. Let γ ∈ (0, 1), and let a, b, c, d ∈ R be such that 0 < a < b < 1
and 0 < c < d < 1. Then there exists a constant C > 0 such that for every
T > 0, every j ∈ N∗, and every g0 ∈ Ej the solution of (8) satisfies

∫

Ω

g(T, x, y)2dxdy 6 T 2e
C

(
2j+T

− 1+γ
1−γ

) ∫ T

0

∫

ω

g(t, x, y)2dxdydt

where ω := (a, b)× (c, d).

For the proof of Proposition 8 we shall need the following inequality obtained
in [33] (see also [34]).

Proposition 9. Let c, d ∈ R be such that c < d. There exists C > 0 such that,
for every L ∈ N∗ and (bk)16k6L ∈ RL,

L∑

k=1

|bk|2 6 eCL
∫ d

c

∣∣∣∣∣
L∑

k=1

bkϕk(y)

∣∣∣∣∣

2

dy.

Proof of Proposition 8: Let (g0,n)16n62j ∈ L2(−1, 1)2j be such that

g0(x, y) =

2j∑

n=1

g0,n(x)ϕn(y) .

Then the solution of (8) is given by

g(t, x, y) =

2j∑

n=1

gn(t, x)ϕn(y)

where, for every n ∈ N∗, gn is the solution of (19). Applying Propositions 6
and 9, and recalling that (ϕn)n∈N∗ is an orthonormal sequence of L2(0, 1), we
deduce

∫
Ω
g(T, x, y)2dxdy =

2j∑
n=1

∫ 1

−1
gn(T, x)2dx

6 T 2e
C

(
1+T

− 1+γ
1−γ

)
2j∑
n=1

∫ T
0

∫ b
a
gn(t, x)2dxdt

6 T 2e
C

(
2j+T

− 1+γ
1−γ

)
∫ T

0

∫ b
a

∫ d
c

∣∣∣∣∣
2j∑
n=1

gn(t, x)ϕk(y)

∣∣∣∣∣

2

dydxdt

= T 2e
C

(
2j+T

− 1+γ
1−γ

)
∫ T

0

∫
ω
g(t, x, y)2dxdydt ,

where the constant C may change from line to line. 2

Let T > 0 and f0 ∈ L2(Ω). We now proceed to construct a control u ∈
L2(0, T ;L2(Ω)) such that the solution of (1)-(5) satisfies f(T, ·) ≡ 0. Fix ρ ∈ R
with

0 < ρ <
1− γ
1 + γ

(38)
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and let K = K(ρ) > 0 be such that K
∑∞
j=1 2−jρ = T . Let (aj)j∈N be defined

by {
a0 = 0

aj+1 = aj + 2Tj , j > 0 ,

where Tj := K2−jρ for every j ∈ N. We now define the control u in the following
way. On [aj , aj + Tj ], we apply a control u such that ΠEjf(aj + Tj , ·) = 0 and

‖u‖L2(aj ,aj+Tj ;L2(Ω)) 6 Cj‖f(aj , ·)‖L2(Ω)

where, in view of Proposition 8,

Cj := eC
(

2j+T
− 1+γ

1−γ
j

)
.

Observe that, in light of (16),

‖f(aj + Tj , ·)‖L2(Ω) 6 (1 +
√
TjCj)‖f(aj , ·)‖L2(Ω).

Then, on the interval [aj +Tj , aj+1] we apply no control in order to take advan-
tage of the natural exponential decay of the solution, thus obtaining

‖f(aj+1, ·)‖L2(Ω) 6 e−λ2jTj‖f(aj + Tj , ·)‖L2(Ω) ,

where λn is defined in (21). Combining the above inequalities, we conclude that

‖f(aj+1, ·)‖L2(Ω) 6 exp
( 2j∑

k=1

[
ln(1 +

√
TkCk)− C(2k)

2
1+γ Tk

])
‖f0‖L2(Ω) .

The choice of ρ ensures that the sum in the exponential diverges to −∞ as
j → +∞, forcing f(T, ·) ≡ 0. The fact that u ∈ L2(0, T ;L2(Ω)) can be checked
by similar arguments. 2

2.4.4 End of the proof of Theorems 1 and 3

Let ω be an open subset of (0, 1) × (0, 1). There exists a, b, c, d ∈ R with
0 < a < b < 1, 0 < c < d < 1 such that (a, b)× (c, d) ⊂ ω.

The first (resp. third) statement of Theorem 3 has been proved in Sec-
tion 2.4.3 (resp. Section 2.3); let us prove the second one.

Let us consider γ = 1 and ω = (a, b)× (0, 1). From Proposition 7, we deduce
that (7) is observable in ω in any time T > T1. From Theorem 6, we deduce that
for any time T < a2

2 , (7) is not observable in ω in time T . Thus, the quantity

T ∗ := inf{T > 0 ; system (7) is observable in ω in time T }

is well defined and belongs to [a
2

2 ,+∞). Clearly, observability in some time T]
implies observability in any time T > T], so

• for every T > T ∗, (8) is observable in ω in time T ,

• for every T < T ∗, (8) is not observable in ω in time T .

Karine Beauchard

XXXIV–16



3 Proof of Theorem 2 for Kolmogorov-type op-
erators

3.1 With γ = 1 and periodic-type boundary conditions
First, let us recall the following well posedness result, for the Cauchy-problem
(2)-(3).

Proposition 10. Let T > 0, f0 ∈ L2(Ω) and u ∈ L2((0, T ) × Ω). There
exists a unique solution f ∈ C0([0, T ], L2(Ω)) of the Cauchy problem (2)-(3)-
(6). Moreover, if u ≡ 0, the Fourier components

fn(t, v) :=

∫

T
f(t, x, v)e−inxdx, t ∈ (0,+∞), v ∈ (−1, 1), n ∈ Z

satisfy

‖fn(t, .)‖L2(−1,1) 6 ‖fn(0, .)‖L2(−1,1)e
−n2t3

12 ,∀t > 0, n ∈ Z.

The proof of Theorem 2 for Kolmogorov equation with γ = 1 and periodic-
type boundary conditions is the same as the proof of Theorem 1 for Grushin
equation with γ ∈ (0, 1). There are 2 key points. The first one is the explicit
exponential rate of the Fourier components emphasized in the previous lemma.
The second one is the following global Carleman estimate for the operator

Pn,γg := ∂tg + invγg − ∂2
vg, n ∈ Z, γ ∈ N∗.

Proposition 11. We assume γ ∈ N∗ (resp. γ = 1). Let a, b be such that
−1 < a < b < 1. There exist a weight function β ∈ C1([−1, 1],R∗+), pos-
itive constants C1, C2 such that, for every n ∈ Z, γ ∈ {1, 2}, T > 0 and
g ∈ C0([0, T ], L2(−1, 1))∩L2(0, T ;H1

0 (−1, 1)) (resp. g ∈ C0([0, T ], L2(−1, 1))∩
L2(0, T ;H1(−1, 1)) such that g(t,−1) = g(t, 1)ei2n(T−t) and
∂vg(t,−1) = ∂vg(t,+1)ei2n(T−t)) the following inequality holds

C1
∫ T

0

∫ 1

−1

(
M

t(T−t)
∣∣∂g
∂v (t, v)

∣∣2 + M3

(t(T−t))3
∣∣g(t, v)

∣∣2
)
e−

Mβ(v)
t(T−t) dvdt

6
∫ T

0

∫ 1

−1
|Pn,γg|2e−

Mβ(v)
t(T−t) dvdt+

∫ T
0

∫ b
a

M3

(t(T−t))3 |g(t, v)|2e−
Mβ(v)
t(T−t) dvdt

(39)

where M := C2 max{T + T 2;
√
|n|T 2}.

The proof of this estimate is classical (see [26]): our weight β is the usual one.
We only track carefully the behavior with respect to n of the different constants.

Then, for the construction of the control function, one may conclude with a
parameter ρ such that

0 < ρ <
1

3
.

This approach works because the dissipation speed (n2) in Proposition 10
is stronger than the cost (

√
|n|) provided by Proposition 5, and also stronger

than the constant (n) in the Lebeau-Robbiano Lemma (see Proposition 9).
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3.2 With γ = 2 and Dirichlet boundary conditions
In this paragraph, γ ∈ {1, 2}. Let

V := {f ∈ C∞(T× (−1, 1));∃K ⊂ (−1, 1) compact s.t. Supp(f) ⊂ T×K}.

For f ∈ V, we define

|f |V :=

(∫

Ω

|∂vf(x, v)|2dxdv
)1/2

and V := Adh|.|V (V). We define the operator Aγ by

D(Aγ) := {f ∈ V ;−∂2
vf + vγ∂xf ∈ L2(Ω)},

Aγf := −∂2
vf + vγ∂xf.

First, let us recall the following well posedness result.

Proposition 12. Let γ ∈ {1, 2}. For every T > 0, u ∈ L2((0, T ) × Ω), f0 ∈
L2(Ω) there exists a unique weak solution f ∈ C0([0, T ], L2(Ω)) ∩ L2((0, T ), V )
of (2)-(4)-(6). Moreover, f(t) ∈ D(Aγ) and ∂tf(t) ∈ L2(Ω) for a.e. t ∈ (0, T ).

The proof of Theorem 2 for the Kolmogorov equation with γ = 2, Dirichlet
boundary conditions

• and a < 0 < b may be proved with a classical cut-off argument (see [6] for
more details),

• and 0 < a < b < 1 is the same as the one of Theorem 1 for Grushin-type
equations with γ = 1.

Here, we only state the key point in the proof of the positive result when 0 <
a < b < 1.

Proposition 13. We assume γ = 2. There exists K, δ > 0 such that, for every
n ∈ Z− {0} and g0,n ∈ H1(−1, 1), the solution of





∂tgn − invγgn − ∂2
vgn = 0, (t, v) ∈ (0,+∞)× (−1, 1),

gn(t,±1) = 0, t ∈ (0,+∞),
gn(0, v) = g0,n(v), v ∈ (−1, 1),

(40)

satisfies
∫ 1

−1

|gn(t, v)|2dv 6 Ke−δ
√
|n|t
∫ 1

−1

( 1√
n
|∂vg0,n(v)|2 +

√
n|vg0,n(v)|2

)
dv,∀t > 0.

This Proposition is proved with strict Lyapunov functions inspired from
[43]. Note that this statement allows to prove Theorem 4 with γ = 2 and
ω = T× (a, b), 0 < a < b < 1 because the dissipation

√
|n|T (in Proposition 13)

is stronger than the cost
√
|n| (in Proposition 11) in time T large enough. How-

ever, it is not stronger than the constant (|n|) of Lebeau-Robbiano’s Lemma,
thus we cannot conclude with an arbitrary control location ω.

The proof of Proposition 13 relies on the following result.
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Proposition 14. There exists A,B,C, δ > 0 with B2 < AC such that, for every
L > 0 and h0 ∈ H1(−L,L), the solution of





∂τh = ∂2
yh+ iy2h , (τ, y) ∈ (0,+∞)× (−L,L) ,

h(τ,±L) = 0 , τ ∈ (0,+∞) ,
h(0, y) = h0(y) , y ∈ (−L,L) ,

(41)

satisfies
L(t) 6 L(0)e−δτ ,∀τ > 0, (42)

where

L(τ) =

L∫

−L

(
|h(τ, y)|2 +A|∂yh(τ, y)|2 − 2B=[yh(τ, y)∂yh(τ, y)] + C|yh(τ, y)|2

)
dy.

Proof of Proposition 14: This proof is inspired from [43]. Let A,B,C > 0
be such that

B2 < AC and A2 + C2 <
B

2
(43)

(for instance A = εÃ, B = εB̃, C = εC̃ for any Ã, B̃, C̃, ε > 0 such that
B̃2 < ÃC̃ and ε(Ã2 + C̃2) < B̃/2). Easy computations give

1
2
dL
dτ = −3B‖yh‖2 − ‖∂yh‖2 − C‖y∂yh‖2 −A‖∂2

yh‖2
+C‖h‖2 − 2A=

[∫ L
−L y∂yhh

]
− 2B=

[∫ L
−L y∂

2
yh∂yh

]
.

Thanks to the following inequalities

C‖h‖2 6 2C‖yh‖‖∂yh‖ 6 B
2 ‖yh‖2 + 2C2

B ‖∂yh‖2,
−2A=

[∫ L
0
y∂yhh

]
6 B

2 ‖yh‖2 + 2A2

B ‖∂yh‖2,
−2B=

[∫ L
0
y∂2
yh∂yh

]
6 A‖∂2

yh‖2 + B2

A ‖y∂yh‖2,

we get
1

2

dL
dτ

6 −2B‖yh‖2 −
(

1− 2(A2 + C2)

B

)
‖∂yh‖2.

Thanks to (43), there exists δ > 0 (independent of L) such that dL
dτ 6 −δL,

which gives the conclusion. 2

Proof of Proposition 13: One may assume that n > 0, otherwise, consider
gn. In order to simplify the notations, we write g, instead of gn. The function
h(τ, y) defined by

g(t, v) = h(
√
nt, 4
√
nv)

satisfies (41) with L = 4
√
n and h0(y) := g0,n(y/ 4

√
n). From the previous propo-

sition, we know that

L̃(t) =

1∫

−1

(
|g(t, v)|2+

A√
n
|∂vg(t, v)|2−2B=[vg(t, v)∂vg(t, v)]+C

√
n|vg(t, v)|2

)
dv
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satisfies L̃(t) 6 L̃(0)e−δ
√
nt. Moreover, using (43) and

‖g‖2 6 2‖vg‖‖∂vg‖ 6
√
n‖vg‖2 +

1√
n
‖∂vg‖2

we get

L̃(0) 6
∫ 1

−1

(
2A+ 1√

n
|∂vg0(v)|2 + (2C + 1)

√
n|vg0(v)|2

)
dv.

Thus
∫ 1

−1
|gn(t, v)|2dv 6 L̃(t)

6 L̃(0)e−δ
√
nt

6 K
∫ 1

−1

(
1√
n
|∂vg0(v)|2 +

√
n|vg0(v)|2

)
dve−δ

√
nt

where K := max{2A+ 1; 2C + 1}. 2

3.3 With γ = 1 and Dirichlet boundary conditions
The key point of the proof of Theorem 2 for the Kolmogorov equation with
γ = 1 and Dirichlet boundary conditions is the following result.

Proposition 15. We assume γ = 1. There exists K, δ > 0 such that, for every
n ∈ Z− {0} and g0,n ∈ H1(−1, 1), the solution of (40) satisfies

‖gn(t)‖L2(−1,1) 6 Ke−δ|n|
2/3t‖g0,n‖H1(−1,1), ∀t > 0. (44)

Moreover, the power “2/3”in the exponential rate is optimal as n → +∞, and
necessarily δ 6 µ

2 , where µ is the first zero (from the right) of Airy function in
the half line (−∞, 0).

The first statement is proved in [4] with a strict Lyapunov function inspired
from [43]. The second statement is related to the study of the complex Airy
operator performed in [3].

4 Conclusion and open problems
In this article we have studied the null controllability of

• the Grushin type equation (1),in the rectangle Ω = (−1, 1)× (0, 1),

• the Kolmogorov equation (2), in the rectangle Ω = T× (−1, 1),

with a distributed control localized on an open subset ω of Ω.

For Grushin-type operators, we have proved that null controllability:

• holds in any positive time, when degeneracy is not too strong, i.e. γ ∈
(0, 1),

• holds only in large time, when γ = 1 and ω is a strip parallel to the y-axis,
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• does not hold when degeneracy is too strong, i.e. γ > 1.

Null controllability when γ = 1, T is large enough, and the control region
ω is more general is an open problem. When γ = 1, it would be interesting to
characterize the minimal time T ∗ required We conjecture that T ∗ = a2

2 . The
technique of this paper should possibly extend to higher dimensional cylindrical
domains of the form (−1, 1) × (0, 1)m. However, the generalization of this re-
sult to other muldimensional configurations (including x ∈ (−1, 1)n, y ∈ (0, 1)m

with m,n > 1) or boundary controls, is widely open.

For Kolmogorov-type equations, we have proved that null controllability:

• holds in any positive time, with γ = 1 and Dirichlet boundary conditions
in v,

• holds in any positive time, when γ = 1, ω is a strip parallel to the x-axis
and with Dirichlet boundary conditions in v,

• holds only in large time, when γ = 2 and ω = T× (a, b), 0 < a < b < 1.

The following questions are still open.

1. When γ > 2, does null controllability hold? In [5], the proof of the non
uniform observability relies on a comparison argument (maximum princi-
ple), which cannot be used here because the 1D heat equation has complex
valued coefficients.

2. When γ = 2, what is the value of the minimal time T ∗? We conjecture
that T ∗ = a2/2.

3. With γ = 1 and Dirichlet boundary conditions in v, does null controlla-
bility hold with an arbitrary control support ω?

4. Is it possible to extend these results to multidimensional configurations?
The technique of this paper should possibly extend to cylindrical domains
of the form T × (−1, 1)m. However, the generalization to more general
configurations or boundary controls, is widely open.
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