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ASYMPTOTIC STABILITY FOR SELF-SIMILAR BLOWUP OF
MASS-SUPERCRITICAL NLS

ZEXING LI

Abstract. We consider self-similar blowup for (NLS) i∂tu+∆u+ u|u|p−1 = 0
in d ≥ 1, focusing on the slightly mass-supercritical range 0 < sc := d

2
− 2

p−1
≪ 1.

The existence and stability of such dynamics [39] and construction of suitable
profiles [1] lead to the question of asymptotic stability. In this note, we review
the background and recent results [25, 26, 27] on the asymptotic stability, with
particular emphasis on mode stability and linear stability.

1. Introduction

The focusing nonlinear Schrödinger equation

i∂tu+∆u+ u|u|p−1 = 0, u : Rt × Rd
x → C, (NLS)

describes nonlinear propagation phenomena in physics including electromagnetic
beams and Langmuir waves in plasma. The singularity here is termed filamentation
or collapse [31, 47]. Mathematically, (NLS) is a fundamental nonlinear dispersive
equation that admits linear dispersion and nonlinear soliton behavior. Compared
with semilinear heat or wave equations, singularity formation for (NLS) is more
challenging due to its system nature and more subtle dispersive decay.

In this note, we will discuss the self-similar singularity in the mass-supercritical
and energy-subcritical setting, based on the works [25, 26, 27].

1.1. Preliminaries on NLS and its blowup.
Symmetry, conservation laws and criticality. The nonlinear Schrödinger equation

has a (2d + 2)-dimensional symmetry group related to space translation, phase
rotation, scaling and Galilean invariance

ũ(t, x) := λ2/p−1u(λ2t, λx− λ2tv − x0)e
i

(
λx·v
2

−λ2|v|2
4

t+γ0

)

; (1.1)

and the mass and energy functionals

M(u(t)) = ∥u(t)∥2L2 , E(u(t)) =
1

2
∥∇u(t)∥2L2 −

1

p+ 1
∥u(t)∥p+1

Lp+1 ,

are formally conserved by the flow. In particular, the scaling symmetry u 7→ uλ :=

λ
2

p−1u(λ2t, λx) for λ > 0 implies the critical L2-based space

∥uλ(t)∥Ḣsc = ∥u(λ2t)∥Ḣsc for sc :=
d

2
− 2

p− 1
. (1.2)

The case sc = 0 or 1 is referred to as mass-critical or energy-critical respectively.

Ground state. Let us mention one important nonlinear feature of (NLS): the
existence of ground state solutions. For (NLS) with sc < 1, there exists a unique
positive, radial H1 solution of the nonlinear elliptic equation

∆Q−Q+Q|Q|p−1 = 0,
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and then u(t, x) = Q(x)eit becomes a time-periodic special solution of (NLS).
We call Q the ground state of (NLS).

Long-time dynamics: Global well-posedness and blowup. In mass-subcritical case
sc < 0, the mass and energy conservation laws plus a simple Gagliardo-Nirenberg
interpolation imply a uniform a priori H1 bound, resulting in global well-posedness
of (NLS). For the mass-(super)critical case sc ≥ 0, singularity could appear from
regular initial data. It is proven by a convexity argument based on the Virial
identity, a special algebraic structure of (NLS). Nevertheless, this argument does not
provide any detailed characterization of blowup (profile, blowup rate, asymptotics).

Type I and Type II blowup. A general a priori lower bound on the blowup rate
can be derived from the local well-posedness theory and scaling invariance. For
0 ≤ sc < 1, all blowup solutions satisfy [6]

∥u(t)∥Ḣσ ≳ (T − t)−(σ−sc)/2 (1.3)

for every sc < σ ≤ 1.1 We call a blowup solution self-similar or type I if it saturates
the self-similar law

∥u(t)∥Ḣσ ∼ (T − t)−(σ−sc)/2, sc < σ ≤ 1, (1.4)

and otherwise type II if the norm blows up strictly faster than (1.4).

1.2. Type I blowup for NLS. From now on, we will focus on the self-similar
blowup in mass-supercritical and energy-subcritical range

0 < sc < 1.

We also mention that Type II solutions have been constructed both in the critical
case sc = 0, [41, 34, 36, 32, 33, 35, 42], and the supercritical case through the
derivation of “ring" solutions which concentrate on a circle, [17, 43, 40, 20]. We refer
to [44] as a comprehensive survey.

1.2.1. Motivation: Existence and stability of Type I blowup. With an increasing
interest in the wave collapse, particularly for the 3D cubic (NLS) as a limit of
Zakharov system for Langmuir waves in plasmas, there have been many numerical
investigations on the Type I blowup [31, 24, 23, 47, 50], which strongly suggests the
existence and stability of Type I profile in the range 0 < sc < 1. Moreover, this
seems to be the only possible regime of singularity formation via bubbling at one
point, because of an a priori log lower bound in the critical norm Lpc ⊃ Ḣsc

∥u(t)∥Lpc ≥ |log(T − t)|γ , as t → T, (1.5)

for any radial blowup solution to (NLS) proven by Merle-Raphaël [37]. Here the
constant γ = γ(d, p) is universal, while the sharp constant is unclear even formally.
Notice that a Type II bubbling is expected to have uniformly bounded critical norm
due to the localization of the blowup profile.

The first rigorous construction result regarding Type I blowup for (NLS) was
obtained by Merle-Raphaël-Szeftel [39]. They proved the existence and stability in
slightly supercritical range 0 < sc ≪ 1 by bifurcating the log-log analysis of the
mass-critical case [32, 36].

1That is a formal manifestation of the concentration rate λ(t) ∼ (T − t)1/2 due to the scaling
∂t ∼ ∆x, supposing u(t) has the asymptotic form u(t) ≈ λ(t)−2/(p−1)W (·/λ(t)) for some profile
W ∈Ḣσ.

Zexing Li

XVII–2



Theorem 1.1 (Existence and stability of self-similar blowup for sc ≪ 1, [39]). For
1 ≤ d ≤ 10, 0 < sc ≪ 1, there exists an open set of initial data in H1 s.t.

u(t, x) = λ(t)−2/(p−1)(Q+ ε(t))

(
x− x(t)

λ(t)

)
eiγ(t), (1.6)

with
λ(t) ∼ (T − t)−1/2, ∥∇ε(t)∥L2 ≤ δ

for some δ ≪ 1. Moreover, there exists u∗ ∈ Hσ for σ ∈ [0, sc), u∗ /∈ Hsc such that

u
t→T−−−→ u∗ in Hσ, ∀σ with 0 ≤ σ < sc.

To identify this as a type I blowup, we can derive from the decomposition (1.6),
behavior of λ(t) and smallness of ε(t) in Ḣ1 that the self-similar law (1.4) holds for
u(t) with σ = 1. The open set of initial data leading to this dynamics is referred
to as stability, and the last property confirms the existence of a limiting profile
in subcritical topology (where the singularity is invisible). Moreover, the ground
state Q serves as a rough approximate self-similar profile.

However, since Q is merely an approximate profile, the perturbation ε(t) does
not vanish as t → T . That opens the question of sharp description of this blowup
scenario, which involves two questions:

(1) Existence of an exact self-similar profile Qb: Qb is a stationary solution of
(1.8).

(2) Asymptotic stability of such self-similar profile: u = (Qb+ε(t))λ(t)e
iγ(t) with

ε(t) → 0 in some topology.
We remark that these questions can be asked for the slightly supercritical range

0 < sc ≪ 1, or more generally, the full intercritical range 0 < sc < 1.

1.2.2. Question 1: existence of self-similar profile. To extract the self-similar profile,
we rewrite the equation in self-similar coordinates. More precisely, for (NLS), the
self-similar renormalization

u(t, x) =
eiγ(t)

(λ(t))2/(p−1)
v (τ, y)

where

λ(t) =
√
2b(T − t), γ(t) = τ(t), τ(t) = − 1

2b
ln(T − t), y =

x

λ(t)
(1.7)

with b > 0 as a constant. This maps (NLS) onto the renormalized flow

i∂τv +∆v − v +
ib

2

(
2

p− 1
v + y · ∇v

)
+ v|v|p−1 = 0. (1.8)

Then the self-similar profile will be a finite-energy stationary solution of (1.8).

Conjecture 1.2 (Existence of suitable self-similar profiles). Let d ≥ 1 and 0 <
sc < 1. Then there exists b > 0 and a smooth radially symmetric profile Qb with the
following properties.

(i) Equation: Qb is a stationary solution to (1.8):

∆Qb −Qb + ib

(
2

p− 1
Qb + y · ∇Qb

)
+Qb|Qb|p−1 = 0. (1.9)

(ii) Non-vanishing:
Qb(x) ̸= 0 ∀x ∈ Rd. (1.10)
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(iii) Self-similar decay:

lim
r→∞

r2/p−1|Qb(r)| = cd,sc > 0, lim sup
r→∞

r(p+1)/(p−1)|Q′
b(r)| < ∞. (1.11)

Remark 1.3. An ODE analysis of the linearization of (1.9) implies the behavior
(1.11) so that E(Qb) is well-defined. The tail behavior also yields Qb ∈ Ḣσ ⇔ σ > sc
and E(Qb) = 0. We further remark that the non-vanishing property is inherited
in (i) and (iii) by [48, Lemma 2.2].

Remark 1.4. We stress that the construction of self-similar profiles is central in the
study of singularity formation mechanisms and has been mostly addressed in the
energy supercritical case sc > 1, see [11] for the heat equation, [12] for the wave
equation, [19, 38] for compressible fluids and [15, 16, 8] for incompressible fluids.

The first rigorous existence result was obtained by Bahri-Martel-Raphaël [1] using
a ODE bifurcation argument from the mass-critical ground state, inspired from the
pioneering work [21] on generalized KdV equation.

Theorem 1.5 (Existence of suitable self-similar profile for 0 < sc ≪ 1, [1]). For
d ≥ 1, 0 < sc ≪ 1, Conjecture 1.2 holds true. In particular, Qb and b satisfy

b → 0, and Qb → Q in Ḣ1, as sc → 0. (1.12)

For bigger sc, extending this bifurcation branch is a delicate nonlinear ODE
problem. On the other hand, the latest progress came from Donninger-Shörkhuber
[14], who rigorously constructed the suitable profile for the physical scenario d =
p = 3 with computer assistance.

1.2.3. Question 2: Asymptotic stability. Using the profiles from Theorem 1.5, our
main result from [25, 26, 27] answers the asymptotic stability question in the same
slightly supercritical setting 0 < sc ≪ 1 as Theorem 1.1.

Theorem 1.6 (Asymptotical stability for sc ≪ 1, [25, 26, 27].). Let 1 ≤ d ≤ 10,
0 < sc ≪ 1 small enough and Qb with b = b(sc) be the self-similar profile from
Theorem 1.5. Then for 0 < σ − sc ≪ 1, there exists an open set of initial data
O ⊂ H1 such that its solution to (NLS) blows up at T = λ2

0/2b and satisfies

u(t, x) =
1

(λ2
0 − 2bt)1/(p−1)

(Qb + ε)

(
t,

x− x0√
λ2
0 − 2bt

)
e−i
[
ln(λ20/2b−t)

2b
+θ0
]
, (1.13)

with (λ0, x0, θ0) ∈ R× Rd × R. Moreover, we have the decay of perturbation as

∥ε(t)∥Ḣσ∩Ḣ1 ≲ (T − t)(σ−sc)/2, (1.14)

and there exists u∗ ∈ Ḣσ ∩ Ḣ1 and u∗ ∈ H σ̃ for every 0 ≤ σ̃ < sc such that

u(t)− 1

λ(t)2/(p−1)
Qb (x/λ(t)) e

iτ(t) → u∗ in Ḣσ ∩ Ḣ1 as t → T, (1.15)

u(t) → u∗ in H σ̃ as t → T. (1.16)

Remark 1.7. Comparing with Theorem 1.1, the scaling parameter λ(t) =
(
T−t
2b

)1/2
indicates the Type I nature, and with the exact profile Qb, we obtain the decay of
ε(t) in supercritical norm Ḣσ ∩ Ḣ1. Moreover, apart from the limiting profile u∗

in subcritical topology, we also show the existence of a limiting profile u∗ in super-
critical topology after removing the singularity. Thus, Theorem 1.6 verifies the
asymptotic stability of Qb in [1] and provides the sharp description of the blowup
regime in Theorem 1.1.
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Remark 1.8 (Regularity). The asymptotic stability also holds in Ḣσ topology for
any 0 < σ − sc ≪ 1, which is almost sharp in the homogeneous Sobolev space in
view of the regularity of Qb. However, the stability in critical topology Ḣsc is still
open.

Remark 1.9 (Dimension restriction). The restriction 1 ≤ d ≤ 10 follows from the
numerical verification of a spectral property, which was also used in Theorem 1.1.
See discussion in Section 2.2.2.

Remark 1.10 (Unconditional finite-codimensional asymptotic stability). For all
d≥1, 0 < sc < 1 and every admissible profile Qb satisfying the Conjecture 1.2,
a similar finite-codimensional asymptotic stability result holds true.

2. Ingredients of the proof of Theorem 1.6

In this section, we discuss the main ingredients of the proof of our main result,
Theorem 1.6.

Notice that the asymptotic stability of self-similar blowup for (NLS) is equivalent
to asymptotic stability of Qb as a stationary solution for the self-similar flow (1.8).
Our proof follows a straightforward linearization strategy:

(1) Set up: Rewriting the perturbation equation as

i∂τZ +HbZ = N(Z). (2.1)

(2) Mode stability [26, 27]: the only unstable directions of Hb are generated
from symmetry.

(3) Linear stability [25]: Strichartz estimate for eitHb .
(4) Nonlinear asymptotic stability [25].

For the semilinear equation (NLS), the nonlinearity can be controlled easily by
the Strichartz estimate (plus some technicalities about fractional derivatives and
localization). Thus we will mainly focus on the linear analysis, namely Step (2)
and (3) below.

2.1. Set up and basic linearization analysis. Let v = Qb + ε. Evolution of ε
in renormalized coordinates (τ, y):

i∂τε+∆bε− (1 + ibsc)ε+W1,bε+W2,bε+N(ε, ε) = 0

where N is the nonlinearity, the potential

W1,b =
p+ 1

2
|Qb|p−1, W2,b =

p− 1

2
|Qb|p−3Q2

b ,

decay as r−2 near infinity, and the deformed Laplacian is

∆b = ∆+ ib

(
d

2
+ y · ∇

)
= e−ib|x|2/4 ◦

(
∆+

b2|x|2
4

)
◦ eib|x|2/4. (2.2)

Let Z =
(
ε
ε

)
, then Z satisfies (2.1) with the linearized operator

Hb =

(
∆b − 1

−∆−b + 1

)
− ibsc +

(
W1,b W2,b

−W 2,b −W1,b

)
. (2.3)

Self-similar propagation. To understand the linearized operator Hb, we begin by
analyzing the deformed Laplacian ∆b with b ̸= 0:

(1) Self-adjointness: ∆b=∆+ ib
(
d
2 + y ·∇

)
is self-adjoint in L2(Rd), σ(∆b)=R.

In particular, eit∆b forms a unitary semigroup on L2.
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(2) Ḣσ-semigroup decay : ∥eit∆b∥Ḣσ→Ḣσ = e−bσt, σ(∆b

∣∣
Ḣσ) = R+ ibσ.

(3) Self-similar dispersion: For 2 < p ≤ ∞,

∥eit∆b∥Lp′→Lp ≲d,p

{
|t|−(d/2−d/p) |t| ≤ |b|−1

(|b|−1e|bt|)−(d/2−d/p) |t| > |b|−1

These properties are formally evident from the definition (2.2) and the self-similar
renormalization process. Indeed, one can obtain an explicit representation formula
êit∆bu0(ξ) = ebdt/2û0(e

btξ)e−i((e2bt−1)/2b)|ξ|2 , which was first computed in [5]. We em-
phasize that the exponential improvement compared to eit∆ appears not only in the
semigroup decay when taking derivatives, but also in the dispersive estimate.

Lastly, we present two more important properties as standard corollaries of (3),
which will be crucially used in the proof of linear stability:

(4) Strichartz for eit∆b :
∥∥∥ebσte

∫ t
0 ei(t−s)∆bF (s)ds

∥∥∥
L
q′2
t Ẇ

σ,p′2
x

≲
∥∥∥ebσtF

∥∥∥
L
q1
t Ẇ

σ,p1
x

(2.4)

where σ ≥ 0 and (qi, pi) for i = 1, 2 satisfies

(q, p, d) ̸= (2,∞, d), (q, p) ∈
{
q ≥ 2, 2 < p ≤ ∞,

2

q
+

d

p
≥ d

2

}
∪ {(∞, 2)}. (2.5)

(5) Extended resolvent families: The resolvent of ∆b can be defined across the
real line as Lp′ → Lp (p > 2) operators.

R±
b (z) = ±i

∫ ∞

0
e±it∆be±itzdt, for ±ℑz > −bmin{d/2, 1}. (2.6)

We remark that these properties hold for arbitrary b ̸= 0.

2.2. Mode stability. From the property (1)-(2) and that relative compactness of
potential in Hb with respect to ∆b, we can obtain σess(Hb

∣∣
(Ḣσ)2

) = R+ib(σ−sc) for
σ > sc (see [25, Proposition 4.5]). Thereafter, the mode stability can be stated as

σdisc

(
H
∣∣
(Ḣσ(Rd))2

)
∩ {z ∈ C : ℑz < b(σ − sc)} = {0,−bi,−2bi}, (2.7)

with the corresponding Riesz projections has (d+ 2)-dimensional range, generated
by phase rotation, spatial translation, and scaling symmetry, respectively.

In [26, 27], we verify (2.7) for profiles in Theorem 1.5 with 1 ≤ d ≤ 10, 0 < sc ≪ 1
and 0 < σ − sc ≪ 1. Due to the asymptotics behavior (1.12) as sc → 0, the
operator Hb can be viewed as a bifurcation from H0, the linearized operator around
the ground state Q in mass-critical NLS

H0 =

(
∆− 1

−∆+ 1

)
+

(
W1 W2

−W2 −W1

)
(2.8)

W1 =
p0 + 1

2
Qp0−1, W2 =

p0 − 1

2
Qp0−1. (2.9)

Therefore, the main task is to show there are no other eigenmodes below the essential
spectrum σess(Hb) = R+ ib(σ − sc), which also requires a complete understanding
of the bifurcation of (2d + 4)-dimensional generalized kernel of H0

2 Although it is
strongly expected from the stability result [39], the spectrum is difficult to obtain
for the following reasons:

2In addition to the (2d + 2)-dimensional symmetry group (1.1), there is one special pseudo-
conformal symmetry in the mass-critical case sc = 0, which brings two more generalized
eigenmodes.
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(a) σ(H0

∣∣
(L2)2

) (b) σ(Hb

∣∣
(Ḣσ)2

)

Figure 1. Indication of the spectrum of H0 and Hb near the origin:
red line for σess, blue cross for eigenpairs in radial class, and green
circle for eigenpairs in first spherical class.

• The operator Hb is a non-self-adjoint matrix Hamiltonian. Even for sc = 0
case, H0 as the linearization around ground state, the characterization of
spectrum is open for d ≥ 2. The d = 1 case is proven in [22] using the
explicit formula for the ground state.

• Hb is a degenerate and non-relatively-bounded perturbation of H0, as man-
ifested by the drastic change of essential spectrum. That forbids the usual
Riesz projection argument plus Rouché’s theorem [22, 46].

• The scalar operator relates to Hb is no longer elliptic, and the system cannot
be anti-diagonalized like L± because Qb is C-valued. This causes great
trouble when constructing bifurcation modes as in [7].

To prove the mode stability (2.7), we divide the unstable spectral half-plane
{λ ∈ C : ℑλ < b(σ−sc)} into two parts depending on the absolute value of spectral
point: the low-energy part with |λ| ≤ δ0, and the high-energy part with |λ| ≥ δ0,
where δ0 ≪ 1 independent of sc. They are treated in [26] and [27] respectively with
different strategies, which we discuss below.

2.2.1. Low-energy spectrum. In this range, the (2d+4)-dim generalized kernel of H0

bifurcates with eigenvalues distributed on both sides of the essential spectrum.
Therefore, we consider a larger region {λ ∈ C : |λ| ≤ δ0 ≪ 1,ℑλ < 10b} to in-
clude all the bifurcated spectral points, and use ODE arguments to construct and
prove uniqueness of bifurcated eigenmodes.

Specifically, we decompose into spherical harmonic classes, on which (Hb−λ)Z=0
becomes an ODE system with a matrix Schrödinger operator after suitable conju-
gation:

(Hb,ν − λ)Φ = 0 (2.10)
where ν = l + (d− 1)/2 and

Hb,ν =

(
∂2
r − 1 +

b2r2

4
− ν2 − 1/4

r2

)
σ3 +

(
−ibsc +W1,b eibr

2/2W2,b

−e−ibr2/2W2,b −ibsc −W1,b

)
.

For each class l, we construct 4 admissible solutions to (2.10): f1,b,l(λ), f2,b,l(λ)
regular at 0 and g1,b,l(λ), g2,b,l(λ) admissible at +∞ (via WKB approximation).
Then the detection of eigenmodes becomes the matching problem between these
branches. Based on that, we brief main ideas of the three parts of proof:

Exp. no XVII— Asymptotic stability for self-similar blowup of mass-supercritical NLS
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(1) Existence of bifurcated eigenmodes: matching asymptotics. Motivated by
similar construction in the spectral problem related to Type II blowup [10, 9], we will
set up an asymptotic expansion ansatz with the coefficient depending nonlinearly
on λ, and solve for the residual term and λ by constructing families of interior
and exterior solutions, and matching asymptotics at x∗ ∼ |logb|. This is done in
[26, Lemma 6.1, Proposition 6.2]. In particular, we verify that both bifurcated
eigenvalues are stable.

(2) Uniqueness of bifurcated eigenmodes in low spherical classes: Jost function
argument. To detect the matching of interior and exterior branches for equation
(2.10), we define the Jost function as

Fb(λ) := det

( W[f1,b,l(λ), g1,b,l(λ)] W[f1,b,l(λ), g2,b,l(λ)]

W[f2,b,l(λ), g1,b,l(λ)] W[f2,b,l(λ), g2,b,l(λ)]

)
,

where W[f, g] = f · g′ − f ′ · g is the Wronskian of two fundamental solutions. Then
Fb(λ) is analytic w.r.t. λ and continuous w.r.t. b for

(b, λ) ∈ [0, b0]× {|λ| ≤ δl,ℑλ ≤ 10b}
for some δl ≪ 1 only depends on l. The Jost function characterizes the spectrum
in the following sense:

• λ is eigenvalue ⇔ Fb(λ) = 0.
• If Fb(λ) = 0, the vanishing order of Fb(λ) is the algebraic multiplicity of λ,

namely

min
n

{
∂λFb(λ)

∣∣
λ=λ0

̸= 0
}
= dim ∪k≥1

(
ker(Hb − λ)k

)
. (2.11)

Thereafter, the uniqueness of eigenvalue turns into continuity w.r.t. b of
the number of zeros (counting multiplicity) of analytic functions {Fb}0≤b≪1 in
{|λ| ≤ δl,ℑλ ≤ 10b}. This is proven in [26, Lemma 7.4] using elementary com-
plex analysis, which particularly avoids contour integration argument due to the
degeneracy of regions.

We remark that the application of Jost function is classical for self-adjoint op-
erators (see [45, Chap. XI, 8.E]), while for non-self-adjoint operators, its property
as an indicator of generalized eigenspace was claimed and exploited in the pioneer-
ing works by Buslaev and Perelman [4, 41]. In our case, we provide a direct and
elementary proof of (2.11) as [26, Lemma 7.2].

(3) Non-existence of bifurcated eigenmode in high spherical classes: almost free
asymptotics. For high spherical classes l ≫ 1, we show the potential −(ν2 − 1)/r2

from spherical Laplacian will dominate the potential W1,b, W2,b in the operator,
leading to interior and exterior admissible solutions asymptotically free and mis-
matching. We employ the Turán type estimates of modified Bessel functions [2]
in the interior region ([26, Lemma 3.3 (4)]) and construct new WKB approximate
solutions ([26, Section 4.2]) in the exterior region.

2.2.2. High-energy spectrum. Our goal is to prove non-existence of eigenvalue in the
high-energy spectrum {λ ∈ C : |λ| ≥ δ0,ℑλ < b(σ − sc)}. The ODE method for
low-energy spectrum seems less effective due to the large range of λ and the lack of
knowledge of σ(H0) to bifurcate from in d ≥ 2.

The overall strategy we applied is called linear Liouville argument, originated
from Martel-Merle [29, 28] on gKdV soliton stability. We consider eigenfunction as
stationary solution of the linear evolution, so as to apply modulation argument and
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nonlinear dynamical control to prove its rigidity. The controlling laws are energy
and Virial identities for the linearized flow, which were also used in the proof of
Theorem 1.1. We stress that the coercivity of Virial commutator was proven with
numerical help in [34, 18, 49] for 1 ≤ d ≤ 10.

To give some flavor of the linear Liouville argument, we sketch the proof of mode
stability of H0 (2.8) with 1 ≤ d ≤ 10 [27, Theorem 1.1], and comment on the
adaption to Hb.

Suppose Z0 ∈ (L2)2 solves H0Z0 = λZ0 with λ ̸= 0. Then we have

Z0 ⊥ ∪k≥1 ker(H∗
0)

k, (2.12)

Consider its linear evolution

i∂tZ +H0Z = 0, Z
∣∣
t=0

= Z0, ⇒ Z(t) = eiλtZ0. (2.13)

We will show (2.12)-(2.13) imply Z0 ≡ 0⃗. By a standard anti-diagonalization of H0,
we can reformulate (2.12)-(2.13) as

u0 ⊥ Q, |x|2Q, xQ, w0 ⊥ Λ0Q,L−1
+ (|x|2Q),∇Q. (2.14)

∣∣∣∣
∂tu = L−w,
∂tw = −L+u,

∣∣∣∣
u = eiλtu0,
w = eiλtw0,

(2.15)

where L± = −∆+ 1−W1 ∓W2, and our aim becomes u0 = w0 = 0.
For the linear evolution (2.15), compute the energy identity

E(t) := (L+u, u)L2 + (L−w,w)L2 = e−2ℑλt [(L+u0, u0)L2 + (L−w0, w0)L2 ]

∂tE(t) = = −2ℜ(L+u, L−w) + 2ℜ(L−w,L+u) = 0,

and the Virial identity

I(t) := ℜ
∫

Rd

x ·
(
−∇u(t) · w(t) +∇w(t) · u(t)

)
dx

= −2ℜ(Λ0u,w)L2 = −2e−2ℑλtℜ(Λ0u0, w0)L2

∂tI(t) = −2ℜ(Λ0L−w,w)L2 − 2ℜ(Λ0u,−L+u)L2

= ([L−,Λ0]w,w)L2 + ([L+,Λ0]u, u)L2

= e−2ℑλt [([L−,Λ0]w0, w0)L2 + ([L+,Λ0]u0, u0)L2 ] .

Thereafter, it is easy to observe that the coercivity of quadratic forms in E(t) and
∂tI(t) under the corresponding orthogonal conditions (2.14) would imply u0=w0=0
for ℑλ ̸= 0 and ℑλ = 0 cases respectively. However, as proven in [34, 18, 49], the
coercivity of Virial commutator holds true under a different orthogonal condition3

u0 ⊥ Q,Λ0Q, xQ, w0 ⊥ Λ0Q,Λ2
0Q,∇Q. (2.16)

To resolve this, we naturally apply modulation argument to go back to the original
conditions (2.14) as in [34].

As for the adaptation to Hb case, the bΛ0 term brings the Virial commutator into
the time-derivative of energy, so that we only consider (weighted and truncated)
energy to apply the same coercivities.

Lastly, it is possible to formulate the whole argument in a time-independent way,
but it would greatly cost the clarity of the Virial identity, the modulation argument,
and the analysis for Hb.

3It is not true under (2.14) at least for d = 1 ([30, Section 4.2.3–4.2.4]).
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2.3. Linear stability. The main result of linear stability can be stated as the
following Strichartz estimate∥∥∥eb(σ−sc)te

∫ t
0 ei(t−s)HbPessF (s)ds

∥∥∥
L
q′2
t Ẇ

σ,p′2
x

≲
∥∥∥eb(σ−sc)tPessF

∥∥∥
L
q1
t Ẇ

σ,p1
x

(2.17)

where 0 < σ − sc ≪ 1, pi, qi satisfy the same requirement (2.5) as in (2.4), and
Pess = 1 − Pdisc is the Riesz projection onto essential spectrum of Hb

∣∣
Ḣσ . Notice

that if we decompose Hb as4

Hb = H̊b + V, H̊b =

(
∆b − 1

−∆−b + 1

)
− ibsc,

then eitH̊b satisfies (2.17) without Pess from the free Strichartz estimate (2.4). Hence
our goal is to generalize the free case by adding the non-self-adjoint potential V .

The core strategy is Beceanu’s approach [3] which originally serves for deriving
Strichartz estimate for matrix Schrödinger operator with non-self-adjoint potential.
Surprisingly, this abstract framework is robust enough to be adapted for our self-
similar flow in non-radial setting. We mention that Strichartz estimates were derived
by Donninger in the pioneering work [13] to control the flow around self-similar
blowup of nonlinear wave equations in the renormalized light cone under radial
symmetry.

We now sketch Beceanu’s framework adapted to our problem.
Step 1. Reduction to invertibility of a space-time operator. Consider the linear

evolution i∂tZ + HbZ = F with Hb = H̊b + V . Treating V Z as source term and
applying Duhamel’s formula yield

Z(t) = eitH̊bZ0 − i

∫ t

0
ei(t−s)H̊b(F − V Z)ds = U

(
δt=0 ⊗ Z0 − iF + iV Z)

)
(2.18)

where

U =

∫ t

0
ei(t−s)H̊bds.

Decompose V = V1V2, then we have

V2Z = V2U
(
δt=0 ⊗ Z0 − iF

)
+ (iV2UV1) ◦ (V2Z). (2.19)

Suppose

I − iV2UV1 is invertible in L2
t

(
R, eb(σ−sc)tL(Ḣσ)

)
, (Cond-1)

then we can invert this operator in (2.19), and plug in (2.18) to obtain

Z =
[
U + iUV1(I − iV2UV1)

−1V2U
]
(δt=0 ⊗ Z − iF )

and the Strichartz estimate (2.17) follows the free one (2.4) for U and boundedness
of V1, V2

5, and (I − iV2UV1)
−1. To sum up, we have reduced (2.17) to (Cond-1).

Step 2. Reduction to uniform invertibility of Birman-Schwinger operators: via
convolution structure and abstract Wiener’s theorem. Observe the convolution struc-
ture of the space-time operator:

I − iV2UV1 = (δt=0 ⊗ IḢσ − iV2e
i(·)H̊bχ·≥0V1)∗t,

4We note that the notation in this note is slightly different from [25]: the Hb, H̊b here correspond
to H,Hb + ibsc in [25].

5One can take the Strichartz space as L2
t (R, eb(σ−sc)tẆσ,2+

x ) thanks to the self-similar disper-
sion, so that we only need V1, V2 to be bounded in Ẇσ,2+

x → Ḣσ and Ḣσ → Ẇσ,2−
x .
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we can reformulate (Cond-1) as

δt=0 ⊗ IḢσ − iV2e
i(·)H̊bχ·≥0V1 is invertible

in the Banach algebra L1
t (R, eb(σ−sc)tL(Ḣσ)). (Cond-2)

From the abstract Wiener’s theorem [3, Theorem 2.3], the invertibility in such
Banach algebra can be reduced to uniform invertibility of its Fourier transform plus
some compactness conditions. More specifically, we compute

Ft→λ(δt=0IḢσ − iV2e
itH̊bχt≥0V1)(λ)

= I − iV2

∫ ∞

0
eitH̊be−itλdtV1 := I + V2S−

b (λ)V1,

where we can further write the resolvent of H̊b using the resolvents of −∆b from
(2.6) as S−

b (λ) = diag{−R+
b (−1−z), R−

−b(−1+z)}. In conclusion, we have reduced
(Cond-2) to

I + V2S−
b (λ)V1 is invertible in Ḣσ, ∀ ℑλ ≤ b(σ − sc), (Cond-3)

plus some compactness conditions (see [25, Section 5.1] for more detailed discussion).
Lastly, via the resolvent identity [25, (4.17)]

(I + V2S−
b (λ)V1)

−1 = I − V2S
−
b,V (λ)V1,

where S−
b,V (λ) is the resolvent of Hb, (Cond-3) can be finally reduced to

sup
ℑλ≤b(σ−sc)

∥S−
b,V (λ)∥L(Ẇσ,2−→Ẇσ,2+ )

< ∞. (Cond-4)

Step 3. Removing discrete spectrum. Clearly, (Cond-4) is not true due to the
existence of unstable eigenmodes. To remedy that, we consider instead the projected
linear evolution

i∂tZ + (HbPess + iµPdisc)Z = F,

with µ > b(σ − sc), which artificially adds sufficient decay to the eigen directions.
Rewriting H̃b := HbPess + iµPdisc =: Hb − ibsc + Ṽ , we can decompose the nonlocal
operator Ṽ and verify (Cond-4) and compactness conditions with respect to Hb.
This requires delicate and lengthy analysis of the representation, boundedness and
compactness regarding Pess, Pdisc and Hb, recorded in [25, Section 2-4].

Lastly, we conclude the discussion with two remarks.
(1) Not a perturbative argument. Unlike the mode stability analysis which

strongly depends on b(sc) ≪ 1 for perturbative analysis, the derivation of Strichartz
estimate works for any sc ∈ (0, 1) and Qb satisfying Conjecture 1.2.

(2) Comparison with Strichartz estimate for eit(∆+V ). In comparison with the
traditional Strichartz estimates, the self-similar Strichartz has a wider range of ad-
missible pairs (2.5) (thanks to the self-similar dispersion estimate for eit∆b), requires
less decay of the potential (as indicated in the Step 2 above), and does not require
absence of embedded eigenvalues or resonances.

For the last feature, we exploit that changing the function space Ḣσ shifts the
essential spectrum, so that we can avoid the discrete set of eigenmodes and reso-
nances. This explains the assumption 0 < σ − sc ≪ 1. Besides, to identify that
discrete set in different spaces, we use the extended resolvent families to treat them
uniformly with analytic Fredholm theory (see [25, Section 4.1]). It is worth men-
tioning that these arguments also lead to unconditional finite-codimensional mode

Exp. no XVII— Asymptotic stability for self-similar blowup of mass-supercritical NLS

XVII–11



stability, namely for any W1,b,W2,b with suitable decay and regularity, Pdisc related
to the matrix operator Hb from (2.3) has finite-dimensional range, which implies un-
conditional finite-codimensional asymptotic stability as mentioned in Remark 1.10.
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