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HERMITE BASIS DIAGONALIZATION FOR THE NON-CUTOFF
RADIALLY SYMMETRIC LINEARIZED BOLTZMANN

OPERATOR

N. LERNER, Y. MORIMOTO, K. PRAVDA-STAROV & C.-J. XU

Abstract. We provide some new explicit expressions for the linearized non-cutoff
radially symmetric Boltzmann operator with Maxwellian molecules, proving that
this operator is a simple function of the standard harmonic oscillator. A detailed
article is available on arXiv [15].

1. Introduction

1.1. The Boltzmann equation. It describes the behaviour of a dilute gas when
the only interactions taken into account are binary collisions. It reads as

(1.1)

{
∂tf + v · ∇xf = Q(f, f),

f |t=0 = f0,

for the density distribution of the particles f = f(t, x, v) ≥ 0 at time t, having
position x ∈ Rd and velocity v ∈ Rd. The term appearing in the right-hand-
side of this equation Q(f, f) is the so-called quadratic Boltzmann collision operator
associated to the Boltzmann bilinear operator,

∂tf + v · ∇xf = Q(f, f), f |t=0 = f0,

(1.2) Q(g, f) =

∫

Rd

∫

Sd−1

B(v − v∗, σ)
(
g′∗f

′ − g∗f
)
dσdv∗,

with d ≥ 2, where f ′∗ = f(t, x, v′∗), f
′ = f(t, x, v′), f∗ = f(t, x, v∗), f = f(t, x, v),

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ,

for σ ∈ Sd−1. Those relations between pre and post collisional velocities follow from
the conservations of momentum and kinetic energy in the binary collisions:

v + v∗ = v′ + v′∗, |v|2 + |v∗|2 = |v′|2 + |v′∗|2,
where | · | is the Euclidean norm on Rd.

∂tf + v · ∇xf = Q(f, f), f |t=0 = f0,

(1.3) Q(g, f) =

∫

Rd

∫

Sd−1

B(v − v∗, σ)
(
g′∗f

′ − g∗f
)
dσdv∗,
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The term Q(f, f) is expected to provide some smoothing and decay effect, e.g. to
behave as a negative globally elliptic operator. We consider cross sections of the
type

(1.4) B(v − v∗, σ) = Φ(|v − v∗|)b
( v − v∗
|v − v∗|

· σ
)
, cos θ =

v − v∗
|v − v∗|

· σ,

|θ| ≤ π
2
, with a kinetic factor

(1.5) Φ(|v − v∗|) = |v − v∗|γ, γ ∈]− d,+∞),

and a factor related to the collision angle with a singularity

(1.6) (sin θ)d−2b(cos θ) ≈
θ→0
|θ|−1−2s,

for some 0 < s < 1. Notice that this singularity is not integrable, but a finite part
argument gives a meaning to the integrals involved: for ϕ ∈ C2,

∫

|θ|≤π/2
|θ|−1−2s

(
ϕ(θ) + ϕ(−θ)− 2ϕ(0)

)
dθ makes sense,

as well as

∫

|θ|≤π/2
|θ|−1−2sψ(θ)dθ for ψ even, C2, ψ(0) = 0.

This non-integrability property plays a major rôle regarding the qualitative be-
haviour of the solutions of the Boltzmann equation and for the smoothing effect
to be present, that non-integrability feature is essential. Indeed, as first observed
by Desvillettes for the Kac equation in [7], grazing collisions (that account for the
non-integrability of the angular factor near θ = 0) do induce smoothing effects for
the solutions of the non-cutoff Kac equation, or more generally for the solutions of
the non-cutoff Boltzmann equation.

On the other hand, these solutions are at most as regular as the initial data (see
[24]), when the collision cross section is assumed to be integrable, or after removing
the singularity by using a cutoff function (Grad’s angular cutoff assumption).

1.2. The linearized Boltzmann collision operator. We are concerned with a
close-to-equilibrium framework, so we consider the fluctuation around µ given by
the Maxwellian

(1.7) µ(v) = (2π)−
d
2 e−

|v|2
2 ,

setting f = µ +
√
µg. Since Q(µ, µ) = 0 by the conservation of the kinetic energy,

the Boltzmann collision operator can be split into three terms,

Q(µ+
√
µg, µ+

√
µg) = Q(µ,

√
µg) +Q(

√
µg, µ) +Q(

√
µg,
√
µg),

whose linearized part is Q(µ,
√
µg) +Q(

√
µg, µ). Setting

L g = L1g + L2g,

with L1g = −µ−1/2Q(µ, µ1/2g), L2g = −µ−1/2Q(µ1/2g, µ),

the original Boltzmann equation (1.1) is reduced to the Cauchy problem for the
fluctuation g,

(1.8)

{
∂tg + v · ∇xg + L g = µ−1/2Q(

√
µg,
√
µg),

g|t=0 = g0,
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with

L g = L1g + L2g,

and L1g = −µ−1/2Q(µ, µ1/2g), L2g = −µ−1/2Q(µ1/2g, µ).

This linearized Boltzmann operator L is known to be an unbounded symmetric op-
erator on L2(Rd

v) (acting in the velocity variable) such that its Dirichlet form satisfies
(L g, g)L2(Rdv) ≥ 0. Alexandre, Desvillettes, Villani and Wennberg have highlighted
in [2] that the non-cutoff Boltzmann operator enjoys remarkable coercive properties.
The unraveling of these special features of the non-cutoff Boltzmann operator have
led them to conjecture that this collision operator behaves and induces smoothing
effects as a fractional Laplacian. The following coercive estimate was later proven
in [5] (see also [4, 9, 18, 19])

(1.9) ‖(Id−P)g‖2Hs
γ
2

+ ‖(Id−P)g‖2L2
s+

γ
2

. (L g, g)L2(Rd) . ‖(Id−P)g‖2Hs
s+

γ
2

,

where the weighted Sobolev space is defined as

Hk
` = Hk

` (Rd) =
{
f ∈ S ′(Rd) : (1 + |v|2)`/2f ∈ Hk(Rd)

}
,

and P is the L2 orthogonal projection onto the space of collisional invariants

Span{µ1/2, vjµ
1/2, |v|2µ1/2}.

1.3. The present work. We consider the case of the non-cutoff Boltzmann opera-
tor with Maxwellian molecules acting on radially symmetric functions with respect
to the velocity variable and the case of the non-cutoff Kac operator.

We aim at studying the spectral properties and the structure of these collision
operators linearized around a normalized Maxwellian distribution. We shall dis-
play some explicit expressions for these operators, using essentially two major tools:
functional calculus of operators and pseudodifferential calculus with a key rôle for
Mehler’s formula. More specifically, these linearized operators are shown to be ex-
plicit functions of the contraction semigroup and the spectral projections of the
harmonic oscillator

(1.10) H = −∆v +
|v|2
4
.

The linearized Kac operator is shown to be diagonal in the Hermite basis and to
behave essentially as Hs where s ∈ (0, 1) is the singularity exponent appearing in
the expression of the cross-section (1.6).

2. Main results

2.1. Radially symmetric Boltzmann operator. We consider the case of the
non-cutoff Boltzmann operator with Maxwellian molecules acting on the radially
symmetric Schwartz space on Rd

(2.1) Sr(Rd) = {f(|v|)}f even ∈S (R).

The case of Maxwellian molecules corresponds to the case when the parameter γ = 0
in the kinetic factor (1.5),

(2.2) Q(g, f) =

∫

Rd

∫

Sd−1

b
( v − v∗
|v − v∗|

· σ
)(
g′∗f

′ − g∗f
)
dσdv∗,
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where g′∗ = g(v′∗), f
′ = f(v′), g∗ = g(v∗), f = f(v),

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ,

and σ ∈ Sd−1. The non-negative cross section

(2.3) b
( v − v∗
|v − v∗|

· σ
)

= b(cos θ), with cos θ =
v − v∗
|v − v∗|

· σ,

is assumed to be supported where cos θ ≥ 0 and to satisfy the singularity assumption
(1.6). We consider the linearized Boltzmann operator L u = L1u+ L2u, where

(2.4) L1u = −µ−1/2Q(µ, µ1/2u), L2u = −µ−1/2Q(µ1/2u, µ)

where µ is the Maxwellian given in (1.7). We set

(2.5) β(θ) = |Sd−2|| sin 2θ|d−2b(cos 2θ) ≈
θ→0
|θ|−1−2s,

for some 0 < s < 1.

Theorem 2.1. When it acts on Sr(Rd), the first part of the linearized Boltzmann
operator defined by L1f = −µ−1/2Q(µ, µ1/2f), is equal to

(2.6) L1 =

∫ π
4

−π
4

β(θ)
[
Id−(sec θ)

d
2 exp

(
−H ln(sec θ)

)]
dθ,

where H = −∆ + |v|2
4

is the harmonic oscillator. Also

(2.7) L1 =
∑

k≥1

∫ π
4

−π
4

β(θ)
(
1− (cos θ)k

)
dθ Pk.

See a reminder on the spectral decomposition of the harmonic oscillator in Section
4: here we have used

Id =
∑

k≥0
Pk, P2

k = Pk = P∗k, PkPl = δk,lPk, H =
∑

k≥0
(
d

2
+ k)Pk.

We note that

(2.8) L1 =

∫ π
4

−π
4

β(θ)︸︷︷︸
even, ≈|θ|−1−2s

[
Id−(sec θ)

d
2 exp

(
−H ln(sec θ)

)]

︸ ︷︷ ︸
even, vanishing at 0

dθ.

and

(2.9) L1 =
∑

k≥1

∫ π
4

−π
4

β(θ)
(
1− (cos θ)k

)
dθ

︸ ︷︷ ︸
∼csks for k → +∞

Pk.

The domain of L1 can be taken as

(2.10) D = {u ∈ L2(Rd),
∑

k≥1
k2s‖Pku‖2L2 < +∞} = {u ∈ L2(Rd),Hsu ∈ L2(Rd)}.
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Theorem 2.2. When it acts on Sr(Rd), the second part of the linearized Boltzmann
operator defined by L2f = −µ−1/2Q(µ1/2f, µ), is equal to

(2.11) L2 = −
∑

l≥1

(∫ π
4

−π
4

β(θ)(sin θ)2ldθ

)
P2l.

For all s ∈ (0, 1), there exist positive constants C(s, d), c(d) such that

(2.12) 0 ≤ −L2 ≤ C(s, d) exp−c(d)H.
N.B. L2 is a trace class operator on L2(Rd) (even HNL2 is trace-class for all

N ∈ N), which is diagonal in the Hermite basis. Nonetheless L2 is smoothing
(induces regularity), but also induces exponential decay.

Corollary 2.3. When it acts on Sr(Rd), the linearized Boltzmann operator L is
equal to L = L1 + L2 =

∑
k≥1 λkPk with

λk ≈ ks when k → +∞,(2.13)

λ2l+1 =

∫ π
4

−π
4

β(θ)
(
1− (cos θ)2l+1

)
dθ, l ≥ 0,(2.14)

λ2l =

∫ π
4

−π
4

β(θ)
(
1− (sin θ)2l − (cos θ)2l

)
dθ, l ≥ 1,(2.15)

L is a nonnegative unbounded operator which is diagonal in the Hermite basis. L is
essentially equal to Hs.

2.2. On the non-cutoff Kac operator. Here the velocity variable v ∈ R is one-
dimensional. The non-cutoff Kac collision operator is defined as

(2.16) K(g, f)(v) =

∫

|θ|≤π/4
β(θ)

(∫

R
(g′∗f

′ − g∗f)dv∗

)
dθ

where f ′∗ = f(v′∗), f
′ = f(v′), f∗ = f(v∗), f = f(v), with

(2.17) v′ = v cos θ − v∗ sin θ, v′∗ = v sin θ + v∗ cos θ, v, v∗ ∈ R.

As previously, the main assumption concerning the non-negative cross-section is the
presence of a non-integrable singularity for grazing collisions

(2.18) β(θ) ≈θ→0|θ|−1−2s, β(−θ) = β(θ),

for some 0 < s < 1 (with β ∈ L1
loc(0, 1)). The relations between the pre and post

collisional velocities follow from the conservation of kinetic energy

v2 + v2∗ = v′2 + v′2∗ .

As before for the general Boltzmann equation, we consider a fluctuation around the
normalized Maxwellian distribution (1.7) (with d = 1) by setting f = µ +

√
µh.

Since K(µ, µ) = 0 by conservation of the kinetic energy, we may write

K(µ+
√
µh, µ+

√
µh) = K(µ,

√
µh) +K(

√
µh, µ) +K(

√
µh,
√
µh)

and consider the linearized Kac operator Kh = K1h+K2h, with

(2.19) K1h = −µ−1/2K(µ, µ1/2h), K2h = −µ−1/2K(µ1/2h, µ).

Exp. no XXIII— Non-cutoff radially symmetric Boltzmann operator
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Theorem 2.4. Defining the first part of the linearized Kac operator as f 7→ K1f =
−µ−1/2K(µ, µ1/2f), we have

K1 =

∫ π
4

−π
4

β(θ)
[
Id−(sec θ)1/2exp

(
−H ln(sec θ)

)]
dθ.

Theorem 2.5. Defining the second part of the linearized Kac operator as f 7→
K2f = −µ−1/2K(µ1/2f, µ), we have

K2 = −
+∞∑

l=1

(∫ π
4

−π
4

β(θ)(sin θ)2ldθ

)
P2l.

Corollary 2.6. The linearized Kac operator is a non-negative unbounded operator,
diagonal in the Hermite basis:

K =
∑

k≥1
λkPk,

λ2k+1 =

∫ π
4

−π
4

β(θ)
[
1− (cos θ)2k+1

]
dθ ≥ 0, k ≥ 0

λ2k =

∫ π
4

−π
4

β(θ)
[
1− (cos θ)2k − (sin θ)2k

]
dθ ≥ 0, k ≥ 1,

λk ≈ ks when k → +∞.

K is essentially equal to Hs.

2.3. Pseudodifferential framework. The previous diagonalization in the Hermite
basis is satisfactory and it is much simpler to deal with infinite diagonal matrices
than with pseudodifferential operators. However the following result is interesting.

Theorem 2.7. The linearized Kac operator K is a pseudodifferential operator whose
Weyl symbol l(v, ξ) is real-valued, belongs to the symbol class Ss(R2) (see the defini-
tion below) and admits the following asymptotic expansion:

l(v, ξ) ∼ c0

(
1 + ξ2 +

v2

4

)s
− d0 +

+∞∑

k=1

ck

(
1 + ξ2 +

v2

4

)s−k
.

The symbol l(v, ξ) is smooth on R2 and satisfies

|(∂αv ∂βξ l)(v, ξ)| ≤ Cαβ(1 + |v|2 + |ξ|2)s− |α|+|β|2 ,

so it belongs to Ss(R2) (this is a definition). One may object that this makes the
harmonic oscillator (symbol |ξ|2 + |v|2/4) of order 1, i.e. in S1, but it is precisely the
correct scaling since taking for instance pj(v, ξ), j = 1, 2, polynomials of v, ξ with
degree 2mj, thus in Smj their Poisson bracket

{p1, p2} = ∂ξp1 · ∂xp2 − ∂xp1 · ∂ξp2
is a polynomial of degree 2m1 + 2m2−2 thus in Sm1+m2−1 as expected in a standard
symbolic calculus.
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3. Proofs

1. We compute the distribution-kernels of the operators.
2. We use a formula to get the Weyl symbols from the kernels.
3. We get plenty of exponential terms in the symbols.
4. We identify these terms via Mehler’s formula.

3.1. Mehler’s formula. Let z ∈ C with |z| < 1,Re z ≥ 0. Then,

(3.1)

[
exp−

(
2z
(
|ξ|2 +

|v|2
4

))]Weyl

=
1

(1− z2)d/2 exp

(
−H ln

1 + z

1− z

)
.

In other words, an operator with Weyl symbol exp−
(

2z
(
|ξ|2 + |v|2

4

))
is (up to a

scalar factor) the exponential, in the operator-theoretic sense of −α(z)H, where H
is the harmonic oscillator and Reα(z) ≥ 0.

3.2. From the kernel to the symbol. Let us simply outline the computation
for the linearized Kac operator K1u = −µ−1/2K(µ, µ1/2u). It follows from Bobylev
formula and Fourier inversion formula that

− µ−1/2K(µ, µ1/2u)(v) =

e
v2

4

(2π)
3
4

x

R×(−π
4
,π
4
)

β(θ)
[
µ̂(0)µ̂1/2u(η)− µ̂(η sin θ)µ̂1/2u(η cos θ)

]
eivηdηdθ.

Easy (but tedious) to compute the distribution-kernel, then the Weyl symbol. It
follows that

− µ−1/2K(µ, µ1/2u)(v)

=
1

2π

x

R×(−π
4
,π
4
)

β(θ)

(∫

R
e
v2−y2

4

[
e−iyη − e− η

2 sin2 θ
2 e−iyη cos θ

]
eivηu(y)dy

)
dηdθ

=

∫

|θ|≤π/4
β(θ)(K1,θu)(v)dθ,

where the distribution-kernel of the operator K1,θ is given by the oscillatory integral

K1,θ(v, y) =
1

2π

∫

R
e
v2−y2

4

[
e−iyη − e− η

2 sin2 θ
2 e−iyη cos θ

]
eivηdη

= δ0(v − y)− 1

2π
e
v2−y2

4

∫

R
e−

η2 sin2 θ
2 e−iyη cos θeivηdη

= δ0(v − y)− e
v2−y2

4

(2π)1/2| sin θ| exp−(v − y cos θ)2

2 sin2 θ
.

Since we have from the computation above K1,θ(v − y
2
, v + y

2
) =

δ0(y)− e−
vy
2

(2π)1/2| sin θ| exp−
{(

v − y
2
− (v + y

2
) cos θ

)2

2 sin2 θ

}
,

Exp. no XXIII— Non-cutoff radially symmetric Boltzmann operator
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we obtain from that the Weyl symbol l1,θ of K1,θ is l1,θ(v, ξ) = 1− `1,θ(v, ξ), with

`1,θ(v, ξ) =

∫
eiyξ

1

(2π)1/2| sin θ| exp−
{(

v − y
2
− (v + y

2
) cos θ

)2
+ vy sin2 θ

2 sin2 θ

}
dy.

implying that

Lemma 3.1. The Weyl symbol l1 of the operator K1 is equal to

(3.2) l1(v, ξ) =

∫

|θ|≤π
4

β(θ)

[
1− sec2(

θ

2
)exp

{
− 2 tan2(

θ

2
)(ξ2 +

v2

4
)
}]

dθ.

N.B. The functions of θ inside the integrals factoring β are even, vanish at 0 and
are smooth on the compact interval of integration: l1 is indeed given by a Lebesgue
integral.

Without the Weyl quantization, it would be pretty hard to sort out the selfadjoint
and skew-adjoint (which is zero here) parts and essentially impossible to recognize
Mehler’s formula.

A nice feature of the Weyl quantization is (ā)w = (aw)∗.

(awu)(x) =
x

ei〈x−y,ξ〉a
(x+ y

2
, ξ
)
u(y)dydξ(2π)−d.

a(x, ξ) =

∫
k(x− t

2
, x+

t

2
)eitξdt,

k(x, y) =

∫
ei〈x−y,ξ〉a

(x+ y

2
, ξ
)
dξ(2π)−d.

(3.3) l1(v, ξ) =

∫

|θ|≤π
4

β(θ)

[
1− sec2(

θ

2
)exp

{
− 2 tan2(

θ

2
)(ξ2 +

v2

4
)
}]

dθ.

Looking at the previous formula, we see that we are in the range of application of
Mehler’s formula and we obtain indeed

Theorem 3.2. Defining the first part of the linearized Kac operator as f 7→ K1f =
−µ−1/2K(µ, µ1/2f), we have

K1 =

∫ π
4

−π
4

β(θ)
[
Id−(sec θ)1/2exp

(
−H ln(sec θ)

)]
dθ.

Asymptotic equivalent: a typical computation. We consider

(3.4) µk =

∫

0≤θ≤π/4
θ−1−2s︸ ︷︷ ︸
u′(θ)

(
1− e−kθ2

)
︸ ︷︷ ︸

v(θ)

dθ, k ∈ N.

We want to find an equivalent when k → +∞.

µk =

[
θ−2s

−2s

(
1− e−kθ2

)]π/4

0

+

∫ π/4

0

θ−2s

2s
2kθe−kθ

2

dθ

µk = C +O(e−ck) +
k

s

∫ π/4

0

θ1−2se−kθ
2

dθ, θ = k−
1
2 τ,

µk ∼
k

s
k−

1
2
+s

∫ +∞

0

τ 1−2se−τ
2

dτk−
1
2 = ks

Γ(1− s)
2s

.
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3.3. Perspectives. Without the radially symmetric assumption, the computations
get wilder. However it seems quite likely that the Harmonic Oscillator should be
replaced by the Landau operator

L = −∆ +
|v|2
4
− d

2
+
(
‖v ∧ ξ‖2

)Weyl − d(d− 1)

4
and that the smoothing effect is due to a diffusive term of type Ls.

4. Appendix

The standard Hermite functions {φn}n∈N are defined on R by

φn(x) = (2nn!)−1/2π−1/4
(
x− d

dx

)n
(e−x

2/2) = (n!)−1/2an+φ0,

where a+ is the creation operator 2−1/2(x−d/dx). The (φn)n∈N make an orthonormal
basis of L2(R). We define for n ∈ N, α = (αj)1≤j≤d ∈ Nd, x ∈ R, v ∈ Rd,

ψn(x) = 2−1/4φn(2−1/2x), ψn = (n!)−1/2
(x

2
− d

dx

)n
ψ0,

Ψα(v) =
d∏

j=1

ψαj(vj), Ek = Span{Ψα}α∈Nd,|α|=k,

with |α| = α1 + · · ·+ αd.

The (Ψα)α∈Nd make an orthonormal basis of L2(Rd) composed by the eigenfunc-
tions of the d-dimensional harmonic oscillator:

(4.1) H = −∆v +
|v|2
4

=
∑

k≥0
(
d

2
+ k)Pk, Id =

∑

k≥0
Pk,

where Pk is the orthogonal projection onto Ek,

whose dimension is

(
k + d− 1

d− 1

)
∼

k → +∞
kd−1

(d− 1)!
.

The eigenvalue d/2 is simple in all dimensions and E0 is generated by

Ψ0(v) = (2π)−d/4e−|v|
2/4 = µ1/2(v).
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K. Pravda-Starov, Université de Cergy-Pontoise, CNRS UMR 8088, Département
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