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RECENT PROGRESS ON THE MEAN-FIELD LIMIT OF

THE CUCKER-SMALE MODEL FOR FLOCKING

SEUNG-YEAL HA

Abstract. In this paper, we give a brief survey on the state-of-the-art results on the
mean-field limit of the Cucker-Smale(CS) model for flocking. The CS model is one of
well-studied collective dynamics models. Collective motions of self-propelled particles
often appear in our nature. Some collective motions are often described by different types
of partial differential equations. We discuss that they fall down to the special cases of
the universal nonlinear consensus model at the microscopic level. We also discuss how
an interacting particle system with a large size can be effectively approximated by the
corresponding mean-field model by the rigorous justification of the mean-field limit. In
particular, we focus on the uniform-in-time mean-field limit of the CS model for flocking
using the uniform-in-time stability estimate and asymptotic flocking estimates under some
framework which guarantees the exponential flocking.
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1. Introduction

Collective behaviors of complex systems often appear in our nature and man-made sys-
tems, e.g., aggregation of bacteria and information [28, 47], flocking of birds, drones, mobile
sensor and robots [12, 13, 14, 35, 41, 42, 48, 50], synchronization of fireflies and pacemaker
cells [1, 8, 34, 43, 44] and swarming of fish [5, 14, 21, 46] etc. See survey articles and
books [3, 6, 7, 36, 49] for a crash introduction to collective motions. Among them, we are
mainly interested in the flocking behaviors of self-propelled particles. The jargon flock-
ing denotes some collective motion in which self-propelled particles move with common
velocity via communications between particles. Although they are ubiquitous in nature,
mathematical modeling of flocking was first done by the computer scientist, C. Reynolds.
He proposed a distributed behavior model in almost half a century ago based on three rules
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such as a long range attraction, intermediate velocity alignment and short range repulsion.
Reynolds’s seminal work [45] was further continued by a group of statistical physicists led
by T. Vicsek and his collaborators in another seminal work [50]. They introduced a planar
stochastic discrete-time model for particle’s heading angles which describes a relaxation to
the average angle based on finite-range interaction rules, and they assume that particles
move with a unit speed. Moreover, they showed that asymptotic patterns can be classi-
fied into four patterns depending on local mass density and strength of noise by numerical
simulations. Motivated by this series of works, Felippe Cucker and Steve Smale introduced
a second-order Newton-like particle model in [13]. They replaced finite-range interaction
with a weighted sum of relative velocities. Here we call the weight as the communication
weight, and it depends on the relative distances. To set up the stage, we begin with a brief
description of the Cucker-Smale (CS) model.

Let xi and vi be the position and velocity of the i-th CS particle in the Euclidean
space Rd. Then, their temporal dynamics is governed by the Cauchy problem for the CS
model: 




dxi
dt

= vi, t > 0, i ∈ [N ] := {1, · · · , N},
dvi
dt

=
κ

N

N∑

j=1

ϕ(∥xj − xi∥)(vj − vi),
(1.1)

where κ is the nonnegative coupling strength, ∥ · ∥ is the standard ℓ2-norm in Rd, and
ϕ : R+ → R+ =: {x ∈ R : x ≥ 0} is a nonnegative communication weight function
satisfying boundedness, Lipschitz continuity and monotonicity (see (3.2)). The global exis-
tence, clustering flocking dynamics of (1.1) have been extensively investigated from diverse
perspectives in a series of works [9, 10, 11, 13, 22, 24, 25, 36, 37].

In this paper, we review the state-of-the-art results on the mean-field limit of the
particle CS model (1.1), forcing on the results of asymptotic flocking and uniform-in-time
stability of (1.1), and finite-in-time mean-field limit [24] and uniform-in-time mean-
field limit [23]. As long as there is no confusion, we will use the abbreviated words such
as finite-time, uniform-time instead of finite-in-time, uniform-in-time throughout the paper.

The rest of this paper is organized as follows. In Section 2, we discuss a universal-
ity hidden in some collective motions (aggregation, flocking and synchronization) via a
nonlinear consensus model. It turns out that 3D Keller-Segel’s aggregation, CS flocking
and Kuramoto synchronization can be integrated as special cases of the proposed nonlin-
ear consensus model. In Section 3, we review asymptotic flocking for the CS model and
uniform-in-time stability. In Section 4, we discuss the uniform-time mean-field limit. Fi-
nally Section 5 is devoted to a brief summary of presented results and some remaining
issues which were not discussed in this paper.

2. Preliminaries

In this section, we briefly introduce three prototype interacting particle systems (particle
models) arising from the study of collective dynamics, and discuss the relations between
them and explain the hidden universality behind the curtain.

2.1. Keller-Segel’s aggregation model. Aggregation denotes a collective phenomenon
in which relative positions of particles tend to zero, i.e., formation of a Dirac Delta in
position variable, hence it can be understood as a consensus in position variable. This
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aggregate phenomenon has been extensively studied in mathematical biology community
in recent years (see [31, 30, 29]) via coupled partial differential equations.

Let ρ = ρ(t, x) and c = c(t, x) be the local mass densities of the bacteria and chemical
substance, respectively. Then, one of Keller-Segel type models [32, 33] is given by the
coupled parabolic-elliptic system:

{
∂tρ+∇ · (ρ∇c) = σ∆ρ, (t, x) ∈ R+ × Rd,

−∆c = ρ,
(2.1)

where σ is the nonnegative diffusion coefficient. On the other hand, we return to the
particle description of bacteria aggregation. For this, let xi = xi(t) be the position process
of the i-th bacterium at time t. Then, in three dimensions, the corresponding interacting
particle analogue of (2.1) is given by the stochastic interacting particle system:

dxi =
κ

N

∑

j ̸=i

xj − xi
∥xj − xi∥3

dt+
√
2σdBi, t > 0, i ∈ [N ]. (2.2)

When the stochastic noises are turned off by setting σ = 0, the system (2.2) becomes the
deterministic particle model:

dxi
dt

=
κ

N

∑

j ̸=i

ψks(xj − xi), i ∈ [N ],

where ψks is the interaction kernel defined by the following relation:

ψks(x) =
x

∥x∥3 , 0 ̸= x ∈ R3.

2.2. Cucker-Smale’s flocking model. Flocking represents a collective phenomenon in
which relative velocities of particles vanish asymptotically, whereas their relative positions
are uniformly bounded. To be more specific, let xi = xi(t) and vi = vi(t) be the position
and velocity of the i-th CS particle. Then, their dynamics is governed by Newton-like
system for (xi, vi): 




dxi
dt

= vi, t > 0, i ∈ [N ],

dvi
dt

=
κ

N

N∑

j=1

ψcs(xj − xi)(vj − vi),
(2.3)

where κ is the nonnegative coupling strength and ψcs represent a nonnegative communica-
tion weight function. For definiteness, we set

ψcs(x) =
1

(1 + ∥x∥2)β
2

, β ≥ 0, x ∈ Rd.

Let F = F (t, x, v) be the one-particle distribution function for the CS ensemble at position
x with velocity v at time t. Then, the standard BBGKY hierarchy argument provides the
corresponding McKean-Vlasov type model as a formal mean-field limit:




∂tF + v · ∇xF +∇v · (Fa(F )F ) = 0, (t, x, v) ∈ R+ × Rd × Rd,

Fa(F )(t, x, v) = −κ
∫

R2d

ψcs(x− x∗)(v − v∗)F (t, x∗, v∗)dv∗dx∗.
(2.4)

From the kinetic CS model (2.4), we use the method of velocity moments and mono-kinetic
ansatz as a suitable closure assumption to derive the hydrodynamic CS model. More
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precisely, let ρ = ρ(t, x), u = u(t, x) be the local mass density and bulk velocity of CS
flocking ensemble defined as follows:

ρ(t, x) :=

∫

Rd

F (t, x, v)dv, local mass density,

(ρu)(t, x) :=

∫

Rd

vF (t, x, v)dv, local momentum density.

Then, the hydrodynamic CS model reads as follows:



∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ × Rd,

∂t(ρu) +∇ · (ρu⊗ u) = κρ

∫

Rd

ψ(|x− y|)(u(t, y)− u(t, x))ρ(t, y)dy.

This system corresponds to the pressureless Euler system with a nonlocal source term. As a
special case of the system (2.3), we consider the CS model on the real line (d = 1) so that

x(t), v(t) ∈ R, for t ≥ 0.

In this case, we can introduce the anti-derivative of ψcs:

Ψcs(x) :=

∫ x

0
ψcs(y)dy, i.e., Ψ′

cs(x) = ψcs(x), x ∈ R.

Then, the system (2.3) can be rewritten as

d2xi
dt2

=
d

dt

( κ
N

N∑

k=1

Ψcs(xk − xi)
)
, i ∈ [N ]. (2.5)

We integrate (2.5) with respect to t to get

dxi
dt

= v0i −
κ

N

N∑

k=1

Ψcs(x
0
k − x0i ) +

κ

N

N∑

k=1

Ψcs(xk − xi)

=: νi(X
0, V 0) +

κ

N

N∑

k=1

Ψcs(xk − xi),

where

x0i := xi(0), v0i = vi(0), X0 := (x01, . . . , x
0
N ), V 0 := (v01, . . . , v

0
N ).

2.3. Kuramoto’s synchronization model. Synchronization represents a collective
phenomenon in which weakly coupled limit-cycle oscillators adjust their rhythms due to
their mutual interactions. In the sequel, we recall a prototype model for synchronization
which was introduced by Yoshiki Kuramoto in [34].

Let θi = θi(t) be the phase of the i-th Kuramoto oscillator with a natural frequency
νi ∈ R. Then, the phase dynamics is governed by the Kuramoto model:

dθi
dt

= νi +
κ

N

N∑

j=1

ψk(θj − θi), t > 0, i ∈ [N ],

where ψk is the Kuramoto interaction kernel defined by

ψk(θ) = sin θ, θ ∈ R.
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Next, we consider the kinetic Kuramoto model which is formulated as a scalar conservation
law with a nonlocal flux. Let F = F (t, θ, ν) be the one-particle distribution function with
phase θ and natural frequency ν at time t. Then, the kinetic Kuramoto model reads as
follows: 



∂tF + ∂θ(ω(F )F ) = 0, (t, θ, ν) ∈ R+ × [0, 2π]× R,

ω(F ) = ν − κ

∫ 2π

0

∫

R
sin(θ∗ − θ)F (t, θ∗, ν∗)dν∗dθ.

(2.6)

Note that the real value ν can be viewed as a real parameter, hence for a fixed ν, equation
(2.6) is a hyperbolic conservation law with a nonlocal flux. Therefore, one can view equation
(2.6) as an infinite number of hyperbolic conservation laws.

2.4. Nonlinear consensus model. In the previous three subsections, we have introduced
three prototype models for aggregation, flocking and synchronization. In what follows, we
will show that how they can be viewed as special cases of the generalized nonlinear consensus
model.

Consider N interacting particle system on some manifold M embedded in the Euclidean
space Rd, and let qi = qi(t) be the generalized position of the i-th particle with interaction
kernel K = K(q). Then, we propose a nonlinear consensus model on M whose continuous
dynamics is governed by the following first-order interacting particle system:

dqi
dt

= νi +
κ

N

N∑

j=1

K(qj − qi), qi ∈ M, i ∈ [N ]. (2.7)

Note that the tuple (q,M,K) takes the following forms for Keller-Segel, Cucker-Smale and
Kuramoto models in previous subsections:

(q,M,K) =





(x,R3, ψks), the Keller-Segel model with d = 3,

(x,R,Ψcs), the CS model with d = 1,

(θ,T1, ψk), the Kuramoto model with d = 1,

where T1 = R/2πZ. From this observation, we can see that there should be some hidden
universality between aforementioned three collective dynamics. In fact, the Kuramoto
model can be derived from the CS model on T1 (see [17]).

Next, we consider emergent dynamics of (2.7) for M = R. Let qi = qi(t) be a real-valued
quantifiable measure of the i-th agent’s opinion level at time t whose dynamics is governed
by the system (2.7) with κ = 1. We assume that the coupling function K satisfies the
following set of conditions:

{
K(−q) = −K(q), (K(q)−K(q∗))(q − q∗) ≥ 0, ∀ q, q∗ ∈ R,
lim
q→∞

K(q) = K∞ > 0, K ′(q) ≤ 1, K ′(0) = 1, K ′′(q) < 0, q ∈ R+.
(2.8)

For explicit examples satisfying (2.8), we can consider the following coupling functions:

K(q) = tanh(q) or

∫ q

0

1

(1 + |q∗|)β
dq∗, β > 1.

Next, we state eventual well-ordering principle based on the relative ordering of natural
velocities.
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Proposition 2.1. [26] Let Q = {qi} be a global solution to the system (2.7) and (2.8) with
the initial datum Q0. Suppose that for i, j ∈ [N ], the following relation holds:

q0i < q0j .

Then the following trichotomy holds.

(i) If νi < νj , then qi and qj will never collide in finite time:

|{t∗ ∈ (0,∞) : qi(t∗) = qj(t∗)}| = 0,

where |A| is the cardinality of the set A.

(ii) If νi > νj , qi and qj will collide once in finite time:

|{t∗ ∈ (0,∞) : qi(t∗) = qj(t∗)}| = 1.

(iii) If νi = νj , then the relative distance |qi − qj | decays to zero exponentially: for t ≥ 0,

e−κt ≤ qj(t)− qi(t)

qj(0)− qi(0)
≤ e−

κ
N
K′(|q0i −q0j |)t.

Next, we recall clustering dynamics for (2.7) - (2.8) in terms of system parameters and
initial data.

Theorem 2.1. [26] Suppose that the natural velocity νi is well-ordered:

ν1 < ν2 < · · · < νN ,
N∑

i=1

νi = 0

and let Q = {qi} be a solution to (2.7) - (2.8) with the initial datum Q0 = {q0i }. Then, Q
is completely segregated, i.e.,

lim sup
t→+∞

q1(t) = −∞, lim inf
t→+∞

qN (t) = ∞, lim inf
t→+∞

|qi+1(t)− qi(t)| = ∞, i ∈ [N − 1],

if and only if the coupling strength κ is sufficiently small such that

κ < min

{
Nν1

(N − 1)K∞ ,
N(ν2 − ν1)

2K∞ , . . . ,
N(νN − νN−1)

2K∞ ,
NνN

(N − 1)K∞

}
.

Remark 2.1. (Complete cluster predictability): For each i, system parameters {νi}, κ and
K∞ determine whether

lim
t→∞

|qi(t)− qi+1(t)| = ∞ or lim
t→∞

|qi(t)− qi+1(t)| <∞, i ∈ [N − 1].

The proof for this can be found in [20].

Before we move on to the next section, we briefly summarize the content of this sec-
tion. As discussed in this section, we show that Keller-Segel’s aggregation, Cucker-Smale’s
flocking and Kuramoto’s synchronization can be integrated into a nonlinear consensus with
distinct coupling functions. In this sense, there are some hidden universality in some collec-
tive motions. If we have enough information on one of aforementioned collective motions,
then we can look for similar phenomenon or property in other collective motions. In the
following two subsections, we review the recent progress on the uniform-time stability and
mean-field limits for the CS model.
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3. Uniform-time stability of the CS model

In this section, we discuss emergent flocking dynamics of the CS model and how the
uniform-in-time mean field limit can be made using the flocking estimates and finite-in-time
mean-field limit.

Recall the Cauchy problem for the CS model:




dxi
dt

= vi, t > 0, i ∈ [N ],

dvi
dt

=
κ

N

N∑

j=1

ϕ(∥xj − xi∥)(vj − vi),

(xi, vi)
∣∣∣
t=0+

= (x0i , v
0
i ),

(3.1)

where the communication weight function ϕ satisfies nonnegativity, boundedness, Lipschitz
continuity and monotonicity conditions:

0 ≤ ϕ ≤ 1, [ϕ]Lip <∞, (ϕ(r2)− ϕ(r1))(r2 − r1) ≤ 0, ∀ r1, r2 ≥ 0. (3.2)

and ∥ · ∥ is the standard ℓ2-norm in Rd. For notational simplicity, we set

X := (x1, · · · , xN ) and V := (v1, · · · , vN ).

3.1. Asymptotic flocking dynamics. In this subsection, we discuss the flocking dynam-
ics of the Cauchy problem (3.1) for the CS model.

3.1.1. Preparatory materials. First, we recall the concept of asymptotic flocking in the
following definition.

Definition 3.1. Let (X,V ) be a global smooth solution to (3.1). Then, the configuration
(X,V ) exhibits asymptotic flocking if and only if the following conditions hold.

(1) (Velocity alignment): The relative velocities tend to zero asymptotically:

lim
t→∞

∥vi(t)− vj(t)∥ = 0, ∀ i, j ∈ [N ].

(2) (Spatial cohesion): The relative positions are uniformly bounded in time:

sup
0≤t<∞

∥xi(t)− xj(t)∥ <∞, ∀ i, j ∈ [N ].

Next, we list basic properties of the CS model as follows.

Proposition 3.1. [13, 24, 25] Let (X,V ) be a global smooth solution to (3.1). Then, the
following assertions hold.

(1) The CS model is Galilean invariant in the sense that it is invariant under the
Galilean transformation: for some c ∈ Rd

(xi, vi) 7→ (xi + ct, vi + c).

(2) The total momentum is a constant of motion:

d

dt

N∑

i=1

vi(t) = 0, ∀ t > 0.

Exp. no XV— Recent progress on the mean-field limit of the Cucker-Smale model for flocking
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(3) The total energy is non-increasing over time:

d

dt

N∑

i=1

∥vi∥2 = − κ

N

∑

i,j

ϕ(∥xj − xi∥)∥vj − vi∥2 ≤ 0, ∀ t > 0.

Remark 3.1. If we set averages and fluctuations around them:

xc :=
1

N

N∑

i=1

xi, vc :=
1

N

N∑

i=1

vi, x̂i := xi − xc, v̂i := vi − vc,

then it is easy to see that

N∑

i=1

x̂i(t) = 0,

N∑

i=1

v̂i(t) = 0, ∀ t ≥ 0,

and dynamics for averages and fluctuations are completely decoupled:





dxc
dt

= vc, t > 0,

dvc
dt

= 0,

and





dx̂i
dt

= v̂i, t > 0, i ∈ [N ],

dv̂i
dt

=
κ

N

N∑

j=1

ϕ(∥x̂j − x̂i∥)(v̂j − v̂i).

3.1.2. Nonlinear functional approach. In this part, without loss of generality, we may as-
sume that

N∑

i=1

xi(t) = 0,
N∑

i=1

vi(t) = 0, t ≥ 0. (3.3)

In what follows, we present a nonlinear functional approach leading to exponential flocking
of (3.1). For this, we introduce mixed norms as follows:

∥X∥2,∞ := max
1≤i≤N

∥xi∥, ∥V ∥2,∞ := max
1≤i≤N

∥vi∥.

Then, ∥X∥2,∞ and ∥V ∥2,∞ are Lipschitz continuous functions in t, hence they are almost
everywhere differentiable, and they satisfy the system of dissipative differential inequality
(SDDI): 




∣∣∣ d
dt
∥X∥2,∞

∣∣∣ ≤ ∥V ∥2,∞, a.e. t ∈ (0,∞),

d

dt
∥V ∥2,∞ ≤ −κϕ(

√
2∥X∥2,∞)∥V ∥2,∞.

Now, we introduce nonlinear functionals L±(t) = L±(X(t), V (t)):

L±(t) := ∥V (t)∥2,∞ ± κ√
2

∫ √
2∥X(t)∥2,∞

0
ϕ(r)dr, t ≥ 0.

After some tedious calculations, one can check that for t ≥ 0,

L±(t) ≤ L±(0), or equivalently ∥V (t)∥2,∞ +
κ√
2

∣∣∣
∫ √

2∥X(t)∥2,∞
√
2∥X0∥2,∞

ϕ(r)dr
∣∣∣ ≤ ∥V 0∥2,∞.

where (X0, V 0) are initial data. This stability estimate yields the following flocking esti-
mate.
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Theorem 3.1. [4, 24] Let (X,V ) be a global smooth solution to (3.1) - (3.3) with initial
data (X0, V 0) satisfying

∥X0∥2,∞ > 0, ∥V 0∥2,∞ <
κ√
2

∫ ∞
√
2∥X0∥2,∞

ϕ(r)dr.

Then, there exists a positive constant xM satisfying

∥X(t)∥2,∞ ≤ xM , ∥V (t)∥2,∞ ≤ ∥V 0∥2,∞e−κϕ(
√
2xM )t, t ≥ 0,

where xM is determined by the following implicit relation:

∥V 0∥2,∞ =
κ√
2

∫ xM

√
2∥X0∥2,∞

ϕ(r)dr.

Remark 3.2. We can also use the same nonlinear functional approach for diameter func-
tionals:

D(X) := max
i,j∈[N ]

∥xi − xj∥, D(V ) := max
i,j∈[N ]

∥vi − vj∥.

By the same argument, one can show that these functionals satisfy the system of dissipative
differential inequality (SDDI):




∣∣∣ d
dt
D(X)

∣∣∣ ≤ D(V ), a.e. t > 0,

d

dt
D(V ) ≤ −κϕ(D(X))D(V ).

Suppose that the coupling strength and initial data satisfy

D(V 0) < κ

∫ ∞

D(X0)
ϕ(r)dr,

and let {(xi, vi)} be a global solution to (3.1) - (3.3). Then, there exists a positive constant
D∞ such that

sup
0≤t<∞

D(X(t)) ≤ D∞ D(V (t)) ≤ D(V 0)e−κϕ(D∞)t, t > 0,

where D∞ is uniquely determined by the relation:
∫ D∞

D(X0)
ϕ(s)ds =

D(V 0)

κ
.

We refer to Motsch and Tadmor’s paper [37] for a detailed proof.

3.2. Uniform-in-time stability. In this subsection, we review the uniform-in-time sta-
bility estimate for the Cauchy problem (3.1). We recall the concept of uniform-in-time
stability in ℓ2-norm with respect to initial data as follows.

Definition 3.2. [23] The CS model (3.1) is uniformly ℓ2-stable with respect to initial data
if for any two set of solutions (X,V ) and (X̄, V̄ ) corresponding to initial data (X0, V 0) and
(X̄0, V̄ 0), respectively, there exists a nonnegative constant G independent of t such that

sup
0≤t<∞

(
∥X(t)− X̄(t)∥+ ∥V (t)− V̄ (t)∥

)
≤ G

(
∥X0 − X̄0∥+ ∥V 0 − V̄ 0∥

)
,

where ∥X − X̄∥ and ∥V − V̄ ∥ are defined as follows:

∥X − X̄∥ :=
( N∑

i=1

∥xi − x̄i∥2
)1/2

, ∥V − V̄ ∥ =
( N∑

i=1

∥vi − v̄i∥2
)1/2

.
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Let (X,V ) and (X̄, V̄ ) be two global solutions exhibiting flocking dynamics in Remark
3.2: there exists positive constants D∞ and D̄∞ such that

sup
0≤t<∞

max
1≤i,j≤N

∥xi(t)− xj(t)∥ ≤ D∞, sup
0≤t<∞

max
1≤i,j≤N

∥x̄i(t)− x̄j(t)∥ ≤ D̄∞,

max
1≤i,j≤N

∥vi(t)− vj(t)∥ ≤ D(V 0)e−κϕ(D∞)t, max
1≤i,j≤N

∥v̄i(t)− v̄j(t)∥ ≤ D(V̄ 0)e−κϕ(D̄∞)t,

(3.4)

Then, one can derive a system of two differential inequalities for ∥X − X̄∥ and ∥V − V̄ ∥:
there exists positive constants α and C which may depend on ϕ and initial data, but
independent of t such that





d

dt
∥X − X̄∥ ≤ ∥V − V̄ ∥, a.e., t > 0,

d

dt
∥V − V̄ ∥ ≤ −κα∥V − V̄ ∥+ κCe−καt∥X − X̄∥.

(3.5)

The first differential inequality in (3.5) is rather obvious. Thus, let us check why the
second differential inequality holds. To see this, we consider one-dimensional case d = 1.
Otherwise, we can apply a similar argument for each component.

Consider the equations for vi and v̄i:




dvi
dt

=
κ

N

N∑

k=1

ϕ(|xk − xi|)(vk − vi),

dv̄i
dt

=
κ

N

N∑

k=1

ϕ(|x̄k − x̄i|)(v̄k − v̄i).

These yield

d

dt
(vi − v̄i) =

κ

N

N∑

k=1

(
ϕ(|xk − xi|)− ϕ(|x̄k − x̄i|)

)
(vk − vi)

+
κ

N

N∑

k=1

ϕ(|x̄k − x̄i|)
(
(vk − v̄k)− (vi − v̄i)

)
.

(3.6)

We multiply 2(vi − v̄i) to (3.6) and sum up the resulting relations over all i ∈ [N ] to get

d

dt

N∑

i=1

|vi − v̄i|2 =
2κ

N

N∑

i,k

(
ϕ(|xk − xi|)− ϕ(|x̄k − x̄i|)

)
(vk − vi)(vi − v̄i)

+
2κ

N

N∑

i,k

ϕ(|x̄k − x̄i|)
(
(vk − v̄k)− (vi − v̄i)

)
(vi − v̄i)

=: I11 + I12.

(3.7)

Below, we estimate the terms I1i, i = 1, 2 one by one.
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• (Estimate of I11): We use the Lipschitz continuity of ϕ to see

∣∣∣ϕ(|xk − xi|)− ϕ(|x̄k − x̄i|)
∣∣∣

≤ [ϕ]Lip

∣∣∣|xk − xi| − |x̄k − x̄i|
∣∣∣ ≤ [ϕ]Lip

∣∣∣(xk − x̄k)− (xi − x̄i)
∣∣∣

≤ [ϕ]Lip

(
|xk − x̄k|+ |xi − x̄i|

)
.

This yields

|I11| ≤
2κ

N

N∑

i,k=1

∣∣∣ϕ(|xk − xi|)− ϕ(|x̄k − x̄i|)
∣∣∣|vk − vi| · |vi − v̄i|

≤
2κ[ϕ]Lip

N

N∑

i,k=1

|vk − vi|
(
|xk − x̄k||vi − v̄i|+ |xi − x̄i||vi − v̄i|

)

≤
2κ[ϕ]LipD(V 0)e−κϕ(D∞)t

N

N∑

i,k=1

(
|xk − x̄k||vi − v̄i|+ |xi − x̄i||vi − v̄i|

)

≤ 4κ[ϕ]LipD(V 0)e−κϕ(D∞)t∥X − X̄∥∥V − V̄ ∥,

(3.8)

where we used flocking estimates (3.4) and the Cauchy-Schwarz inequality in the last
inequality.

• (Estimate of I12): We use index exchange map (i, k) ↔ (k, i) to find

I12 =
2κ

N

N∑

i,k

ϕ(|x̄k − x̄i|)
(
(vk − v̄k)− (vi − v̄i)

)
(vi − v̄i)

= −2κ

N

N∑

i,k

ϕ(|x̄k − x̄i|)
(
(vk − v̄k)− (vi − v̄i)

)
(vk − v̄k)

= − κ

N

N∑

i,k

ϕ(|x̄k − x̄i|)
∣∣∣(vk − v̄k)− (vi − v̄i)

∣∣∣
2

≤ −κϕ(D̄
∞)

N

N∑

i,k=1

∣∣∣(vk − v̄k)− (vi − v̄i)
∣∣∣
2

= −2κϕ(D̄∞)∥V − V̄ ∥2,

(3.9)

where we used the zero sum condition (3.3) to find

N∑

k=1

(vk − v̄k) =

N∑

k=1

vk −
N∑

k=1

v̄k = 0

Exp. no XV— Recent progress on the mean-field limit of the Cucker-Smale model for flocking

XV–11



and

N∑

i,k=1

∣∣∣(vk − v̄k)− (vi − v̄i)
∣∣∣
2

=
N∑

i,k=1

(
|vk − v̄k|2 + |vi − v̄i|2 − 2(vk − v̄k)(vi − v̄i)

)
= 2N∥V − V̄ ∥2.

In (3.7), we combine (3.8) and (3.9) to find

d

dt
∥V − V̄ ∥2

≤ 4κ[ϕ]LipD(V 0)e−κϕ(D∞)t∥X − X̄∥∥V − V̄ ∥ − 2κϕ(D̄∞)∥V − V̄ ∥2.

This yields (3.5)2:

d

dt
∥V − V̄ ∥ ≤ 2κ[ϕ]LipD(V 0)e−κϕ(D∞)t∥X − X̄∥ − κϕ(D̄∞)∥V − V̄ ∥

≤ 2κ[ϕ]LipD(V 0)e−κmin{ϕ(D∞),ϕ(D̄∞)}t∥X − X̄∥ − κmin{ϕ(D̄∞), ϕ(D∞)}∥V − V̄ ∥,

with

C = 2κ[ϕ]LipD(V 0), α = min
{
ϕ(D∞), ϕ(D̄∞)

}
.

Lemma 3.1. [23] Suppose that two nonnegative Lipschitz functions X and V satisfy the
coupled differential inequalities:

∣∣∣dX
dt

∣∣∣ ≤ V, dV
dt

≤ −αV + γe−αtX , a.e. t > 0,

where α and γ are positive constants. Then, X and V satisfy the uniform bound and decay
estimates:

X (t) ≤ 2M

α
(X 0 + V0), V(t) ≤M(X 0 + V0)e−

αt
2 , t ≥ 0,

where M is given by

M := max
{
1,

2γ

αe

}
+

8γ

α3e3
.

Now, we apply Lemma 3.1 for (3.5) to derive the uniform-in-time stability in ℓ2-norm.
This can be summarized as follows.

Theorem 3.2. [23] Suppose that system parameter and initial data satisfy

N∑

i=1

v0i =
N∑

i=1

v̄0i = 0, κ > max
{ D(V 0)∫∞

D(X0) ϕ(s)ds
,

D(V̄ 0)∫∞
D(X̄0) ϕ(s)ds

}
,

and let (X,V ) and (X̄, V̄ ) be two global smooth solutions to (3.1) - (3.2) with initial data
(X0, V 0) and (X̄0, V̄ 0), respectively. Then, uniform-in-time ℓ2 stability holds in the sense
of Definition 3.2 i.e., there exists a positive constant G independent of t such that

sup
0≤t<∞

(
∥X(t)− X̄(t)∥+ ∥V (t)− V̄ (t)∥

)
≤ G

(
∥X0 − X̄0∥+ ∥V 0 − V̄ 0∥

)
.
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4. Uniform-time mean-field limit of the CS model

In this section, we discuss a measure-theoretic formulation of the kinetic CS model and
uniform-in-time mean-field limit of the particle CS model (3.1).

4.1. Preparatory materials. In this subsection, we recall some measure theoretical re-
sults to be used in later part of this section. First, we recall the kinetic CS model:



∂tF + v · ∇xF +∇v · (Fa(F )F ) = 0, (t, x, v) ∈ R+ × Rd × Rd,

Fa(F )(t, x, v) = −κ
∫

R2d

ϕ(∥x− x∗∥)(v − v∗)F (t, x∗, v∗)dv∗dx∗.
(4.1)

Next, we briefly summarize a measure-theoretic framework and local-in-time stability result
following the work in [24]. In the sequel, we recall the concept of measure-valued solution
to (4.1).

Let P(R2d) be the set of all probability measures on the phase space R2d, which can
be understood as normalized nonnegative bounded linear functionals on C0(R2d). For a
probability measure µ ∈ P(R2d), we use a standard duality relation:

⟨µ, φ⟩ :=
∫

R2d

φ(x, v)µ(dx, dv), φ ∈ C0(R2d).

We first recall a concept of a measure-valued solution to (4.1) as follows.

Definition 4.1. [24] For T ∈ [0,∞), µ ∈ L∞([0, T );P(R2d)) is a measure-valued solution
to (4.1) with initial datum µ0 ∈ P(R2d) if the following three relations hold:

(1) Total mass is normalized: ⟨µt, 1⟩ = 1.
(2) µ is weakly continuous in t:

⟨µt, φ⟩ is continuous in t, ∀ φ ∈ C1
0((0, T )× R2d).

(3) µ satisfies (4.1) in a weak sense: for any φ ∈ C1
0([0, T )× R2d),

⟨µt, φ(t, ·)⟩ − ⟨µ0, φ(0, ·)⟩ =
∫ t

0

〈
µs, ∂sφ+ v · ∇xφ+ Fa · ∇vφ

〉
ds.

Remark 4.1. Let (X,V ) be a global smooth solution to (3.1). Then, the empirical measure

µNt =
1

N

N∑

i=1

δxi ⊗ δvi

is a measure-valued solution in the sense of Definition 4.1.

Definition 4.2. [40, 51]

(1) For p ∈ [1,∞], let Pp(R2d) be a collection of all probability measures with finite

p-th moment: for some z0 ∈ R2d

⟨µ, ∥z − z0∥p⟩ < +∞.

Then, p-Wasserstein distance Wp(µ, ν) is defined for any µ, ν ∈ Pp(R2d) as

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫

R2d×R2d

∥z − z∗∥pdγ(z, z∗)
)1/p

,

where Γ(µ, ν) denotes the collection of all probability measures on R2d × R2d with
marginals µ and ν.

Exp. no XV— Recent progress on the mean-field limit of the Cucker-Smale model for flocking

XV–13



(2) If lim
p→∞

Wp exists, then we define W∞ metric as this limit of limp→∞Wp.

(3) For any T ∈ (0,∞], the kinetic equation (4.1) is the mean-field limit from the
particle system (3.1) in the time-interval [0, T ), if for every solution µt of the kinetic
equation (4.1) with initial data µ0, the following condition holds: for some p ∈ [1,∞]
and t ∈ [0, T ),

lim
N→+∞

Wp(µ
N
0 , µ0) = 0 ⇐⇒ lim

N→+∞
Wp(µ

N
t , µt) = 0,

where µNt is a measure valued solution of the particle system (3.1) with initial
data µN0 .

4.2. The mean-field limit. In this subsection, we recall existence of the mean-field limit
from (3.1) to (4.1), and local and uniform-time stability estimates.

Theorem 4.1. [24] The following assertions hold.

(1) (Local-in-time stability): Let µ and ν be two measure-valued solutions to (4.1) with
initial measures µ0 and ν0 with compact supports and finite second moments:∫

R2d

(1 + |v|2)µ0(dx, dv) <∞,

∫

R2d

(1 + |v|2)ν0(dx, dv) <∞.

Then, there exists a nonnegative constant C = C(T, µ0, ν0) such that

W1(µt, νt) ≤ CW1(µ0, ν0), t ∈ [0, T ). (4.2)

(2) Suppose that the initial probability measure µ0 ∈ P(R2d) is compactly supported,
and has finite first two velocity moments:

⟨µ0, 1⟩ = 1, ⟨µ0, |v|2⟩ < +∞.

Then, there exists the unique measure-valued solution µ ∈ L∞ (
[0, T );P(R2d)

)
to

(4.1) with initial datum µ0.

As a direct application of the uniform stability estimate in Theorem 3.2, we obtain the
uniform-time mean-field limit in the whole time interval and stability of measure-valued
solution in 2-Wasserstein metric. Let dx(t) and dv(t) be the diameters of compact support
in spatial and velocity variables of µt respectively at time t, i.e.

dx(t) := max
x,y∈suppxµt

∥x− y∥, dv(t) := max
v,w∈suppvµt

∥v − w∥.

Theorem 4.2. (Uniform-time mean-field limit) [23] Suppose that the initial probability
measure µ0 ∈ P(R2d) has a compact support and the first two finite moments:

∫

R2d

(1 + |v|2)µ0(dx, dv) <∞, κ >
dv(0)∫∞

dx(0)
ϕ(s)ds

. (4.3)

Then, the following assertions hold. For p, q ∈ [1,∞],

(1) There exists the unique measure-valued solution µt ∈ L∞ (
[0,∞);P(R2d)

)
to (4.1)

with initial datum µ0.

(2) Moreover, if νt is the another measure-valued solution to (4.1) with another ini-
tial measure ν0 with compact support and finite moments (4.3), then there exists
nonnegative constant G independent of t such that

W2(µt, νt) ≤ GW2(µ0, ν0), t ∈ [0,∞). (4.4)
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Remark 4.2. In the sequel, we provide several comments related to the result of Theo-
rem 4.2.

(1) For the construction of measure-valued solution, we have employed so called
particle-in-cell method [40] using empirical measure and a priori local-in-time and
uniform-in-time stability estimates (see (4.2) and (4.4)) in a suitable p-Wasserstein
metric to propagate initial Cauchy approximation in time to construct an approx-
imate sequence of approximate measure-valued solutions via empirical measures.
The same methodology has been applied to other collective models, e.g., augmented
Kuramoto model [19], thermodynamic Kuramoto model [16], thermodynamic CS
model [18], manifold CS model [2].

(2) Recently, S.-Y. Ha, X. Wang and X. Xue removed the compact support assumption
of initial measure to construct a measure-value solution to the kinetic CS model
(4.1) with non-compact support assumption in [27, 52]. They used the particle-in-
cell method and the infinite CS model which corresponds to the infinite counterpart
of the CS model. For the flocking estimate of the infinite CS model, we also refer
to [53].

(3) Natalini and Paul [39] studied the local-in-time mean-field limit for a generalized CS
type model by the coupling method based on the propagation of chaos. Recently,
the author and his collaborators applied the coupling method to the derive finite-
time mean-field limit of the Motsch-Tadmor model which corresponds to the CS
model with a normalized communication weights in [15]. As far as the author
knows, the extension of these works to the uniform-time is still an open problem.

(4) Although we restrict our discussions on a regular and bounded communication
weights, there is also a parallel results for the CS model with a moderately singular
communication weight function by Mucha and Peszek [38].

5. Conclusion

In this note, we have discussed a hidden universality among Keller-Segel model for
aggregation, the CS model for flocking and the Kuramoto model for synchronization. By
reducing the second-order CS model on the real line to the first-order one, we can unify
aforementioned collective dynamics models in the context of a nonlinear consensus model.
We also discussed recent results on the uniform-in-time stability of the CS model and as a
direct application of this uniform stability, we derived a uniform-in-time mean-field limit
which is valid over the whole time interval. Of course, there are several interesting issues
that we did not cover in this work. To name a few, Mucha-Peszek’s work on the construction
of measure-valued solution to the CS model relies on the compact support assumption of the
initial measure. Thus, removing this compact support assumption as in the CS model with
regular and bounded communication weight will be an interesting problem. In addition to
this, extension of the coupling method by Natalini-Paul on the mean-field limit of the CS
model to the uniform-in-time counterpart will also be an interesting problem.
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